18.4.2.3 References (IFFT)

  1. James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297-301 (1965).
  2. James C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17 (5), 1150-1166 (1996).
  3. Matteo Frigo and Steven G. Johnson. FFTW. http://www.fftw.org/.
  4. M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of the IEEE 93 (2), 216–231 (2005).
  5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. Chapter 30: Polynomials and the FFT, pp.822-848.
  6. William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press
  7. M.Greitans. 2005. Adaptive STFT-like Time-Frequency analysis from arbitrary distributed signal samples. International Workshop on Sampling Theory and Application, Samsun, Turkey.
  8. Julius O. Smith III and Xavier Serra. PARSHL: An Analysis/Synthesis Program for Non-Harmonic Sounds Based on a Sinusoidal Representation. Proceedings of the International Computer Music Conference (ICMC-87, Tokyo), Computer Music Association, 1987.
  9. Bendat, J.S. and Piersol, A.G. 1986. Random Data: Analysis and Measurement Procedures, second edition. Wiley -Interscience, New York.
  10. Smith, Julius O. 2003. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing.