Origin C Programming Guide

Copyright © 2025 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any

means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab Corporation. Other

product and company names mentioned herein may be the trademarks of their respective owners.

OriginLab Corporation
One Roundhouse Plaza
Northampton, MA 01060
USA

(413) 586-2013

(800) 969-7720

Fax (413) 585-0126

Table of Contents

AN (01 (oo 18 T o o I8 Co T o 1 o X 2SO RR 1
2 Language FUNAamMENTAISoo.eiiiiiiie ettt e e e e et e e e e e e st e e e e e e e e r e e e e e e e e eeas 5
3 PredefiNed ClasSSES......oooiiiiiiiiii ettt e e et e et e b e e e e bt e e e e e s e s 31
4 Creating and UsiNg Origin € COQE.......ceeiiuiiieiiiiieiiiee et e et et e e st e e e et ee e e et e e e anteeeeeaneeeesanneeeeaseeeeeanseeeeannees 43
5 Matrix Books Matrix Sheets and MatriX ODJECES..........cooiuuiiiiiii e e e e e e e 67
6 Workbooks Worksheets and Worksheet COIUMNSuiiiiiiiiii e s 91
T4 € 1= T o] 1 1TSS PP UTTRR PSPPI 141
L YA Loy (T g Yo IR Y1 (T I = = PSR 187
S B o (][Ter £ PRSP PPPP 201
10 [4] oo T3 11T [PPSR 217
11 o To] {1 o PSRRI 231
12 ANAlYSIS and APPIICATIONSeoiiiiiiiitie et e e e e e 237
13 (O U011 Q@ o)=Y (S 289
14 ACCESSING DAADASE ...t e e e e et e e e e e e e nn e e e e e e e e nneeeeeas 293
15 ACCESSING LADTAIK ...ttt e e e bt e e e et e e e bt e e e an e e e et b e e e 299
16 ACCESSING XFUNCHON ...ttt ettt e e s bt e e ea et e e et e e s ab e e e e aabe e e e enneeesnnees 305
17 Calling Python Functions from OFgin €ooiiiiiiieiiie e e et e e e e e s enee e e s eee e e e eneeeesenneeeesnneeeean 309
18 (U=) T = Lo T PSPPSRSO PRPPTPRR 313
19 DG ¥ g Tex (1] o O PP UP S PPPRR 387
20 AccessiNg EXIErNal RESOUICESeiiiiiiiiee e e et e e e e e e s et e e e e e e e nnrneeeas 475
21 [RXC 1 =1 (=Y o To7 S PSPPSR 505
T To 1= QTSP UPRRRN 513

1 Introduction to Origin C

Origin provides two programming languages: Origin C and LabTalk.

This guide covers the Origin C Programming language. It also shows you how to create X-Functions and control
Dialog Builder dialogs. X-Functions provide a framework within Origin to create tools. Dialog Builder allows you

to create and control custom dialogs such as floating tools, dialog boxes and wizards.

This guide should be used in conjunction with the Language Reference help files accessible from the Origin Help

menu.

The most up-to-date source of documentation including detailed examples can be found at our wiki site:

wiki.OriginLab.com.

1.1 Basic Features

Origin C is a high level programming language closely based on the ANSI C programming language. In addition,
Origin C supports a number of C++ features including classes, mid-stream variable declarations, overloaded
functions, references, and default function arguments. Origin C also supports collections, and the foreach and

using statements from the C# programming language.

Origin C programs are developed in Origin's Integrated Development Environment (IDE) named Code Builder.
Code Builder includes a source code editor with syntax highlighting, a workspace window, compiler, linker, and a

debugger. Refer to Help: Programming: Code Builder for more information about Code Builder.

Using Origin C allows developers to take full advantage of Origin's data import and handling, graphing, analysis,
image export capabilities, and much more. Applications created with Origin C execute much faster than those

created with Origin's LabTalk scripting language.

1.2 Hello World Tutorial

This tutorial will show you how to use Code Builder to create an Origin C function, and then access the function
from Origin. Though the function itself is very simple, the steps provided here will help you get started with writing
your own Origin C functions.

5]
Click the Code Builder button b on Origin's Standard toolbar to open Code Builder.

In Code Builder, click the New button D on Code Builder's Standard toolbar to open the New File dialog.

http://wiki.originlab.com/

Origin C Programming Guide

Select C File from the list box of the dialog, and then type HelloWorld in the File Name text box.

[New File ==

-

Crigin C zource files contain functions that
C++ File can be called from other functions and

H File from LabT alk scripts once the file iz added
LabT alk Script File ko the Code Builder workzpace, compiled,
OCZ File and linked. Ongin C files may contain
Text File ozt ARSI C statements, a selection of

C++ and C# statements, and
pre-processal directives.

File M ame: o | Add to W ork zpace
Hello'w/orld .C o | Fill with default contents
Location:

D Suffonging 20 nginCh, D

Uze path like "zrc' without leading ' to indicate subdirectory from

Origin directary
| (] | Cancel

Click OK and the new file will be opened in Code Builder's Multiple Document Interface (MDI).

Copy or type the following Origin C code beneath the line that reads / Start your functions here.

int test ()

printf ("hello, world\n"); // Call printf function to output our text

// \n represents the newline character

return 0; // Exit our function, returning zero to the caller

}

The Output window of Code Builder should display as

Introduction to Origin C

43 Untitled - Code Builder - HelloWorld.c =N EoH "

File Edit View Build Debug Tools Window Help

NS H@ & KB B s ek
Workspace v X [c] Helloworld.c x -
%a Origin C Workspace 31 // Start your functiocns here. ':J
- Packages 32
- -1 Project 33 int test()
= Systemn 34 {
'> L3 Temporary 35 printf ("hello, worldin™); // Call printf fun
.23 User [AutoLoad] e A // \n represents t
: o o 37
"E:"? User ‘Di\uff\origin 38 return 0; // Exit our function, returning ze
- -[g] HelloWorld.c - 3
g 1 |__
Workspace View Edit Window J
4 1 3 J* LI F
Cutput w 0 X Variables w 0 X Command & Res,,, + 1 X
compiling. .. test -
HelloWorld.c
Linking... LabTalk Console| _
Done: Local Variables
Output Window 17 test
hello, world
< [l P
=l output | Call st... S Find R..| |53 Breakp..] Elvariabl..| (3 Bookm...

Now you can use this function in Origin. For example, you can call this function in Origin's Script Window. If the

Script Window is not open, select the Window: Script Window menu item from the Origin menu to open it.

Type the function name test in the Script Window and then press the ENTER key to execute the command. The

Origin C function will be executed and hello, world will be displayed in the next line.

-

7| Script Window : LabTalk
File(Text) Edit Hide Tools

test;
hello, world

Origin C Programming Guide

Besides the Script Window, the function can also be called from the LabTalk Console Window in Code

Builder. Select View:LabTalk Console in Code Builder if this console window is not open.

-, Once an Origin C file has been successfully compiled and linked, all functions defined in
Q the file can be called as script commands from anywhere in Origin that supports LabTalk
script. The function parameters and return value need to meet certain criteria for the
function to be accessible from script. To learn more, please refer to the LabTalk
Programming: LabTalk Guide: Calling X-Functions and Origin C Functions: Origin C
Functions chapter of the LabTalk help file. This help file is accessible from the Help:

Programming: LabTalk main menu in Origin.

2 Language Fundamentals

2.1 Language Fundamentals

Origin C is closely based on the ANSI C/C++ programming languages. This means Origin C supports the same
data types, operators, flow control statements, user defined functions, classes and error and exception handling.

The next sections will elaborate on these areas of Origin C.

This section covers the following topics:

Data Types and Variables

Operators

Statement Flow Control

Functions
Classes

Error and Exception Handling

2.2 Data Types and Variables

2.2.1 ANSI C Data Types

Origin C supports all the ANSI C : char, short , int, float , double , and void . In addition, you can declare arrays

of, and pointers to, each of these types.

char name[50]; // Declare an array of characters
unsigned char age; // Declare an unsigned 8-bit integer
unsigned short year; // Declare an unsigned 16-bit integer

2.2.2 Origin C Composite Data Types

Although C-style array syntax is supported, Origin C provides the string , vector , and matrix classes to
simplify working with one- and two-dimensional data. Supported element types include char, byte, short, word,

int, uint, and complex. A vector can be of type string (string array), but a matrix cannot; matrix is numeric only.

https://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
https://www.originlab.com/doc/OriginC/guide/Operators
https://www.originlab.com/doc/OriginC/guide/Statement-Flow-Control
https://www.originlab.com/doc/OriginC/guide/Functions
https://www.originlab.com/doc/OriginC/guide/Classes
https://www.originlab.com/doc/OriginC/guide/Error-and-Exception-Handling

Origin C Programming Guide

string str = "hello, world\n"; // Declare and initialize a string

vector<double> vAl = {1.5, 1.8, 1.1}; // Declare and initialize doubles

vector vA2 = {2.5, 2.8, 2.1, 2.4}; // 'double' implied
vector<string> vs(3); // Declare a string array
vs[0] = "This ";

vs[l] = "is ";

vs[2] = "test";

matrix<int> mAl; // Matrix of integers

matrix mA2; // Matrix of doubles (implied)

// NOTE: If no element type is specified, vector/matrix default to double.

Another useful class is complex. It stores a real and an imaginary component.

complex cc (4.5, 7.8); // real = 4.5, imaginary = 7.8
out complex("value = ", cc); // Output the complex value

2.2.3 Color

Colors in Origin C are represented by a DWORD value. This can be either an index into Origin’s internal color

palette or an RGB color composed of red, green, and blue components.

2.2.3.1 Palette Index

Origin’s internal contains 24 colors. A palette index is zero-based (0—23). Origin C provides named constants,

each beginning with SYSCOLOR _.

Index Name Index Name

Language Fundamentals

0 SYSCOLOR_BLACK 12 SYSCOLOR_DKCYAN

1 SYSCOLOR_RED 13 SYSCOLOR_ROYAL

2 SYSCOLOR_GREEN 14 SYSCOLOR_ORANGE

3 SYSCOLOR_BLUE 15 SYSCOLOR_VIOLET

4 SYSCOLOR_CYAN 16 SYSCOLOR_PINK

5 SYSCOLOR_MAGENTA 17 SYSCOLOR_WHITE

6 SYSCOLOR_YELLOW 18 SYSCOLOR_LTGRAY

7 SYSCOLOR_DKYELLOW 19 SYSCOLOR_GRAY

8 SYSCOLOR_NAVY 20 SYSCOLOR_LTYELLOW
9 SYSCOLOR_PURPLE 21 SYSCOLOR_LTCYAN

10 SYSCOLOR_WINE 22 SYSCOLOR_LTMAGENTA
11 SYSCOLOR_OLIVE 23 SYSCOLOR_DKGRAY

DWORD dwColor = SYSCOLOR ORANGE;

2.2.3.2 Auto Color
A special palette index, Auto, colors an element using the same color as its parent (when supported by that

element’s Ul).

