2.1.17.5.16 ocmath_parametric_interpolate_eval
Description
Get interpolated data using parametric interpolation.
For every dimension of pData call the function ocmath_interpolate
to interpolate.
Syntax
int ocmath_parametric_interpolate_eval( const double * pEvalT, double * pEvalData, UINT nEvalSize, const double * pT, const double * pData, UINT nDataSize, UINT nDimension = 2, int nMode = INTERP_TYPE_SPLINE, double dSmoothingFactor = 0, const double * pWeights = NULL, int iOption = OPTION_EXTRAPOLATE )
Parameters
- pEvalT
- [input]parameter points to be evaluated, if one element is outside of valid range, relative interpolated data will be NANUM
- pEvalData
- [output]interpolated data, with size nDimension by nEvalSize
- nEvalSize
- [input] point number to be evaluated, size of pEvalT
- pT
- [input]parameter data, size of nDataSize
- pData
- [input]source data, with size nDimension by nDataSize
- nDataSize
- [input] size of each dimension
- nDimension
- [input] dimension of source data, nDimension >= 2
- nMode
- interpolation method. Must be one of the three modes:
- INTERP_TYPE_LINEAR(linear interpolation),
- INTERP_TYPE_SPLINE(cubic spline interpolation with natural boundary condition),
- INTERP_TYPE_BSPLINE(B-Spline curve fitting using method by Dierckx.P)
- dSmoothingFactor
- [input] This argument specifies the closeness to the original data. It is only useful when nMode = INTERP_TYPE_BSPLINE. dSmoothingFactor >= 0.
- By means of this parameter, the user can control the tradeoff between closeness of fit and smoothness of fit of the approximation.
- If dSmoothingFactor is too large, the spline will be too smooth and signal will be lost ; if it is too small the spline will pick up too much noise.
- In the extreme cases the program will return an interpolating spline if dSmoothingFactor=0 and the weighted least-squares polynomial of degree 3 if s is very large.
- pWeights
- [input]pointer to weights, which is only used in method INTERP_TYPE_BSPLINE, by default(pWeights = NULL) all weights are 1. size is nDataSize
- iOption
- [input] specify how to extrapolate Y values in extrapolated range. Must be one of the three values:
- OPTION_EXTRAPOLATE(extrapolate Y using the last two points),
- OPTION_SET_MISSING(set all Y values in the extrapolated range to be missing values),
- OPTION_REPEAT_LAST(use the Y value of the closest input X value for all values in the extrapolated range)
Return
Returns 0 on success, otherwise returns error code in enum Err_Spline.
Examples
EX1
void ocmath_parametric_interpolate_eval_ex1()
{
const int nDataSize = 5;
vector vT(nDataSize);
matrix mData = {{0, 1, -1, 0, 3},{0, 2, 3, 1, 0}};
if(OE_NOERROR != ocmath_parametric_interpolate_range(vT, mData, nDataSize))
{
out_str("error in calculating range");
return;
}
vector vEvalT;
vEvalT.Data(vT[0], vT[nDataSize - 1], (vT[nDataSize - 1] - vT[0])/20);
int nEvalPoints = vEvalT.GetSize();
matrix mEvalData(2, nEvalPoints);
if(0 != ocmath_parametric_interpolate_eval(vEvalT, mEvalData, nEvalPoints, vT, mData, nDataSize))
{
out_str("error in evaluation");
return;
}
for(int ii = 0; ii < nEvalPoints; ii++)
{
printf("%f\t%f\t%f\n", vEvalT[ii], mEvalData[0][ii], mEvalData[1][ii]);
}
}
Remark
See Also
ocmath_parametric_interpolate_range
Header to Include
origin.h
Reference
|