NAG Library Function Document

nag_2d_shep_eval (e01shc)

 Contents

    1  Purpose
    7  Accuracy
    10  Example

1
Purpose

nag_2d_shep_eval (e01shc) evaluates the two-dimensional interpolating function generated by nag_2d_shep_interp (e01sgc) and its first partial derivatives.

2
Specification

#include <nag.h>
#include <nage01.h>
void  nag_2d_shep_eval (Integer m, const double x[], const double y[], const double f[], const Integer iq[], const double rq[], Integer n, const double u[], const double v[], double q[], double qx[], double qy[], NagError *fail)

3
Description

nag_2d_shep_eval (e01shc) takes as input the interpolant Qx,y of a set of scattered data points xr,yr,fr, for r=1,2,,m, as computed by nag_2d_shep_interp (e01sgc), and evaluates the interpolant and its first partial derivatives at the set of points ui,vi, for i=1,2,,n.
nag_2d_shep_eval (e01shc) must only be called after a call to nag_2d_shep_interp (e01sgc).
This function is derived from the function QS2GRD described by Renka (1988).

4
References

Renka R J (1988) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data ACM Trans. Math. Software 14 149–150

5
Arguments

1:     m IntegerInput
2:     x[m] const doubleInput
3:     y[m] const doubleInput
4:     f[m] const doubleInput
On entry: m, x, y and f must be the same values as were supplied in the preceding call to nag_2d_shep_interp (e01sgc).
5:     iq[2×m+1] const IntegerInput
On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).
6:     rq[6×m+5] const doubleInput
On entry: must be unchanged from the value returned from a previous call to nag_2d_shep_interp (e01sgc).
7:     n IntegerInput
On entry: n, the number of evaluation points.
Constraint: n1.
8:     u[n] const doubleInput
9:     v[n] const doubleInput
On entry: the evaluation points ui,vi, for i=1,2,,n.
10:   q[n] doubleOutput
On exit: the values of the interpolant at ui,vi, for i=1,2,,n. If any of these evaluation points lie outside the region of definition of the interpolant the corresponding entries in q are set to the largest machine representable number (see nag_real_largest_number (X02ALC)), and nag_2d_shep_eval (e01shc) returns with fail.code= NE_BAD_INTERPOLANT.
11:   qx[n] doubleOutput
12:   qy[n] doubleOutput
On exit: the values of the partial derivatives of the interpolant Qx,y at ui,vi, for i=1,2,,n. If any of these evaluation points lie outside the region of definition of the interpolant, the corresponding entries in qx and qy are set to the largest machine representable number (see nag_real_largest_number (X02ALC)), and nag_2d_shep_eval (e01shc) returns with fail.code= NE_BAD_INTERPOLANT.
13:   fail NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

6
Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_INTERPOLANT
On entry, at least one evaluation point lies outside the region of definition of the interpolant. At such points the corresponding values in q and qx contain extrapolated approximations. Points should be evaluated one by one to identify extrapolated values.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, m=value.
Constraint: m6.
On entry, n=value.
Constraint: n1.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_INVALID_ARRAY
On entry, values in iq appear to be invalid. Check that iq has not been corrupted between calls to nag_2d_shep_interp (e01sgc) and nag_2d_shep_eval (e01shc).
On entry, values in rq appear to be invalid. Check that rq has not been corrupted between calls to nag_2d_shep_interp (e01sgc) and nag_2d_shep_eval (e01shc).
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7
Accuracy

Computational errors should be negligible in most practical situations.

8
Parallelism and Performance

nag_2d_shep_eval (e01shc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_2d_shep_eval (e01shc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9
Further Comments

The time taken for a call to nag_2d_shep_eval (e01shc) will depend in general on the distribution of the data points. If x and y are approximately uniformly distributed, then the time taken should be only On. At worst Omn time will be required.

10
Example

See Section 10 in nag_2d_shep_interp (e01sgc).
© The Numerical Algorithms Group Ltd, Oxford, UK. 2017