Use the INDEX_COLOR_AUTOMATIC macro to specify Auto:

Origin C Programming Guide

DWORD dwColor = INDEX COLOR AUTOMATIC;

2.2.3.3 RGB

An Origin color can also represent an RGB value (8-bit red, green, and blue components). Use the RGB macro

to create an RGB value, then convert it to an Origin color with RGB20OCOLOR.
DWORD brown = RGB2OCOLOR(RGB(139,69,19)); // saddle brown

To test whether a color is RGB vs. palette index, use OCOLOR_IS_RGB:

if (OCOLOR IS RGB(ocolor))

out str("color value represents an RGB color");
cllise

out str("color value represents a color index");

To extract component values from an RGB-based Origin color, first get the RGB with

GET_CRF_FROM_RGBOCOLOR, then query components:

if (OCOLOR_IS RGB(ocolor))

DWORD rgb = GET CRF FROM RGBOCOLOR (ocolor) ;
printf ("red = %d, green = %d, blue = %d\n",

GetRValue (rgb), GetGValue (rgb), GetBValue(rgb));

2.3 Operators

Operators in Origin C support the same arithmetic, logical, comparison, and bitwise operators as ANSI C. The

sections below list the four operator types and show usage.

2.3.1 Arithmetic Operators

Operator Definition Example

Language Fundamentals

* multiplication 10 * 3 -> 30

/ division 6 /2 ->3

% modulus (remainder) 11 $ 2 > 1

+ addition 54+ 4 ->9

- subtraction 9 - 4 ->5
exponentiation (power) o

A 10 ~ 3 -> 1000 (Origin C default)
See note below.

Note. By default, Origin C treats the caret (*) as the —the exponentiation (power) operator—to match LabTalk.
In standard ANSI C, * is the bitwise XOR operator. To use * as XOR in Origin C, add #pragma xor before your

code (e.g., #pragma xor (push, FALSE) ... #pragma xor (pop)).

out int("10 raised to the 3rd is ", 1073); // default: ~ is exponent in Origin C

#pragma xor (push, FALSE) // interpret ~ as XOR
out _int("10 XOR 3 is ", 1073);

#pragma xor (pop) // restore default

// Portable exponentiation that never needs pragma:
out double("pow(10,3) is ", pow(10,3));

Dividing an integer by another integer yields an integer result by default. Use the pragma below so the compiler

treats numeric literals as double.

int a = 3, b = 2;

Origin C Programming Guide

out double ("a/b -> ", a/b); // 1 (integer division)
out_double ("3/2 -> ", 3/2); // 1 (integer division)
out_double ("3/2.0 -> ", 3/2.0); // 1.5 (double literal)
out_double (" (double) 3/2 -> ", (double)3/2); // 1.5 (explicit cast)

// Treat numeric literals as double so 3/2 becomes 1.5:
#pragma numlittype (push, TRUE)

out double("3/2 with numlittype -> ", 3/2); // 1.5

// Variables still follow normal promotions; these now become double
out_double ("3/b with numlittype -> ", 3/b); // 1.5

out_double ("a/2 with numlittype -> ", a/2); // 1.5

#pragma numlittype (pop) // restore default

The calculates the remainder of the left operand divided by the right operand. This operator can only be applied

to integral operands.

out _int ("The remainder of 11 divided by 2 is ", 11 % 2);

A common pattern is to test odd/even:

int n = 27;

out_str(n % 2 ? "27 is odd" : "27 is even");

2.3.2 Comparison Operators

Comparison operators evaluate to true or false with true yielding 1 and false yielding 0.

Operator Definition Example

10

Language Fundamentals

> greater than 5>4 ->1
>= greater than or equal to 5> 5 ->1
< less than 3<2->0
<= less than or equal to 2 <=2 ->1

equal to

not equal to

7 !'=8 ->1

if(aa >= 0)

out str("aa is greater than or equal to zero");

if(12 == aa)

out str("aa is equal to twelve");

if(aa < 99)

out str("aa is less than 99");

2.3.3 Logical Operators

Logical operators evaluate to true or false with true yielding 1 and false yielding 0. The operands are evaluated

from left to right. Evaluation stops when the entire expression can be determined (short-circuit).

Operator

Definition

Example

NOT

10 > 1

11

Origin C Programming Guide

&& AND 165 0 ->0

[l OR 0] 1 ->1

Consider the following two examples:

exprlA && expr2
exprlB || expr2

expr2 will not be evaluated if expr1A evaluates to false or expr1B evaluates to true. Ordering can prevent

errors and improve efficiency. For example, guard against divide-by-zero:

int denom = 0, num = 10;
// Safe: right side never executed because denom == 0 makes whole && false
if (denom !'= 0 && (num / denom) > 2)
out str("greater than 2");
// Reversing the order could evaluate num/denom first and fail.

Another classic short-circuit guard uses a NULL check:

if(NULL != ptr && ptr->dataValue < upperLimit)
process data (ptr) ;

In the above example the entire i f expression will evaluate to false if ptr is equal to NULL. If ptr is NULL then
it is very important that the datavalue not be compared to upperLimit because reading the member from a

NULL pointer can cause an application to end abruptly.

2.3.4 Bitwise Operators

Bitwise operators allow you to test and set individual bits. The operator treats the operands as an ordered array

of bits. The operands of a bitwise operator must be of integral type.

12

Language Fundamentals

Operator Definition Example
bitwise complement
~ ~5 -> 250 (00000101 — 11111010, 8-bit)
(invert bits)
<< shift left 1 << 3 -> 8 (00000001 — 00001000)
>> shift right 8 >> 2 -> 2 (00001000 — 00000010)
& bitwise AND 6 & 3 -> 2(00000110 & 00000011 =00000010)

bitwise exclusive OR
(XOR)

See note below.

5 ~ 3 -> 6(00000101 ~ 00000011 = 00000110;

requires #pragma xor)

bitwise inclusive OR

5] 2 -> 7(00000101 | 00000010 = 00000111)

Note. By default, Origin C treats * as exponentiation (power). Use #pragma xor to interpret * as bitwise XOR

instead:

out int("10 raised to the 3rd is ",

#pragma xor (push, FALSE)

out_int ("10 XOR 3 is ",

#pragma xor (pop)

Common bit-mask patterns:

// Bit flags

const int FLAG READ
const int FLAG WRITE

const int FLAG EXEC

13

0x01;

0x02;

0x04;

1073);

// 0001

// 0010

// 0100

1073);

Origin C Programming Guide

int perms = 0;

perms |= FLAG READ; // set
perms |= FLAG WRITE; // set
out_int ("perms after set = ", perms); // 0x03
perms &= ~FLAG WRITE; // clear
out_int ("perms after clear = ", perms); // 0x01
perms "= FLAG_EXEC; // toggle

, perms); // 0x05

out int ("perms after toggle

out_str((perms & FLAG READ) ? "READ on" : "READ off"); // test

2.4 Statement Flow Control

Origin C supports all ANSI C flow control statements including the if, if-else, switch, for, while, do-while, goto,
break, and continue statements. In addition, Origin C supports the C# foreach statement for looping through a

collection of objects.

2.4.1 The if Statement

The if statement tests a condition and executes a block when the test is true. The if-else statement executes an

alternative block when the test is false.

Examples using different input types:

bool bb = true; // Boolean

if(bb)

out str("bb is true");

14

Language Fundamentals

int nn = 5;

if(nn) // Integer: 0 = false, non-zero = true

out str("nn not 0");

double* pData = NULL;

if (NULL == pData) // Pointer check

out str("Pointer pData is NULL");

An if-else block:

bool bRet = true;

if (bRet)
{
out_str("Valid input"); // when bRet is true
}
else
{
out str ("INVALID input"); // when bRet is false

Braces are optional if the block has only one statement:

15

Origin C Programming Guide

if (bRet)

out str("Valid input");
else

out str ("INVALID input");

An else if ladder (common pattern):

int score = 86;
if(score >= 90)

out str("Grade: A");
else 1f(score >= 80)

out str("Grade: B");
else 1f(score >= 70)

out str("Grade: C");
else

out_str("Grade: D/F");

2.4.2 The switch Statement

Use switch to execute different blocks for mutually exclusive choices. The break statement exits the switch

block (a break after default is optional but harmless).

// Using an enum makes intent clearer

enum DataType { TYPE INT = 1, TYPE FLOAT = 2, TYPE STRING = 3, TYPE OTHER = 4 };

int nType = TYPE FLOAT;

switch(nType) // integer value as condition

case TYPE INT:

case TYPE FLOAT:

16

Language Fundamentals

out str("Numeric type");

break;

case TYPE STRING:
out str("String type");

// no break here, fall through to TYPE OTHER

case TYPE OTHER:
out str("Other type");

break;

default:
out str("Unrecognized type");

break; // optional

2.4.3 The for Statement

The for statement runs a fixed number of times or steps through an array by index.

char str[] = "This is a string";
int n = strlen(str);
for(int index = 0; index < n; index++)

printf ("char at %2d is %c\n", index, str[index]):;

Iterating over a vector by index and by element:

17

Origin C Programming Guide

vector<double> v = {1.2, 3.4, 5.6};

// Index-based
for(int 1 = 0; i < v.GetSize(); 1i++)

printf("v([(%d] = %g\n", i, vI[il]);

// Element-based using foreach over the collection
foreach (double val in v)
printf ("val = %g\n", val);

2.4.4 The while Statement

while and do-while execute a block until a condition is met. while tests at the beginning; do-while tests at the

end.

int count = 0;

while(count < 10)

out_int("count = ", count);

count++;

A simple menu loop with do-while (executes at least once):

int choice;

do

out str("l) Import 2) Analyze 3) Exit");

choice = 3; // substitute a real input mechanism if needed

18

Language Fundamentals

if(1 == choice)
out str("Importing...");
else 1f(2 == choice)
out str("Analyzing...");
}
while(choice != 3); // exit on 3

2.4.5 Jump Statements

Jump statements unconditionally transfer control within a function: break, continue, and goto.

