2.4 Plant Physiology Fitting Functions


This opx, Plant Physiology Fitting Functions will add five fitting functions for plant physiology to Origin automatically.

BoxLucas1ModP3

Function

y=y_0+a(1-b^x)

Brief Description

a parameterization of Box Lucas Model with 3 parameters

Sample Curve

BoxLucas1Mod2.jpg

Parameters

Number: 3

Names: a, b, y0

Meanings: a = amplitude, b = base, y0 = offset

Lower Bounds: none

Upper Bounds: none

Script Access

nlf_BoxLucas1ModP3(x,a,b,y0)

Function File

fitfunc\BoxLucas1ModP3.fdf

Category

Exponential


BoxLucas1P3

Function

y=y_0+a(1-e^{-bx})

Brief Description

Box Lucas Model with 3 parameters

Sample Curve

BoxLucas1Mod1.jpg

Parameters

Number: 3

Names: a, b, y0

Meanings: a = amplitude, b = rate constant, y0 = offset

Lower Bounds: none

Upper Bounds: none

Script Access

nlf_BoxLucas1P3(x,a,b,y0)

Function File

fitfunc\BoxLucas1P3.fdf

Category

Exponential


ExpDec2Mod

Function

y=A_1(1-e^{-k_1x})+A_2(1-e^{-k_2x})

Brief Description

Double, four-parameter exponential decay function.

Sample Curve

ExpDec2Mod.jpg

Parameters

Number: 4

Names: A1, k1, A2, k2

Meanings: A1 = amplitude, k1 = rate constant, A2 = amplitude, k2 = rate constant

Lower Bounds: 0<k1,k2

Upper Bounds: none

Derived Parameters

Individual decay constant:

t1=1/k1

t2=1/k2

Script Access

nlf_ExpDec2Mod(x,A1,A2,k1,k2)

Function File

fitfunc\ExpDec2Mod.fdf

Category

Exponential


NonRectHyperbola

Function

y=\frac{1}{2\theta}\left[ {\alpha}x+y_m-\sqrt{({\alpha}x+y_m)^2-4{\alpha}{\theta}y_mx } \right]-y_0

Brief Description

Non-rectangular hyperbola

Sample Curve

NonRectHyperbola.jpg

Parameters

Number: 4

Names: \alpha, \theta, y_m, y_0

Meanings: \alpha = initial slope, \theta = convexity factor, y_m = asymptotic value, y_0 = offset

Lower Bounds: 0 < \theta

Upper Bounds: \theta < 1

Derived Parameters

light compensation point x_c = \frac{y_0({\theta}y_0-y_m)}{\alpha(y_0-y_m)}

light saturation estimate x_s = y_m/\alpha

Script Access

nlf_NonRectHyperbola(x,theta,alpha,ym,y0)

Function File

fitfunc\NonRectHyperbola.fdf

Category

Hyperbola


RLC

Function

P=P_s(1-e^{{-\alpha}E_d/P_s})e^{-{\beta}E_d/P_s}

Brief Description

Rapid light curve fitting model

Sample Curve

RLC.jpg

Parameters

Number: 3

Names: P_s, \alpha, \beta

Meanings: P_s = Scale Factor, \alpha = Initial Slope, \beta = RLC Slope

Lower Bounds: 0 <= \alpha, \beta

Upper Bounds: none

Derived Parameters

rETR_{max}=\left\{\begin{matrix}
P_s\frac{\alpha }{\alpha +\beta }\left ( \frac{\beta }{\alpha +\beta} \right )^{\frac{\beta }{\alpha }} \quad \beta \neq 0\\ 
P_s \qquad\qquad\qquad\qquad\beta =0
\end{matrix}\right.


E_k=\left\{\begin{matrix}
\frac{P_s}{\alpha +\beta }\left ( \frac{\beta }{\alpha +\beta} \right )^{\frac{\beta }{\alpha }} \quad \beta \neq 0\\ 
\frac{P_s}{\alpha} \qquad\qquad\qquad\qquad\beta =0
\end{matrix}\right.

Script Access

nlf_RLC(Ed,Ps,alpha,beta)

Function File

fitfunc\RLC.fdf

Category

Plant Physiology