evaluates
/math-25b11d6b4d5c2ce55b2311298c9c8077.png)
The function is based on a Chebyshev expansion for
(1+u), and uses the property
(1+x) = x
(x).
If x = N +1+u where N is integral and 0 ≤ u < 1 then it follows that:
for N >0
(x) = (x - 1)(x - 2) . . . (x - N)
(1 + u)
for N = 0
(x) =
(1+u)
for N <0
(x) =
(1+u)/x(x + 1)(x + 2) . . . (x - N - 1).
For more information please review the s14aac function in the NAG document
(output, double)/math-25b11d6b4d5c2ce55b2311298c9c8077.png)