2.4.5.1 break

The break statement exits the nearest enclosing loop or switch immediately.

for(int index = 0; index < 10; index++)

if(pow(index, 2) > 10)

break; // terminate for loop

out_int("index = ", index);

2.4.5.2 continue

The continue statement skips the rest of the current loop iteration and proceeds with the next iteration.

printf ("The odd numbers from 1 to 10 are:\n");

for(int index = 1; index <= 10; index++)
{
if((index % 2) == 0) // use % (modulus) to test even/odd
continue; // skip even numbers

19

Origin C Programming Guide

printf ("$d\n", index);

Another continue use: skip blanks when counting letters.

const char* s = "A B C";
int letters = 0;

for(int 1 = 0; s[i]; i++)

continue;

letters++;

out_int ("letters = ", letters); // 3

2.4.5.3 goto

The goto statement jumps to a labeled statement within the same function. Use sparingly; structured control flow

is usually clearer.

out str("Begin");

goto Markl;

out str("Skipped statement");

Markl:

outistr("First statement after Markl");

2.4.6 The foreach Statement

Use foreach to loop through a collection. The example below iterates all pages in the project and prints name

and type.

20

Language Fundamentals

foreach (PageBase pg in Project.Pages)

printf ("%s is of type %d\n", pg.GetName (), pg.GetType());

Refer to the Collections section for a list of all collection-based classes in Origin C.

2.5 Functions

2.5.1 Global Functions

Origin C provides many global functions for performing a variety of tasks. These functions fall into twenty-six

categories:

Basic 10

Character and String Manipulation
COM
Communications
Curve

Data Conversion

Data Range

Date Time

File 10

File Management
Fitting

Image Processing
Import Export

Internal Origin Objects

LabTalk Interface

21

https://www.originlab.com/doc/OriginC/guide/Collections

Origin C Programming Guide

Math Functions
Mathematics

Matrix Conversion and Gridding
Memory Management
NAG

Signal Processing
Spectroscopy
Statistics

System

Tree

User Interface

Please refer to the Global Functions section for a complete list of functions with examples.

2.5.2 User-Defined Functions

Origin C supports user-defined functions. A user-defined function lets you create functions that accept your

choice of arguments and return type, and operate on those arguments to achieve a specific purpose.

2.5.2.1 Minimal example (pass by value)

Define the function and call it in one block:

double my function (double dData)

dbata += 10;

return dData;

// Usage
double d = 3.3;

d = my function(d);

22

https://www.originlab.com/doc/OriginC/ref/Global-Functions

Language Fundamentals

out double("d == ", d); // 13.3

2.5.2.2 Modify a value (pass by reference)

Use a reference parameter to modify the caller’s variable without returning a value.

void add offset (double& x, double offset)

x += offset; // modifies 'x' in the caller

// Usage
double v = 5;
add offset (v, 2.5);

out_double("v == ", v); // 7.5

2.5.2.3 Overloading and default arguments

Origin C supports function overloading and default parameter values.

// Two overloads for scale(): vector<double> and vector<int>
void scale (vector<double>& v, double factor = 1.0)
{

int n = v.GetSize();

for (int i = 0; 1 < n; 1i++)

v[i] *= factor;

void scale (vector<int>& v, double factor = 1.0)

int n = v.GetSize();

23

Origin C Programming Guide

for (int i = 0; 1 < n; 1i++4)

v[i] = (int) (v[i] * factor);

// Usage

vector<double> a = {1.0, 2.0, 3.0};

scale(a, 2.0); // => {2, 4, 6}
vector<int> b = {1, 2, 3};
scale (b); // default factor 1.0 (no change)

2.5.2.3.1 Copy-return variant (read-only input)

Keep the input read-only and return a scaled copy.

vector<double> scale(const vector<double>& v, double factor)

vector<double> out = v; // copy input
int n = out.GetSize();
for (int 1 = 0; 1 < n; 1i++)

out[i] *= factor;

return out;

// Usage
vector<double> c = {2.5, 4.0};

vector<double> d2 = scale(c, 0.5); // c unchanged, d2 = {1.25, 2.0}

2.5.2.4 Calling from LabTalk

You can call eligible Origin C functions from LabTalk (parameters/return types must meet certain criteria).

24

Language Fundamentals

// Example function callable from LabTalk:

double add then scale(double x, double y, double factor)

return (x + y) * factor;

// In the Script Window or LabTalk Console:
double r;
r = add _then scale(2.5, 3.5, 10); // calls the Origin C function

r=; // outputs 60
I, For details on which signatures are callable from script and how to keep functions available,

Q see

the LabTalk help on calling Origin C functions.

2.6 Classes

Origin C supports many built-in classes, and also allows you to create your own.

2.6.1 Origin Defined Classes

Origin C includes predefined classes for working with Origin data types and user-interface objects. These
classes help you quickly write Origin C code to accomplish common tasks. This section introduces the base
classes to give you an overview of their capabilities. See the next chapter, Predefined Classes, or the Origin C

Wiki for details and examples of Origin-defined classes.

2.6.2 User Defined Classes

Origin C supports user-defined classes. A user-defined class lets you create objects of your own type with

methods (member functions) and data members.
The example below defines a Book class with:

a constructor to set the name on creation,

25

https://www.originlab.com/doc/LabTalk/guide/OC-Functions

Origin C Programming Guide

a const getter (safe to call on const objects),

and two setter overloads (from C-string or from string).

class Book

public:

// Constructors

Book () : m strName("") {} // default

Book (LPCSTR name) : m_strName (name) {} // set name on creation

// Getter (const so it can be called on const Book)

string GetName () const

return m_ strName;

// Setters (overloaded for convenience)

void SetName (LPCSTR lpcszName)

m strName = lpcszName;

void SetName (const string& name)

m_strName = name;

private:

26

Language Fundamentals

string m_strName;
i

And here is a simple usage example that declares a Book object, sets its name, and outputs it:

void test class()

Book one; // default constructor
one.SetName ("ABC") ;

out str (one.GetName ()) ;

const Book two("Origin C"); // construct with name; const object
out str(two.GetName()); // OK (GetName is const)

// two.SetName ("new") ; // NOT allowed: 'two' 1is const

For more class features—such as constructors/destructors in larger examples or virtual methods—download this
zip file, then browse to \Origin C Examples\Programming Guide\Extending Origin C to see EasyLR.c, EasyLR.h,
and EasyFit.h.

2.7 Error and Exception Handling

2.7.1 Exception Handling

Origin C supports C++-style exception handling using the try, catch, and throw statements .

A try block is the keyword try followed by statements in braces. Immediately after the try block is a single catch

handler.

Note:** Origin C supports only **one** catch handler and it must accept an int error code.

try

27

http://blog.originlab.com/wp-content/uploads/2017/01/OriginCExamples.zip
http://blog.originlab.com/wp-content/uploads/2017/01/OriginCExamples.zip

Origin C Programming Guide

LPSTR lpdest = NULL; // NULL pointer on purpose

strcpy (lpdest, "Test"); // copy to NULL pointer to cause error

catch (int nErr)

out int ("Error = ", nErr);

During execution, statements in the try block run first. If an error is thrown, control jumps to the catch block;

otherwise the catch block is skipped.

You can use throw to signal an error explicitly and jump to the catch block:

void TryCatchThrowEx ()

try

DoSomeWork (4) ; // valid -> prints result

DoSomeWork (-1); // invalid -> throws

catch (int iErr)

printf ("Error code = %d\n", iErr);

void DoSomeWork (double num)

if (num < 0)

28

Language Fundamentals

throw 100; // force error: negative input
if (== num)

throw 101; // force error: zero not allowed

double result = sqrt(num) / log(num) ;

printf ("sqrt (%f) / log(%f) = %g\n", num, num, result);

Because only catch (int) is supported, choose and document distinct integer codes for

different error conditions.

29

3 Predefined Classes

3.1 Predefined Classes

In this section, the predefined classes in Origin C will be described. Please see class hierarchy as a reference for

more information about the relationships among Origin C built-in classes.

This section covers the following topics:

Analysis Class

Application Communication Class

Composite Data Types Class

Internal Origin Objects Class

System Class

User Interface Controls Class

Utility Class

3.2 Analysis Class

3.2.1 Analysis Class

The following classes are used to perform data analysis. For details, see the Origin C Reference: Classes —

Analysis chapter in the Origin C help.

Class Brief Description

Provides access to information about the fitting function and to the current evaluation
NLFitContext
state generated when implementing a fitting function in Origin C.

Higher-level wrapper around the NLFit class that offers a friendlier interface for

NLFitSession implementing the fitting evaluation procedure. It underlies the NLFit dialog and is

recommended for Origin C coding because it handles much of the interfacing

31

https://www.originlab.com/doc/OriginC/guide/Class-Hierarchy
https://www.originlab.com/doc/OriginC/guide/Analysis-Class
https://www.originlab.com/doc/OriginC/guide/Application-Communication-Class
https://www.originlab.com/doc/OriginC/guide/Composite-Data-Types-Class
https://www.originlab.com/doc/OriginC/guide/Internal-Origin-Objects-Class
https://www.originlab.com/doc/OriginC/guide/System-Class
https://www.originlab.com/doc/OriginC/guide/User-Interface-Controls-Class
https://www.originlab.com/doc/OriginC/guide/Utility-Class
https://www.originlab.com/doc/OriginC/ref/Analysis
https://www.originlab.com/doc/OriginC/ref/Analysis
https://www.originlab.com/doc/OriginC/ref/NLFitContext
https://www.originlab.com/doc/OriginC/ref/NLFitSession

Origin C Programming Guide

complexity.

3.3 Application Communication Class

3.3.1 Application Communication Class

The following classes enable communication between Origin and other applications. For details, see the Origin

C Reference: Classes — Application Communication chapter in the Origin C help.

Class Brief Description

Matlab Enables communication between Origin and MATLAB.

3.4 Composite Data Types Class

3.4.1 Composite Data Types Class

The following classes are composite data-type classes. For details, see the Origin C Reference: Classes —

Composite Data Types chapter in the Origin C help.

Class Brief Description

An array of integers tied to an internal Origin Text data set. Values map text to
CategoricalData category indices (1-based). The mapped texts live in the associated
CategoricalMap.

An array of unique text values (allocated dynamically), not tied to an internal
CategoricalMap data set. Values are stored alphanumerically and referenced by

CategoricalData indices.

Handles complex numbers; stores both real and imaginary parts and provides

complex
complex arithmetic/utilities.

