Name | Brief |
---|---|
airy_ai | Evaluates an approximation to the Airy function, Ai(x). |
airy_ai_deriv | Evaluates an approximation to the derivative of the Airy function Ai(x). |
airy_bi | Evaluates an approximation to the Airy function Bi(x). |
airy_bi_deriv | Evaluates an approximation to the derivative of the Airy function Bi(x). |
Name | Brief |
---|---|
Bessel_i_nu | Evaluates an approximation to the modified Bessel function of the first kind I![]() |
Bessel_i_nu_scaled | Evaluates an approximation to the modified Bessel function of the first kind ![]() |
Bessel_i0 | Evaluates an approximation to the modified Bessel function of the first kind, I0(x). |
Bessel_i0_scaled | Evaluates an approximation to ![]() |
Bessel_i1 | Evaluates an approximation to the modified Bessel function of the first kind,![]() |
Bessel_i1_scaled | Evaluates an approximation to ![]() |
Bessel_j0 | Evaluates the Bessel function of the first kind,![]() |
Bessel_j1 | Evaluates an approximation to the Bessel function of the first kind ![]() |
Bessel_k_nu | Evaluates an approximation to the modified Bessel function of the second kind ![]() |
Bessel_k_nu_scaled | Evaluates an approximation to the modified Bessel function of the second kind ![]() |
Bessel_k0 | Evaluates an approximation to the modified Bessel function of the second kind,![]() |
Bessel_k0_scaled | Evaluates an approximation to ![]() |
Bessel_k1 | Evaluates an approximation to the modified Bessel function of the second kind,![]() |
Bessel_k1_scaled | Evaluates an approximation to ![]() |
Bessel_y0 | Evaluates the Bessel function of the second kind,![]() |
Bessel_y1 | Evaluates the Bessel function of the second kind,![]() |
Jn(x, n) | Bessel function of order n |
Yn(x, n) | Bessel Function of Second Kind |
J1(x) | First Order Bessel Function |
Y1(x) | First order Bessel function of second kind has the following form: Y1(x) |
J0(x) | Zero Order Bessel Function |
Y0(x) | Zero Order Bessel Function of Second Kind |
Name | Brief |
---|---|
beta(a, b) | Beta Function |
incbeta(x, a, b) | Incomplete Beta Function |
Name | Brief |
---|---|
Erf | An error function calculated by ![]() |
Erfc | Calculates an approximate value for the complement of the error function ![]() |
Erfcinv | Computes the value of the inverse complementary error function for specified y |
Erfcx | An scaled complementary error function calculated by ![]() |
Erfinv | Calculates the inverse of error function ![]() |
Name | Brief |
---|---|
Gamma | Evaluates ![]() |
Incomplete_gamma | Evaluates the incomplete gamma functions in the normalized form ![]() |
Log_gamma | Evaluates ![]() |
Real_polygamma | Evaluates an approximation to the kth derivative of the psi function ![]() ![]() |
incomplete_gamma(a, x) | Incomplete gamma functions |
gammaln(x) | Natural Log of the Gamma Function |
Incgamma | Calculate the incomplete Gamma function |
Name | Brief |
---|---|
Cos_integral | Evaluates an approximation of ![]() |
Cumul_normal | Evaluates the cumulative Normal distribution function ![]() |
Cumul_normal_complem | Evaluates an approximate value for the complement of the cumulative normal distribution function ![]() |
Elliptic_integral_rc | calculates an approximate value for the integral ![]() |
Elliptic_integral_rd | Calculates an approximate value for the integral ![]() |
Elliptic_integral_rf | Calculates an approximation to the integral ![]() |
Elliptic_integral_rj | Calculates an approximation to the integral ![]() |
Exp_integral | Evaluates ![]() |
Fresnel_c | Evaluates an approximation to the Fresnel Integral ![]() |
Fresnel_s | Evaluates an approximation to the Fresnel Integral ![]() |
Sin_integral | Evaluates the approximation of the formula ![]() |
Name | Brief |
---|---|
Kelvin_bei | Evaluates an approximation to the Kelvin function bei x. |
Kelvin_ber | Evaluates an approximation to the Kelvin function ber x. |
Kelvin_kei | Evaluates an approximation to the Kelvin function kei x. |
Kelvin_ker | Evaluates an approximation to the Kelvin function ker x. |
Name | Brief |
---|---|
Jacobian_theta | Evaluates an approximation to the Jacobian theta functions. |
LambertW | Evaluates an approximate value for the real branches of Lambert’s W function. |
Boltzmann | Boltzmann Function |
Dhyperbl | Double Rectangular Hyperbola Function |
ExpAssoc | Exponential Associate Function |
ExpDecay2 | Exponential Decay 2 with Offset Function |
ExpGrow2 | Exponential Growth 2 with Offset Function |
Gauss | Gaussian Function |
Hyperbl | Hyperbola Function |
Logistic | Logistic Dose Response Function |
Lorentz | Lorentzian Function |
Poly | Polynomial Function |
Pulse | Pulse Function |
LambertW | Lambert’s W function (sometimes known as the ‘product log’ or ‘Omega’ function) |
Erfcx | Complementary error function |