| Name | Brief |
|---|---|
| airy_ai | Evaluates an approximation to the Airy function, Ai(x). |
| airy_ai_deriv | Evaluates an approximation to the derivative of the Airy function Ai(x). |
| airy_bi | Evaluates an approximation to the Airy function Bi(x). |
| airy_bi_deriv | Evaluates an approximation to the derivative of the Airy function Bi(x). |
| Name | Brief |
|---|---|
| Bessel_i_nu | Evaluates an approximation to the modified Bessel function of the first kind I /4 (x) |
| Bessel_i_nu_scaled | Evaluates an approximation to the modified Bessel function of the first kind ![]() |
| Bessel_i0 | Evaluates an approximation to the modified Bessel function of the first kind, I0(x). |
| Bessel_i0_scaled | Evaluates an approximation to ![]() |
| Bessel_i1 | Evaluates an approximation to the modified Bessel function of the first kind, . |
| Bessel_i1_scaled | Evaluates an approximation to ![]() |
| Bessel_j0 | Evaluates the Bessel function of the first kind,![]() |
| Bessel_j1 | Evaluates an approximation to the Bessel function of the first kind ![]() |
| Bessel_k_nu | Evaluates an approximation to the modified Bessel function of the second kind ![]() |
| Bessel_k_nu_scaled | Evaluates an approximation to the modified Bessel function of the second kind ![]() |
| Bessel_k0 | Evaluates an approximation to the modified Bessel function of the second kind,![]() |
| Bessel_k0_scaled | Evaluates an approximation to ![]() |
| Bessel_k1 | Evaluates an approximation to the modified Bessel function of the second kind,![]() |
| Bessel_k1_scaled | Evaluates an approximation to ![]() |
| Bessel_y0 | Evaluates the Bessel function of the second kind, , x > 0. |
| Bessel_y1 | Evaluates the Bessel function of the second kind, , x > 0. |
| Jn(x, n) | Bessel function of order n |
| Yn(x, n) | Bessel Function of Second Kind |
| J1(x) | First Order Bessel Function |
| Y1(x) | First order Bessel function of second kind has the following form: Y1(x) |
| J0(x) | Zero Order Bessel Function |
| Y0(x) | Zero Order Bessel Function of Second Kind |
| Name | Brief |
|---|---|
| beta(a, b) | Beta Function |
| incbeta(x, a, b) | Incomplete Beta Function |
| Name | Brief |
|---|---|
| Erf | An error function calculated by ![]() |
| Erfc | Calculates an approximate value for the complement of the error function ![]() |
| Erfcinv | Computes the value of the inverse complementary error function for specified y |
| Erfcx | An scaled complementary error function calculated by ![]() |
| Erfinv | Calculates the inverse of error function ![]() |
| Name | Brief |
|---|---|
| Gamma | Evaluates ![]() |
| Incomplete_gamma | Evaluates the incomplete gamma functions in the normalized form ![]() |
| Log_gamma | Evaluates , x > 0. |
| Real_polygamma | Evaluates an approximation to the kth derivative of the psi function by where x is real with x≠0, -1, -2, ... and k=0,1,......6. |
| incomplete_gamma(a, x) | Incomplete gamma functions |
| gammaln(x) | Natural Log of the Gamma Function |
| Incgamma | Calculate the incomplete Gamma function |
| Name | Brief |
|---|---|
| Cos_integral | Evaluates an approximation of . |
| Cumul_normal | Evaluates the cumulative Normal distribution function ![]() |
| Cumul_normal_complem | Evaluates an approximate value for the complement of the cumulative normal distribution function ![]() |
| Elliptic_integral_rc | calculates an approximate value for the integral where x ≥ 0 and y ≠ 0. |
| Elliptic_integral_rd | Calculates an approximate value for the integral . |
| Elliptic_integral_rf | Calculates an approximation to the integral . |
| Elliptic_integral_rj | Calculates an approximation to the integral . |
| Exp_integral | Evaluates , x>0. |
| Fresnel_c | Evaluates an approximation to the Fresnel Integral . |
| Fresnel_s | Evaluates an approximation to the Fresnel Integral . |
| Sin_integral | Evaluates the approximation of the formula ![]() |
| Name | Brief |
|---|---|
| Kelvin_bei | Evaluates an approximation to the Kelvin function bei x. |
| Kelvin_ber | Evaluates an approximation to the Kelvin function ber x. |
| Kelvin_kei | Evaluates an approximation to the Kelvin function kei x. |
| Kelvin_ker | Evaluates an approximation to the Kelvin function ker x. |
| Name | Brief |
|---|---|
| Jacobian_theta | Evaluates an approximation to the Jacobian theta functions. |
| LambertW | Evaluates an approximate value for the real branches of Lambert’s W function. |
| Boltzmann | Boltzmann Function |
| Dhyperbl | Double Rectangular Hyperbola Function |
| ExpAssoc | Exponential Associate Function |
| ExpDecay2 | Exponential Decay 2 with Offset Function |
| ExpGrow2 | Exponential Growth 2 with Offset Function |
| Gauss | Gaussian Function |
| Hyperbl | Hyperbola Function |
| Logistic | Logistic Dose Response Function |
| Lorentz | Lorentzian Function |
| Poly | Polynomial Function |
| Pulse | Pulse Function |
| LambertW | Lambert’s W function (sometimes known as the ‘product log’ or ‘Omega’ function) |
| Erfcx | Complementary error function |