32

https://www.originlab.com/doc/OriginC/ref/Application-Communication
https://www.originlab.com/doc/OriginC/ref/Application-Communication
https://www.originlab.com/doc/OriginC/ref/Matlab
https://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
https://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
https://www.originlab.com/doc/OriginC/ref/CategoricalData
https://www.originlab.com/doc/OriginC/ref/CategoricalMap
https://www.originlab.com/doc/OriginC/ref/Complex-class

Predefined Classes

Curve

Derived from curvebase and vectorbase. Represents a Y data set with an

optional associated X. Can be plotted via GraphLayer methods.

curvebase

Abstract base of curve-like classes (used polymorphically). Not constructible;

use a derived class such as Curve.

Dataset

Dynamic array derived from vector/vectorbase. May be tied or not tied to an
internal Origin data set. Default element type is double; supports basic types

(char, byte, short, word, int, uint, complex; not string). Use Dataset<type>.

Matrix

Two-dimensional array derived from matrix/matrixbase, tied to an Origin
matrix window. Default type is double; supports basic types (char, byte, short,
word, int, uint, complex; not string). Use Matrix<type>. Accesses matrix
data; MatrixObject controls display/style. Worksheet “Z” values map linearly to

X (columns) and Y (rows).

matrix

Two-dimensional array (lowercase m) derived from matrixbase, not tied to a
matrix window (more flexible). Default type is double; supports the same basic

types (not string). Use matrix<type>.

matrixbase

Abstract base for matrix and Matrix (polymorphic use). Not constructible; use

derived classes.

PropertyNode

Container for typed properties (bool, int, float, double, string, vector, matrix,

picture, etc.).

Null-terminated character array (similar to MFC CString) with rich string APlIs.

string
Works with vector<string> for string arrays.
Tree Save/load Origin C trees as XML.
TreeNode Build multi-level trees; traverse nodes; access attributes.

33

https://www.originlab.com/doc/OriginC/ref/Curve-Class
https://www.originlab.com/doc/OriginC/ref/curvebase
https://www.originlab.com/doc/OriginC/ref/Dataset
https://www.originlab.com/doc/OriginC/ref/Matrix-Class
https://www.originlab.com/doc/OriginC/ref/matrix
https://www.originlab.com/doc/OriginC/ref/matrixbase
https://www.originlab.com/doc/OriginC/ref/PropertyNode
https://www.originlab.com/doc/OriginC/ref/string
https://www.originlab.com/doc/OriginC/ref/Tree-Class
https://www.originlab.com/doc/OriginC/ref/TreeNode

Origin C Programming Guide

TreeNodeCollection Retrieve collections of child nodes with a shared name prefix.

Abstract base for vector and Dataset (polymorphic use). Not constructible; use

vectorbase

derived classes.

Dynamic array derived from vectorbase, not tied to an internal data set (more
vector flexible). Default type is double; supports basic types including char, byte,

short, word, int, uint, complex, and string. Use vector<type>.

3.5 Internal Origin Objects Class

3.5.1 Internal Origin Objects Class

The following classes are used to handle Origin objects. For details, see the Origin C Reference: Classes —

Internal Origin Objects chapter in the Origin C help.

Class Brief Description

Axis Access axes contained in layers on an Origin page.

Access axis objects (ticks, grids, labels) contained by axes on a graph

AxisObject
page.
Generic container template for internal Origin objects (e.g.,
Collection Collection<PageBase> Pages). Supports attach/detach and
idiomatic looping (e.g., foreach).
CollectionEmbeddedPages Access pages embedded in a worksheet.
Wrapper for worksheet columns; each holds a Dataset. Primarily
Column

controls display/style of the associated data.

34

https://www.originlab.com/doc/OriginC/ref/TreeNodeCollection
https://www.originlab.com/doc/OriginC/ref/vectorbase
https://www.originlab.com/doc/OriginC/ref/vector
https://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
https://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
https://www.originlab.com/doc/OriginC/ref/Axis
https://www.originlab.com/doc/OriginC/ref/AxisObject
https://www.originlab.com/doc/OriginC/ref/Collection
https://www.originlab.com/doc/OriginC/ref/CollectionEmbeddedPages
https://www.originlab.com/doc/OriginC/ref/Column-Class

Predefined Classes

Base class for worksheet columns and matrix objects; data objects live

DataObiject

in layers on a page.

Abstract base for DataObject and DataPlot hierarchies (polymorphic
DataObjectBase

use).

Wrapper for graph data plots; stores plot characteristics and resides in a
DataPlot

graph layer.

Build/query ranges from Worksheet/Matrix/Graph. Holds page,
DataRange

sheet/layer, and index info; can aggregate multiple sub-ranges.

DataRangeEx

Extension of DataRange.

DatasetObject Access non-numeric datasets (typically members of Column).
Datasheet Handle worksheet and matrix layers.

Project Explorer folder wrapper; provides access to pages and folder
Folder hierarchy.
fpoint3d 3D point with double (x, vy, z).
fpoint 2D point with double (x, y).

GetGraphPoints

Get screen/data (x, y) positions from a graph window.

GraphLayer

Wrapper for graph layers; contains a collection of DataPlot objects;

owned by a GraphPage.

GraphObject

Handle graph objects (text/graphic annotations, style holders, ROI

objects). Contained by a GraphLayer.

35

https://www.originlab.com/doc/OriginC/ref/DataObject
https://www.originlab.com/doc/OriginC/ref/DataObjectBase
https://www.originlab.com/doc/OriginC/ref/DataPlot-Class
https://www.originlab.com/doc/OriginC/ref/DataRange-Class
https://www.originlab.com/doc/OriginC/ref/DataRangeEx
https://www.originlab.com/doc/OriginC/ref/DatasetObject
https://www.originlab.com/doc/OriginC/ref/Datasheet-class
https://www.originlab.com/doc/OriginC/ref/folder-class
https://www.originlab.com/doc/OriginC/ref/fpoint3d
https://www.originlab.com/doc/OriginC/ref/fpoint
https://www.originlab.com/doc/OriginC/ref/GetGraphPoints
https://www.originlab.com/doc/OriginC/ref/GraphLayer
https://www.originlab.com/doc/OriginC/ref/GraphObject

Origin C Programming Guide

GraphPage

Wrapper for graph pages (windows); provides access to layers and their

objects.

GraphPageBase

Base class for GraphPage and LayoutPage.

Grid Format data-sheet windows; selection, labels, cell color, merge, etc.
GroupPlot Handle grouped plots contained in a layer.

Wrapper for page layers; many objects on a page are contained in
Layer

layers.

Wrapper for layout pages (windows); exposes page methods and layer
LayoutPage

access.
Layout Wrapper for layout layers within a layout page.

MatrixLayer

Handle matrix layers; contains a collection of matrix objects in the layer.

Wrapper for matrix objects; controls style/display. Data access is via

MatrixObject

Matrix; analogous to Column (style) vs Dataset (data).

Wrapper for matrix pages (windows); provides access to matrix layers
MatrixPage

and their objects.
Note Wrapper for Note pages (windows).
OriginObject Base class for all Origin objects.
Page Wrapper for general pages; contains one or more layers (except Note).
PageBase

Abstract base for page types; useful for generic functions or attaching to

36

https://www.originlab.com/doc/OriginC/ref/GraphPage
https://www.originlab.com/doc/OriginC/ref/GraphPageBase
https://www.originlab.com/doc/OriginC/ref/Grid
https://www.originlab.com/doc/OriginC/ref/GroupPlot
https://www.originlab.com/doc/OriginC/ref/Layer
https://www.originlab.com/doc/OriginC/ref/LayoutPage
https://www.originlab.com/doc/OriginC/ref/Layout
https://www.originlab.com/doc/OriginC/ref/MatrixLayer
https://www.originlab.com/doc/OriginC/ref/MatrixObject
https://www.originlab.com/doc/OriginC/ref/MatrixPage
https://www.originlab.com/doc/OriginC/ref/Note
https://www.originlab.com/doc/OriginC/ref/OriginObject
https://www.originlab.com/doc/OriginC/ref/Page-Class
https://www.originlab.com/doc/OriginC/ref/PageBase

Predefined Classes

the active page.

point 2D integer point (X, y).

Project Access most objects in the project; exposes collections (pages,
datasets) and active objects (ActiveCurve/Layer/Folder).

ROIObject Handle region-of-interest objects, typically on matrices.

Scale Handle axis scales (each graph layer has X and Y scales).

storage Save binary (TreeNode) and INI (INIFile) data into Origin objects.

StyleHolder Wrapper for data-plot style holders (plot type info).

UndoBlock Safe project edits via UndoBlockBegin () /UndoBlockEnd () .

WorksheetPage

Wrapper for worksheet pages (windows).

Worksheet Handle worksheet layers; contains a collection of Column objects.
Build/get XY ranges (one X, one Y). Holds page/sheet/layer and index
XYRange

info; can contain multiple sub-ranges.

XYRangeComplex

XY ranges for complex data (matrix/worksheet); multiple sub-ranges

supported.

XYZRange

XYZ ranges (matrix/worksheet); multiple sub-ranges supported.

37

https://www.originlab.com/doc/OriginC/ref/Point-class
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/ROIObject
https://www.originlab.com/doc/OriginC/ref/Scale
https://www.originlab.com/doc/OriginC/ref/storage
https://www.originlab.com/doc/OriginC/ref/StyleHolder
https://www.originlab.com/doc/OriginC/ref/UndoBlock
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/XYRange
https://www.originlab.com/doc/OriginC/ref/XYRangeComplex
https://www.originlab.com/doc/OriginC/ref/XYZRange

Origin C Programming Guide

I, Many of these classes are **wrappers** around internal Origin objects (they reference an
Q internal object; multiple wrappers can refer to the same internal object). Where applicable,
data access vs. style/display responsibilities are split (e.g., Matrix for data, MatrixObject

for style).

3.6 System Class

The following classes are about system settings. For more details, please refer to the Origin C: Origin C

Reference: Classes: System chapter in the help document of OriginC.

Class Brief Description

This class is used to control the permission to read/write the binary files by using

file unbuffered io (accessing immediate disk). It is similar to the MFC CFile class. Please also
refer to the stdioFile class, which is for buffered stream io to text files.
INIFile This class is used to access the data stored in the initialization file.
Registry The methods in this class are used to access Windows registry.
This class is derived from the file class, from which it inherits methods and properties. This
dioFil class is used to control the permission to read/write the text and binary files by using
stdioFile

buffered stream io. However, this class does not support stream io to stdin, stdout, and

stderr. Please also refer to the file class, which is for unbuffered io to binary files.

