2.13.4.5 mwtest(Pro)
Menu Information
Statistics: Nonparametric Tests: Mann-Whitney test
Brief Information
Preform Mann-Whitney test
Additional Information
This feature is for OriginPro only.
Command Line Usage
1. mwtest type:=1 irng:=(1,2)
2. mwtest irng:=(1,2) tail:=upper;
3. mwtest irng:=(1,2) tail:=lower rt:=<new MW>
X-Function Execution Options
Please refer to the page for additional option switches when accessing the x-function from script
Variables
Display Name
|
Variable Name
|
I/O and Type
|
Default Value
|
Description
|
Input Data Form
|
type
|
Input
int
|
0
|
Specify the input data form.
Option list:
- Indexed
- Input data range, including input group range and data range.
- Example:
- mediantest (1,2)
- In this example, the input group should be stored in the first column and the input data should be stored in the second column.
- Raw
- Specify two data columns as input data.
|
Input
|
irng
|
Input
Range
|
<active>
|
Specify the input data.
|
Null Hypothesis
|
null
|
Input
string
|
0
|
Specify the null hypothesis of Mann-Whiney test.
|
Alternate Hypothesis
|
tail
|
Input
int
|
Radio
|
Indicates whether an upper, lower, or two-tailed MW-test should be performed.
Option list:
- 0=Radio:two:Median1 <> Median2
- Performs a 2-tailed MW-test
- 1=upper:Median1 > Median2
- Performs an upper-tailed MW-test
- 2=lower:Median1 < Median2
- Performs an lower-tailed MW-test
|
Significance Level
|
alpha
|
Input
double
|
0.05
|
Specify the significance level of the test.
|
Exact P Value
|
exact
|
Input
int
|
0
|
Specify whether to calculate exact p value.
|
Output Results
|
rt
|
Output
ReportTree
|
[<input>]<new>
|
Include Notes table, Descriptive table, Ranks table, and Test Statistics table.
|
Examples
- To perform a two-tailed MW-test on columns 1 and 2 of the active worksheet, using default settings:
mwtest irng:=(1,2)
- To perform a lower-tailed MW-test on columns 1 and 3 of the active worksheet, and save the result table with the name MW, use the script command:
mwtest irng:=(1,3) tail:=2 rt:=<new name:=MW>
/*
This example is used to show how to test whether the two populations have identical distribution or not,
when the normality is questionable.
The sample data used is in
OriginPath\Samples\Statistics folder.
1. Import the sample data into a book in Origin
2. use mwtest XF to calculate the U-statistics and p-value.
3. put the result into a new sheet
*/
/*Import the sample data into a new book*/
String fname$=system.path.program$+"Samples\Statistics\mw-test.dat";
newbook;
impASC;
string bkn$=%H;
/*Use the mwtest XF to calculate the U statistics and p-value*/
mwtest irng:=[bkn$]1!(col(1),col(2)) rt:=<new name:="Manny-Whitney">;
/*New a sheet to stor the results of the Manny-Whitney test*/
newsheet book:=bkn$ name:="Result" label:="MW_U|Zstat|Sig";
range MW_U=[bkn$]Result!col(1);
range Zstat=[bkn$]Result!col(2);
range Sig=[bkn$]Result!col(3);
getresults iw:=[bkn$]2 tr:=mytree;
MW_U[1]=mytree.stats.stats.c1;
Zstat[1]=mytree.stats.stats.c2;
Sig[1]=mytree.stats.stats.c3;
More Information
For more information, please refer to our User Guide.
Related X-Functions
kstest2, ttest2
|