2.1.24.4.14 ocmath_corr_coeff
Description
Calculates Pearson rank, Spearman rank and Kendall rank correlation coefficients. This is an OriginPro only function.
Syntax
int ocmath_corr_coeff( UINT nRows, UINT nCols, const double * pData, double * pPeaCorr, double * pPeaSig, double * pSpeCorr, double * pSpeSig, double * pKenCorr, double * pKenSig, int nExcludeMissing = CORR_EXCLUDE_MISSING_PAIRWISE )
Parameters
- nRows
- [input]row number of data matrix
- nCols
- [input]column number of data matrix
- pData
- [input]pointer to data points
- pPeaCorr
- [Output]pointer to matrix of Pearson rank correlation coefficients. Size of matrix should be nCols*nCols.
- pPeaSig
- [Output]pointer to matrix of Pearson rank correlation significants. Size of matrix should be nCols*nCols. Diagonal should be NANUM
- pSpeCorr
- [Output]pointer to matrix of Spearman rank correlation coefficients. Size of matrix should be nCols*nCols.
- pSpeSig
- [Output]pointer to matrix of Spearman rank correlation significants. Size of matrix should be nCols*nCols. Diagonal should be NANUM
- pKenCorr
- [Output]pointer to matrix of Kendall rank correlation coefficients. Size of matrix should be nCols*nCols.
- pKenSig
- [Output]pointer to matrix of Kendall rank correlation significants. Size of matrix should be nCols*nCols. Diagonal should be NANUM
- nExcludeMissing
- [input] if set as CORR_EXCLUDE_MISSING_PAIRWISE, will exclude the row when the whole row are missing values,
- if set as CORR_EXCLUDE_MISSING_LISTWISE, will exclude the row when any cell is with mising value in that row.
Return
Returns STATS_NO_ERROR on successful exit or an STATS error code on failure.
Examples
EX1
void ocmath_corr_coeff_Ex1()
{
matrix mData = {{10,12,13,11},{13,10,11,12},{9,12,10,11}};
double *pmData = mData;
int nRet;
int nRows = mData.GetNumRows();
int nCols = mData.GetNumCols();
double* pmPeaCov = NULL;
double* pmPeaSig = NULL;
matrix mPeaCorr(nCols, nCols);
matrix mPeaSig(nCols, nCols);
pmPeaCov = mPeaCorr;
pmPeaSig = mPeaSig;
double* pmSpeCov = NULL;
double* pmSpeSig = NULL;
matrix mSpeCorr(nCols, nCols);
matrix mSpeSig(nCols, nCols);
pmSpeCov = mSpeCorr;
pmSpeSig = mSpeSig;
double* pmKenCov = NULL;
double* pmKenSig = NULL;
matrix mKenCorr(nCols, nCols);
matrix mKenSig(nCols, nCols);
pmKenCov = mKenCorr;
pmKenSig = mKenSig;
nRet = ocmath_corr_coeff(nRows, nCols, pmData, pmPeaCov, pmPeaSig, pmSpeCov, pmSpeSig, pmKenCov, pmKenSig);
out_int("nRet=", nRet); // print out return value.
int ii, jj;
out_str("Pearson");//print out Pearson rank correlation coefficients
for(ii=0; ii<mPeaCorr.GetNumRows(); ii++)
{
for(jj =0; jj<mPeaCorr.GetNumCols(); jj++)
printf("%f\t", mPeaCorr[ii][jj]);
printf("\n");
}
out_str("Spearman");//print out Spearman rank correlation coefficients
for(ii=0; ii<mSpeCorr.GetNumRows(); ii++)
{
for(jj =0; jj<mSpeCorr.GetNumCols(); jj++)
printf("%f\t", mSpeCorr[ii][jj]);
printf("\n");
}
out_str("Kendall");//print out Kendall rank correlation coefficients
for(ii=0; ii<mKenCorr.GetNumRows(); ii++)
{
for(jj =0; jj<mKenCorr.GetNumCols(); jj++)
printf("%f\t", mKenCorr[ii][jj]);
printf("\n");
}
}
Remark
See Also
Header to Included
origin.h
Reference
|