3.7 User Interface Controls Class

The following classes are about user interface. For more details, please refer to the Origin C: Origin C

Reference: Classes: User Interface Controls chapter in the help document of OriginC.

The classes marked with * are only available in Origin with the DeveloperKit installed.

Class Brief Description

38

https://www.originlab.com/doc/OriginC/ref/System-Class
https://www.originlab.com/doc/OriginC/ref/System-Class
https://www.originlab.com/doc/OriginC/ref/file
https://www.originlab.com/doc/OriginC/ref/INIFile
https://www.originlab.com/doc/OriginC/ref/Registry
https://www.originlab.com/doc/OriginC/ref/stdioFile
https://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
https://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class

Predefined Classes

*BitmapRadioButton

This class provides the functionality of bitmap radio button controls.

*Button

This class provides the functionality of button controls. A button control is a
small rectangular child window, which can be clicked on and off. The button
will change its appearance when clicked. Typical buttons include check boxes,

radio buttons and push buttons.

*

CmdTarget

This class is the base class for message map architecture. A message map is
used to send a command or message to the member functions you have
written, and then the member functions handle the command or message. (A
command is a message from a menu item, command button, or accelerator

key.)

Two key framework classes are derived from this class: Window and
ObjectCmdTarget. To create a new class for handling messages, you can just
derive your new class from one of these two classes. There is no need to

derive from CmdTarget directly.

*CodeEdit

This class is derived from the RichEdit class. It is used to display the redefined

color for key words in coding text.

*ColorText

This class is only available in Origin packages that have the DeveloperKit

installed.

*ComboBox

This class is used to define combobox control.

“Control

This class provides the base functionality of all controls.

*DeviceContext

This class is used to define device-context objects.

*DhtmIControl

/ladd description here

*Dialog

This class is the base class for displaying dialog boxes on the screen.

39

https://www.originlab.com/doc/OriginC/ref/BitmapRadioButton
https://www.originlab.com/doc/OriginC/ref/Button
https://www.originlab.com/doc/OriginC/ref/CmdTarget
https://www.originlab.com/doc/OriginC/ref/CodeEdit
https://www.originlab.com/doc/OriginC/ref/ColorText
https://www.originlab.com/doc/OriginC/ref/ComboBox
https://www.originlab.com/doc/OriginC/ref/Control
https://www.originlab.com/doc/OriginC/ref/DeviceContext
https://www.originlab.com/doc/OriginC/ref/DhtmlControl
https://www.originlab.com/doc/OriginC/ref/Dialog-class

Origin C Programming Guide

*

DialogBar

This class is used to create a Dockable control bar with a child Origin C-driven

dialog.

*

DynaControl

This class is used to generate various types of customized interface controls
dynamically, such as an edit box, combo box, check box, or radio button. The
values will be stored in a tree node, and the on dialog will display as a tree

structure.

*Edit

This class is used to create edit controls. An edit control is a rectangular child

window, which can be filled with text.

*GraphControl

This class is derived from the OriginControls, Control and Window classes,
from which it inherits methods and properties. Methods defined in this class
can be used to display an Origin Graph within the specified control on the

dialog.

GraphObjTool

This class is the base class of GraphObjCurveTool. It is used to create and
manage a rectangle on an Origin graph window, around the region of interest

and containing the data.

This class is derived from GraphObjTool, from which it inherits methods and

properties. With these methods and properties, it can be used to create and

GraphObjCurveTool manage a rectangle on an Origin graph window, around the region of interest
and containing the data. This class also provides methods for adding a context
menu and the related event functions.

ListB This class is used to define list boxes. A list box shows a list of string items for

*ListBox
viewing and selecting.

M This class is used to handle menus, including creating, tracking, updating and

*Menu

destroying them.

*QriginControls

This class is the base class for displaying the Origin window on dialog.

40

https://www.originlab.com/doc/OriginC/ref/DialogBar
https://www.originlab.com/doc/OriginC/ref/DynaControl
https://www.originlab.com/doc/OriginC/ref/Edit
https://www.originlab.com/doc/OriginC/ref/GraphControl
https://www.originlab.com/doc/OriginC/ref/GraphObjTool
https://www.originlab.com/doc/OriginC/ref/GraphObjCurveTool
https://www.originlab.com/doc/OriginC/ref/ListBox
https://www.originlab.com/doc/OriginC/ref/Menu
https://www.originlab.com/doc/OriginC/ref/OriginControls

Predefined Classes

*PictureControl

This class is used to paint a PictureHolder object within the control on dialog.

rogressBox

This class provides methods and properties for opening and controlling
progress dialog boxes. A progress dialog box is a small dialog box that
indicates the software is busy processing data. This dialog box contains a
progress bar for showing the fraction of the completed processing. The

progress dialog box is usually used in iterative loops.

*

PropertyPage

This class is used to construct individual page objects of property sheets in a

wizard dialog.

*PropertySheet

This class is used to construct property sheets in a wizard dialog. One property

sheet object can contain multiple property page objects.

This class provides methods for formatting text. A rich edit control is a window,

*RichEdit in which text can be written and edited. The text can be in character and
paragraph formatting.
A slider control is a window with a slider and optional ticks. When the slider is
*Slider moved by the mouse or the directional keys on the keyboard, the control will

send a notification message to implement the change.

*SpinButton

A spin button control is a pair of arrow buttons that can be used to increase or
decrease a value, such as scroll position or the number displaying in an

accompanying control. This value is called the current position.

A tab control is used to display different information under different tabs in a

*TabControl dialog. This class provides methods to add/delete tab items for displaying a
group of controls.
A wait cursor is a visual sign for indicating that the software is busy processing
waitCursor data. This class provides methods and properties for opening and controlling

wait cursors.

41

https://www.originlab.com/doc/OriginC/ref/PictureControl
https://www.originlab.com/doc/OriginC/ref/progressBox
https://www.originlab.com/doc/OriginC/ref/PropertyPage
https://www.originlab.com/doc/OriginC/ref/PropertySheet
https://www.originlab.com/doc/OriginC/ref/RichEdit
https://www.originlab.com/doc/OriginC/ref/Slider
https://www.originlab.com/doc/OriginC/ref/SpinButton
https://www.originlab.com/doc/OriginC/ref/TabControl
https://www.originlab.com/doc/OriginC/ref/waitCursor

Origin C Programming Guide

This class is the base class of all window classes. It is similar to the MFC

CWnd class.

*Window

This class is used to construct wizard controls for implementing something
*WizardControl step by step in a dialog. The methods available in this class enable you to

add/delete steps.

This class is used to construct property sheet objects in a wizard dialog. A
*WizardSheet . .
property sheet contains one or more property page objects.

This class is derived from the OriginControls, Control and Window classes,

and it inherits their methods and properties. The methods available in this
*WorksheetControl

class can be used to display an Origin Worksheet within the specified control in

a dialog.

*WndContainer This class is the base class of the derived control classes.

3.8 Utility Class

For more details about the following classes, please refer to the Origin C: Origin C Reference: Classes: Utility

chapter in the help document of OriginC.

Class Brief Description

This class is a collection of almost all data types and objects. When Array::IsOwner is
Array TRUE, the array will be the owner of the memories that are allocated to the objects. And

the objects will be destroyed when the array is resized or destructed.

BitsH This class is used to compress byte vectors (1 and 0) to hexadecimal strings, and
itsHex
decompress hexadecimal strings to byte vectors.

] This class can be used to measure the call times of various functions to find out the slower
Profiler
ones.

42

https://www.originlab.com/doc/OriginC/ref/Window
https://www.originlab.com/doc/OriginC/ref/WizardControl
https://www.originlab.com/doc/OriginC/ref/WizardSheet
https://www.originlab.com/doc/OriginC/ref/WorksheetControl
https://www.originlab.com/doc/OriginC/ref/WndContainer
https://www.originlab.com/doc/OriginC/ref/Utility
https://www.originlab.com/doc/OriginC/ref/Array
https://www.originlab.com/doc/OriginC/ref/BitsHex
https://www.originlab.com/doc/OriginC/ref/Profiler

4 Creating and Using Origin C Code

4.1 Creating and Using Origin C Code

This section covers the following topics:

Create and Edit an Origin C File

Compiling, Linking and Loading

Debugging

Using Compiled Functions

Distributing Origin C Code

4.2 Create and Edit an Origin C File

4.2.1 Overview

Code Builder is an Integrated Development Environment (IDE) for Origin C and LabTalk programming. Code
Builder provides tools for writing/editing, compiling, linking, debugging, and executing your Origin C code.
Although Origin C code can be written in any text editor, it must be added to Code Builder's Workspace to be

compiled and linked.

43

https://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File
https://www.originlab.com/doc/OriginC/guide/Compiling-Linking-and-Loading
https://www.originlab.com/doc/OriginC/guide/Debugging
https://www.originlab.com/doc/OriginC/guide/Using-Compiled-Functions
https://www.originlab.com/doc/OriginC/guide/Distributing-Origin-C-Code

Origin C Programming Guide

e

433 Untitled - Code Builder - OCExample.c o[-]

File Edit Miew Build Debug Tools Window Help

NEEH @S %L BB a = as I
Waorkspace w 0 X @ OCExample.c X ~
jl Origin C Workspace 32 o

:> L Apps 33 wvold plot_xyz contour (] i

-1 Project 34 [

" 3 System & =5 int npts = 30;

" 23 Temporary 36 Worksheet wks:

.3 User [AutoLoad] ”_ wis.Create () ;

. 38 wka.SetSize (-1,3):
« [User 'Ddufforigin : :
\uffiorig C» 39 wk3.SetColDesignations ("XYZ"):

S f111 wks with some XKYZI data

= Dataset dsX (wks, 0); 7
P m b J 4 1 3
Cutput + O X Variables w O X Commandé&Res.., + I X
compiling... wiks Book3 : M{Works... ||plot_=yz_ contour| -
CCExample.c npts 1]
Linking...
Done !

3> plot_=yz contout

4 I

=] output | Call St... |53 Find R...| |53 Breakp..| Elvariabl..| 3 Bookm... | « = -

The Code Builder window

4.2.2 File Types

Origin C utilizes four types of files: source, object, preprocessed, and workspace.

4.2.2.1 Source (*.c, *.c *.h, *.0cz

Source files are essentially text files that contain human-readable Origin C code. You may create them in Code
Builder or another text editor, and save them to any location. Code Builder's text editor provides syntax coloring,
context-sensitive help and debugging features. Code Builder also allows you to create an encrypted Origin C

source file (*.0cz) so it can be safely shared with others.

Until source files have been compiled, linked and loaded, the functions they contain cannot be used in Origin.

4.2.2.2 Object (*.0cb)

When a source file is compiled, an object file is produced. The object file will have the same file name as the

source file, but will be given the *.ocb file extension. The object file is machine readable, and is what Origin uses

44

Creating and Using Origin C Code

to execute functions that are called. Origin compiles a source file for the first time, and then recompiles only

when the source file is changed.

Object files in Origin are version specific, and therefore, sharing them is discouraged. If you wish to share some

functions or Origin C applications, share preprocessed files instead.

4.2.2.3 Preprocessed (*.o0p)

By default, Origin compiles source files to produce object files. However, the system variables below can be
changed to produce a preprocessed file instead of an object file. Preprocessed files still require compiling, but

have the following advantages for code sharing:

Origin version independent

Functions can be shared without sharing source code

The build process happens much faster than with source files

The system variables that allow you to produce either object (OCB) or preprocessed (OP) files are @OCS and
@OCSB. You can change their values in the Script Window or in the Code Builder LabTalk Console. For

example, in the Script Window, enter:

@OCSB=0; // Hereafter, on compile, generate OP files
4.2.2.3.1@OCS

The default value of this variable is 1, which allows you to create an OCB file or OP file. If @OCS=0, the

compiler will not create an OCB file or an OP file.

4.2.2.3.2@OCSB

The default value of @OCSB=1; this generates an object file at compile time. To generate an OP file, set
@OCSB=0, after which OP files will be generated at compile time. The OP file will be saved in the same folder
as its source file and have the same file name, but with the OP extension. Note that if @OCS=0, this variable is

meaningless.

-, Notes:

Q 1. The generated OP and OCB have 32 bit and 64 bit versions. For example, the op file

generated from abc.c file on a 32 bit version will be named as abc_32.0P.

2. Since Origin 9.0, the generated 32 bit or 64 bit version file works only in its

45

Origin C Programming Guide

corresponding version (32 bit or 64 bit) of Origin.

4.2.2.4 Workspace (*.ocw)
In Code Builder, you may create or use a project that contains many Origin C source files. These files may or
may not be hierarchically organized in folders. It would be very inconvenient to have to load many such files

manually each time you switched between projects.

For this reason, the structure and files contained in the User folder can be saved to a workspace file. Upon
loading a workspace file into Code Builder, a project is restored to the state in which it was last saved; all of your

source files are available in whatever structure they were assigned.

4.2.3 The Workspace View

The Code Builder Workspace view contains six folders:
Apps

Project

System

Temporary

User [AutolLoad]

User

46

Creating and Using Origin C Code

Workspace x
j Origin C Workspace

> Apps

> -l Project

4| System

b B analysis_utils.c
b -- internal.c
»-[e] LT_PEc

: LT _whks.c
ratrix.c

s e OriginEvents.c
- -] page_utils.c

ERIEIERIEIE

sys_utils.c
> B theme_utils.c

b .. tree_utils.c
KFunction.c
. [0 GetNBox_32.0P

» -1 Temporary

..... {1 User [Autoload]

b L User 'Dvuffuorigin®24 Origir

v

FR m b

The Workspace View

The files in each folder are compiled and linked following different events.

4.2.3.1 Apps
This folder is used to manage packages. This folder contains only folders, and each folder represents a disk

folder in Apps Folder.

Context menu of "Apps" folder

When you right click on the Apps folder, there is a context menu with two items:
Add Existing Folder...

New

The first is for choosing a folder that already exists in the Apps Folder, and the second is for creating a new
folder named Untitled which also creates a new disk folder named Untitled in Apps Folder. Repeating New will

create enumerated Untitled folders.

Context menus of each package folder.

47

Origin C Programming Guide

Mew File...
Add Files...
Show Full Path

Set as Exclude
Load Dependents

Rename
Remove

Duplicate

Generate..,
Open Folder in File Explorer
Make OPX from ini

New File...
This is used to create file in the folder.
Add Files

This is used to add files to the folder. Each package folder represent a disk folder in Apps Folder. If selected files

are not already in the Apps Folder\packageFolder\, they will be copied to Apps Folder\packageFolder\ folder.
Show Full Path

Show or hide the full path of the files.

Set as Exclude

Prevents all files in an App folder from being compiled and linked when the Build button is clicked in Code
Builder.

Load Dependents

Load and compile all dependent Origin C files into the Temporary folder.

Rename

Rename the folder.

Remove

Remove the folder from Code Builder. This will not actually delete the folder from the file system.
Duplicate

Duplicate the folder.

48

Creating and Using Origin C Code

Generate...

Launch the Package Manager and add the files from the package folder. If an OPX in the same file system
location as the last time it was saved exists, that OPX will be loaded and all files removed before adding all the

files from the package folder.

Open Folder in File Explorer

Open package folder in file explorer.
Make OPX from ini

Generate the OPX file by "package.ini" if exists. See [1]

4.2.3.2 Project
Files in the Project folder are saved within the current Origin project file (*.OPJ). They are added to the Project
folder of the Code Builder workspace when you open an Origin project file containing them. They are

automatically compiled and linked upon opening the project file.

4.2.3.3 System
Files in the System folder are externally saved in Windows folders (usually in the Origin C folder or one of its
subfolders). They are automatically added to the System folder of the Code Builder workspace, compiled, and

linked whenever Origin starts.

4.2.3.4 Temporary
All files that are not listed in the Project, System, or User folders, and get loaded and compiled when using
Origin, will appear in the Temporary folder. For example, if you export a graph then all the files used for handling

a graph export will appear in the Temporary folder.

4.2.3.5 User [AutolLoad]
This folder is similar with the User Folder described below, except that the files in this folder will be compiled
and linked automatically when Origin is started, and then the functions defined in the files under this folder are

available, and no need to compile and link manually.

4.2.3.6 User

Files in the User folder are externally saved in Windows folders and are manually added to the User folder of the

Code Builder workspace, compiled, and linked by the user in Code Builder.

[y Notes:

Q The contents of the Apps and User [AutoLoad] folders persist across all Origin sessions,

while the contents of the Project folder are unique to each Project file (OPJ).

49

https://www.originlab.com/doc/AppDev/App-Development#Example_package.ini_File

Origin C Programming Guide

4.2.4 Code Builder Quick Start

Get started using Code Builder in just a few steps:

d
Open Code Builder by pressing Alt+4 on the keyboard or by clicking the Code Builder toolbar button Gt .

Create a new source code file by pressing Ctrl+N or by clicking the New toolbar button. When the New File

dialog appears enter a name for your source code file and then press Enter or click the OK button.

An editor window will open. Go to the end of the last line in the editor window and press enter to start a new

blank line. Enter the following function:

void HelloWorld ()

printf ("Hello World, from Origin C\n");

}

You need to compile and link the code before calling it. You can compile and link it by pressing Shift+F8 or by

The Output window will show the compiling and linking progress. If any errors appear, then double check your

function and fix the errors. When no errors appear, the function is ready to be called.

Click in the top part of the Command & Results window. Since no argument is needed for the function, type
either HelloWorld or HelloWorld() and press Enter. In the bottom part of the Command & Results window you

should see a repeat of the line you entered, followed by a line with your function's output.

While these steps are sulfficient to get you going with Code Builder, there are many more details that will help

you write, debug and execute your Origin C files effectively. These are covered in the sections that follow.
4.3 Compiling, Linking and Loading

Before you can access your Origin C functions, you will need to compile and link them (a process known as

building) using Code Builder.

Once your functions compile and link without error, they are loaded automatically, and you will be able to access
them from the current Origin session. To access your functions in future sessions of Origin you will need to

ensure that they are reloaded and linked; a process that is fast and can be automated.

This chapter covers the manual and automated build process for Origin C source files and preprocessed files.

50

https://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Creating and Using Origin C Code

4.3.1 Compiling and Linking

In order to make the functions defined in an Origin C source file or preprocessed file executable for the first time,

the following steps are necessary:

Add the file to the Code Builder workspace

Compile the file

Link the file to all dependents, compiling dependents where necessary, and load the object files that are created.

The act of compiling and linking all the files is referred to as building.

4.3.1.1 Add the File to the Workspace

Before a source file or preprocessed file can be compiled and linked, the file must be added to one of the Code

Builder workspace folders: Project, User, System, or Temporary. Note that all source files are initially created or

loaded into the User folder.

4.3.1.2 Compile the File

After adding the file to the workspace, it needs to be compiled (by clicking the Compile button) to generate
the object file, which will have the same name as the source/preprocessed file, but with the OCB file extension.
In Origin versions 8.1 and later, the object file will be saved in the Application Data folder. In older versions the

file was saved to the User Files\OCTemp folder.

4.3.1.3 Build the Workspace

To build the active file and all its dependents, select the Build button, or select the Rebuild All button to
build all files in the workspace. The object file that is created will be automatically loaded into memory and linked

so that the functions defined in the file are executable within Origin.

Once the object file is generated, subsequent build processes will be much faster. If there are no changes to the

built source/preprocessed file, Code Builder will load and link the object file directly, but not rebuild the file.
4.3.1.3.1Build vs. Build All

Build: All of the files in a given folder are compiled and linked when that folder is the active window in the Code

Builder (or a dependent of the active window) and the Build toolbar button E‘ is clicked.

Build All: files in all Code Builder folders are compiled and linked when the Code Builder Rebuild All toolbar

button is clicked.

4.3.2 Automated Building

51

https://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

Initially, all Origin C source or preprocessed files are created or opened in the User folder, and the discussion
above gives details for manually building Origin C source files. Many times, however, it is advantageous to
automate the build process. This can be done by making use of Code Builder's folder structure, each with slightly

different functionality, or by utilizing the Build on Startup option:

4.3.2.1 Add files to the Project Folder
When you add files to Code Builder's Project folder, they will be built automatically each time the associated

Origin project is opened.
You can add files to the Project folder using the following methods:
Right-click on the Project folder and choose Add files.

Drag a file from another Workspace folder and drop it on the Project folder.

4.3.2.2 Add files to the User [AutolLoad] Folder
Formerly, you could right-click on the System folder in Code Builder and Add Files. Since Origin 2015, you are

prevented from adding user files to this folder. When you want your files to be compiled and linked automatically

on Origin startup, you should add these files to the User [Autoload] folder.

You can add files to the User [AutoLoad] folder using the following methods:
Right-click on the User [AutoLoad] folder (in Code Builder) and choose Add files.
Drag a file from another Workspace folder and drop it on the User [AutoLoad] folder.

Using the run.LoadOC() object.

Note: When you add files to the User [AutoLoad] folder, a section called [OriginCAuto] is added to the
Origin.ini file in your User Files Folder. To simultaneously remove files from User [AutoLoad] and remove

the added [OriginCAuto] from your Origin.ini, run this LabTalk command:

run -cra // does not affect System folder files

4.3.2.3 Build Workspace on Origin Startup

The Build on Startup option will build the most recently opened Code Builder workspace upon Origin startup.

When Origin starts it will examine the contents of the Origin C Workspace System folder and if it finds any
changed files then it will try to compile and link them. You also can have this procedure done to the files in the

User folder by enabling the Build on Startup option.

52

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/Origin-Help/UserFilesFolder
https://www.originlab.com/doc/LabTalk/ref/Run-cmd

Creating and Using Origin C Code

Run Code Builder

If the Workspace view is not visible then choose Workspace on the View menu.
Right-click on Origin C Workspace.

If the Build on Startup item is not checked then click it.

The next time you start Origin it will check the files in the User folder and try to compile and link any changed

files.

4.3.2.4 Build Individual Source File on Origin Startup

The following steps show how to modify the Origin.ini to load and compile Origin C source files on startup.

Make sure Origin is not running. Open the Origin.ini file in your User Files Folder(type "%Y="<Enter> in the Script

or Command window to locate your User File Folder).

In the [Config] section, uncomment (remove the leading ";") in the line under the [Config] section, so that it is as

below:

Ogsl = OEvents

; Ogs2 = OEvents

; Origin can trigger multiple system events

; Uncomment this line and implement event handlers in OEvents.ogs
Save and close this file.

Open OEvents.ogs under the Origin installation folder. Find the [AfterCompileSystem] section and add the

following line as a new line

run.LoadOC (Originlab\AscImpOptions, 16);
Save OEvents.ogs to your User Files Folder (same location as the Origin.ini file that you edited) and close your

editor.

Restart Origin and open Code Builder. In the Temporary folder, there are 3 files. AscimpOptions depends on
fu_utils.c and Import_utils.c, so the compiler compiles Asclmp, along with the two files. For more details please

search run.LoadOC in your Labtalk documentation.

Alternately, use the User [AutoLoad] folder in your Workspace. Files added in the folder will be automatically

loaded on Origin startup (see above).

53

Origin C Programming Guide

4.3.3 Building by Script

Origin C source file must be compiled and linked before calling its functions in LabTalk script. If you don't want to
add the source file into Code Builder do compile and linke, use the LabTalk command Run.LoadOC to compile

and link it. For example:
Choose File->New Workspace... to create a new workspace. The Temporary folder should be empty now.

Run the following script in the Command Window... the dragNdrop.c file together with its dependent files all are

loaded into the Temporary folder and compiled.
if (run.LoadOC (OriginLab\dragNdrop.c, 16) != 0)

type "Failed to load dragNdrop.c!";

return 0;

4.3.4 Identifying Errors
When you compile and link source files in Code Builder, the compiling and linking results are displayed in the

Code Builder Output window.

If the compiling and linking was successful, the Output window lists the source files that were compiled. The

Done! line indicates success.

If errors were encountered during the compiling and linking process, the Output window lists the file name, line
number, and the error encountered. You can double-click on the error line in the Output window to activate the

source file and position the cursor on the line of code containing the error.

= String getStrTest()
void nytest{)
1

Diouhl g-click printf(“¥=s-n", getStrTest(});
here to .
. . String getStrTest()
activate this 1
i g String strB;
hnﬂ.(mlssmg double ff = FI;
“mﬂﬂlﬂﬁl- strB, Farmat("The value of PI is X", Ef);

return strl;
1
ﬂ\IJLI

7

2l compiltag...
&l stringtest,c

C:AProgram File s\OriginL ablOrigin70\OriginCistringtest.c[25) :Error, sy
C:\Program File s}OriginLabAOrigin 704OriginCistringtest.c[25] :Error, sy

54

Creating and Using Origin C Code

4.4 Debugging

4.4.1 Debugging in Code Builder

Code Builder has features that allow you to debug your Origin C and LabTalk code. You can set and remove
breakpoints, step through your code one statement at a time, step into and out of functions, and monitor the
values of variables. Debugging is turned on by default. You can turn debugging on or off using the Enable

Breakpoints item on the Debug menu. If there is a check mark next to the item then debugging is turned on.

|, When debugging Origin C code, you can hover on a variable name with your mouse to see

Q a tooltip with the variable's current value.

When a variable has a more complex structure, the tooltip can display a tree-like structure.

To disable tree display, add the following to OIDEOptions.ini:

[Environment]

bTreeLikeDataTip=0

4.4.2 Macros for Debugging

Origin C allows users to define multi-parameter macros which have many uses. Many programmers use output

statements while developing code to indicate program flow and display the values of variables at key moments.

4.4.2.1.1 Create an Output Macro

A convenient debugging technique is to define an output macro and then place that macro throughout your code

as shown below.

#define DBG_OUT (_text, value) out int (_text, _value);
void DebugStatements ()

int 1i;

DBG OUT ("ii at t0 = ", ii)

55

https://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

L alsrrg

DBG OUT ("ii at tl = ", ii)

iit++;

DBG OUT ("ii at t2 = ", ii)

iit++;

DBG OUT ("ii at t3 = ", ii)

printf ("Finished running DebugMacros.");

4.4.2.1.2Comment the Debug Macro Body

During the development cycle the body of the macro can remain defined as above causing the desired debug
messages to be shown on the message box. However, once development is complete (or at least stable) the

macro can be redefined as below causing the debug statements to disappear.

#define DBG OUT (text, value) // out int(text, value);

Commenting out the body of the DBG_OUT macro (and rebuilding) causes the debug statements to disappear
without having to remove the many possible instances of its use, saving them for possible reuse in the future.
Should the code ever need to be modified or debugged again the body of the macro can simply be

uncommented.

4.5 Using Compiled Functions

Once Origin C functions have been compiled, linked and loaded, they are ready to be used in Origin. This means
calling the function by its name and providing the necessary arguments from any location in Origin that accepts
LabTalk script commands. Common locations include the script window, the command window, or a custom

button in the Origin GUI. Running Scripts chapter of the LabTalk Scripting Guide details all of the locations in

Origin from which script, and therefore Origin C functions, can be used.

4.5.1 Accessing Origin C Functions from LabTalk Script

Origin C functions can be called from other Origin C functions and from LabTalk scripts. This section talks about

how to control the access to Origin C functions from LabTalk.

For information about accessing LabTalk from your Origin C code, refer to the Accessing LabTalk chapter.

56

https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/OriginC/guide/Accessing-LabTalk

Creating and Using Origin C Code

4.5.1.1 Origin C Access from LabTalk
You can control LabTalk access to your Origin C code by putting a pragma statement in your Origin C code

before your function definitions.

#pragma labtalk(0) // Disable OC functions in LabTalk

void fooO ()

#pragma labtalk(l) // Enable OC functions in LabTalk (default)

void fool ()

#pragma labtalk(2) // Require '''run -oc''' LabTalk command

void foo2 ()

The above code prevents foo0 from being called from LabTalk, allows foo1 to be called from LabTalk, and allows
foo2 to be called from LabTalk using the run -oc command. If you were to comment out the second pragma,
then both foo0 and foo1 would be prevented from being called from LabTalk. This is because a single pragma

statement applies to all functions after the pragma and up to the next pragma or the end of the file.

There is also a LabTalk system variable that controls LabTalk access to all Origin C functions. The variable is

@OC, and it defaults to 1, which enables access. Setting the variable to 0 disables access.

4.5.1.2 Listing Functions that can be Called from LabTalk
The LabTalk list command can be used to output all the names of Origin C functions that can be called from

LabTalk. Options let you modify which type of functions is listed:

57

Origin C Programming Guide

list f;

list fs;

list fv;

list fn;

list fo;

1/

//

//

//

//

List

List

List

List

List

functions callable from LabTalk

only those returning a string

only those returning a vector

only those returning a numeric

only those returning void

Note that setting @OC=0 will make Origin C functions effectively invisible to LabTalk, such that the list f

command will give no result.

4.5.1.3 Passing Arguments to Functions
LabTalk script does not support all of the data types used internally by Origin C. The following table lists the

LabTalk variable types that should be passed (or returned) when calling an Origin C Function with the given

argument (or return) type. The final column indicates whether or not that argument type can be passed by

reference.

Origin C LabTalk Pass By Reference?
int int Yes

double double Yes

string string Yes

bool int No

matrix matrix range Yes

vector<int> dataset Yes

vector<double> dataset Yes
vector<complex> dataset No

58

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

Creating and Using Origin C Code

vector<string>

dataset, string array*

No

* string arrays cannot be passed by reference

As the table above indicates, arguments of Origin C functions of type string, int, and double may be passed by

value or by reference from LabTalk. Note, however, that the Origin C function must be written for the type of pass

being performed.

4.5.1.3.1Passing by Value

Below are examples of passing arguments by value from LabTalk to Origin C. The format for each example is to

give the Origin C function declaration line, and then the LabTalk code used to call it. The Origin C function body

is left out since it is unimportant for demonstrating variable passing.

The simple case of a function accepts an argument of type double and returns a double.

double square (double a)

double dd = 3.2;

double ss = square (dd) ;

Ss =5

// Origin C function declaration

// LabTalk function call

// ss = 10.24

Here, an Origin C function that takes a vector argument and returns a vector, is called by LabTalk using data set

variables, or ranges that are assigned to data types.

vector<string> PassStrArray (vector<string> strvec)

Can be called three ways from LabTalk:

dataset dA, dB;

dB = Col (B):;

dA=PassStrArray (dB) ;

59

Origin C Programming Guide

Col (A)=PassStrArray(Col(B)); // Or, use Col directly, Col = dataset

// Or, LabTalk ranges may also be used
range ra = [Bookl]1l!1l, rb = [Bookl]1l!2;
ra = PassStrArray(rb);

4.5.1.3.2 Passing by Reference

For the Origin C function below, note the ampersand & character in the argument declaration, indicating that the

argument will be passed by reference.

double increment (double& a, double dStep)

double d = 4;
increment (d, 6);
type -a "d = $(d)"; // d = 10

The following example demonstrates some arguments being passed by reference and others being passed by

value.

int get min max double arr (vector<double> vd, double& min, double& max)

dataset ds = data (2, 30, 2);
double dMin, dMax;

get min max double arr(ds, dMin, dMax);

//0r use a data set from a column; be sure to put data in Col (A)

get min max double arr(Col(A), dMin, dMax);

The following example shows passing a LabTalk matrix range variable by reference to an Origin C function.

60

Creating and Using Origin C Code

// set data from vector to matrix

void set mat data(const vector<double>& vd, matrix& mat)

mat.SetSize (4,4);

mat.SetByVector (vd) ;

range mm = [MBook1l]1!1;
dataset ds = data (0, 30, 2);

set mat data(ds, mm);

4.5.1.4 Precedence Rules for Functions with the Same Name

When a user-defined or global Origin C function has the same name as a built-in LabTalk function, the Origin C

function has higher precedence, except when using LabTalk vector notation.
Precedence:

LabTalk Function (vector)

Origin C Function

LabTalk Function (scalar)

Thus, LabTalk functions like Normal and Data (which return a range of values and are thus used in vector
notation) would have higher precedence than Origin C functions of the same name. In all other cases, the Origin

C function is called.

4.5.2 Defining Functions for the Set Values Dialog

You may want to define a function using Origin C, that will appear in the Set Values menu of either a column or

a matrix.

If an Origin C function is built as part of an Origin project---either automatically by being placed in the Project or
System folder of Code Builder, or manually by building a function in the User folder---it will be available in the
User-Defined section of the F(x) menu in the Set Values dialogs (for both Columns and Matrices). To assign a
function to a different section of the F(x) menu, issue a pragma containing the new section name as part of the
function header. For instance, the following code will add function add2num to the Math section and function

mean2num to the Statistics section:

61

Origin C Programming Guide

#pragma labtalk(l,Math)

double add2num (double a, double b)

return a + b;

#pragma labtalk(l,Statistics)

double mean2num(double a, double Db)

return (a + b)/2;

In this way, many functions can be defined in a single source file and, upon building, be immediately available in

the desired locations of the F(x) menu.
Functions to be added to the F(x) menu must conform to the following additional restrictions:
The return type of the function cannot be void

The function should not have reference or pointer (&) for argument type

4.6 Distributing Origin C Code

4.6.1 Distributing Source Code

Origin users can share Origin C source code with one another by distributing either the source files themselves

(.C, .CPP, .OC2Z) or preprocessed files (.OP).

If it is not necessary for others to see your application's source code, it is highly recommended that you distribute
the encrypted Origin C source files (.OCZ) or preprocessed files (.OP) for version before Origin 2015 instead of
the source files (.C or .CPP).

For encrypted OCZ files, users only need to drag and drop them into Code Builder in Origin to view and edit
content. A prompt will show up to ask for the password when you try to open it for the first time but it will be only

asked once in same Origin session.

62

https://www.originlab.com/doc/

Creating and Using Origin C Code

See the File Types in the Create and Edit an Origin C File section for more information.

|, When an encrypted OCZ file is open in Origin session, since Origin 2016 SRO user can
Q choose to re-save the *.ocz file as not encrypted *.c or *.cpp by selecting menu File: Save

As and choose a file type in Save as type drop-down list.

4.6.2 Distributing Applications

After creating an application, you can distribute it as a single package file to other Origin users.

Use Package Manager to package all the application files into a single package file (.OPX). Note that when
adding your application files into the package, be sure to add the preprocessed files (.OP) or the source files (.C

or .CPP). It is not necessary to add both.
Users can install your application by dropping the package file directly into Origin.

The following is an example that shows how to package all the application files into one OPX file. The user can

drop the package file into Origin to install, then click a button to run the source file.

Prepare an Origin C source file. In Code Builder, choose menu File: New to create a new c file named

MyButton.c, copy the following code to it and save it to the User File Folder\OriginC\ subfolder.
void OnButtonClick ()
Worksheet wks = Project.Activelayer();
DataRange dr;
dr.Add (wks, 0, "X");
dr.Add (wks, 1, "Y");
GraphPage gp;

gp.Create();

Graphlayer gl = gp.Layers(0);

63

https://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

int nn = gl.AddPlot (dr);
gl.Rescale () ;

}
Create an OGS file named MyButton.ogs to load the Origin C source file and call function. Copy the following

and save it to the User File Folder.

[Main]

if (0 == Run.LoadOC ($Y\OriginC\MyButton.c))

OnButtonClick;

}
In the Origin menu, choose View: Toolbars. In the Customize Toolbar dialog, choose the Button Groups tab,

and click New button to open the Create Button Group dialog. Set MyButton as the Group Name, keep
Number of Buttons as 1, choose the Userdef.bmp file from the User File Folder as Bitmap, and click the OK

button. In the ensuing Save As dialog, click the Save button to save the MyButton.ini file to the default path.

In the Customize Tool dialog, select MyButton item from Groups list, and click to choose the % button from
Buttons panel, then click Settings button from Button group to open a Button Settings dialog. Choose
MyButton.ogs as the File Name, type "Main" in for Section Name, then make sure the following check-boxes

are unchecked: Matrix, Excel, Graph, Layout and Excel. Click OK to close the dialog.

Click Export to open the Export Button Group dialog, then click Add File and choose the above MyButton.c

file.

64

Creating and Using Origin C Code

Export Button Group [5__<|

The following files will be exported with the group:

kyButtor.ini
Uszerdef.brmp
MyButton.ogz

Additional files:
OriginChkyButton. o

| sddFie. | | RemoveFie |
For Usze By |.-’-¥.II Uszers w |
[Export... l [Cancel]

Click Export button, then in the Save As dialog click Save to save the MyButton. OPX file to the specified folder.

Choose menu Tools: Package Manager, and in the dialog that opens, choose File: Open to open the

MyButton.OPX file. Put the script

Run.LoadOC ($Y\OriginC\MyButton.c) ;
into LabTalk Script: After Installation in gird view to load the Origin C source file. This script will be run when

you drop OPX into Origin to install this application.

65

5 Matrix Books Matrix Sheets and Matrix Objects

5.1 Matrix Books Matrix Sheets and Matrix Objects

The Origin C MatrixPage class is for working with Origin matrix books. Each matrix book contains a collection of

MatrixLayers and each matrix layer contains a collection of MatrixObjects.

-

[MBookl :111 o[-]
2 3 D]
1 —_— _ _ s
2 : - -
51| MatrixPage _ _
4 | — _
5 - - -
MatrixObject '
MatrixLayer
1 MSheet 1]+] »

This section covers the following topics:

Base Matrix Book Operation

Matrix Sheets

Matrix Objects

5.2 Base Matrix Book Operation

The Origin C MatrixPage class provides methods and properties common to Origin matrix books. This class is
derived from Page class, from which it inherits its methods and properties. And matrixbook has the same data

structure level with WorksheetPage in Origin, both are windows. So, they contain lots of similar operations.

5.2.1 Workbook-like Operations

Both matrixbook and workbook are windows, and they share lots of similar operations, and the Basic Workbook

Operation chapter can be referred to.

67

https://www.originlab.com/doc/OriginC/ref/MatrixPage
https://www.originlab.com/doc/OriginC/ref/MatrixLayer
https://www.originlab.com/doc/OriginC/ref/MatrixObject
https://www.originlab.com/doc/OriginC/guide/Base-Matrix-Book-Operation
https://www.originlab.com/doc/OriginC/guide/Matrix-Sheets
https://www.originlab.com/doc/OriginC/guide/Matrix-Objects
https://www.originlab.com/doc/OriginC/ref/MatrixPage
https://www.originlab.com/doc/OriginC/ref/Page-Class
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation

Origin C Programming Guide

Create New MatrixBook

The same Create method is used.

MatrixPage matPg;

matPg.Create ("Origin™"); // create a matrixbook using the Origin template
Open Matrixbook

The difference to open a matrixbook by Open method is that the extension of a matrixbook is ogm.

Access Matrixbook
There are multiple ways to access an existing matrixbook and the methods used are the same as workbooks.
The Project class contains a collection of all the matrixbooks in the project. The following example shows how to

loop through them.

foreach (MatrixPage matPg in Project.MatrixPages)

out str(matPg.GetName ()); // output matrixbook name

You can also access a matrixbook by passing its index to the Item method of the Collection class.

MatrixPage matPg;
matPg = Project.MatrixPages.Item(2);
if (matPg) // if there is a 3rd matrixbook

out str (matPg.GetName()); // output matrixbook name

If the matrixbook name is known, this matrixbook can be accessed by passing its name to the class constructor.

MatrixPage matPg ("MBookl") ;
if (matPg) // if there is a matrixbook named "MBookl"

matPg.SetName ("MyBookl"); // rename the matrixbook
Save Matrixbook

The methods SaveToFile will be used for saving matrixbook as *.ogm file.

MatrixPage matPg ("MBookl") ;

68

https://www.originlab.com/doc/OriginC/ref/Page-Create
https://www.originlab.com/doc/OriginC/ref/Worksheet-Open
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Collection-Item
https://www.originlab.com/doc/OriginC/ref/Collection
https://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile

Matrix Books Matrix Sheets and Matrix Objects

// Save matrixbook as OGM file

bool bRetl = matPg.SaveToFile ("D:\\" + matPg.GetName () + ".ogm");
Show or Hide Matrixbook
This is the same as workbook's show and hide by using the Show property derived from OriginObject class.

Activate Matrixbook
To activate a workbook, the method SetShow can be used by passing parameter of value PAGE_ACTIVATE,

which is the same as to activate a workbook.

MatrixPage matPg ("MBookl") ;

matPg.SetShow (PAGE ACTIVATE); // Activate the matrixbook
Delete Matrixbook

The Destroy method can also be used to destroy (delete) a matrixbook.

MatrixPage matPg;
matPg = Project.MatrixPages.Item(0); // get first matrixbook in project
if(matPg) // if there is a matrixbook

matPg.Destroy(); // delete the matrixbook
Clone/Duplicate Matrixbook

The Clone method is also used to clone the matrix page.

// Duplicate "MBookl" window with data and style
// Before calling make sure these windows exist
MatrixPage matPage ("MBookl") ;

MatrixPage matPagel = matPage.Clone();
Name and Label Matrixbook
To handle with matrixbook's short name, Long Name and Comments, Origin C provides the same ways as

handling workbook's, including the inherited methods SetName, SetLongName, SetComments, and Label

property.

5.2.2 Show Image Thumbnails

To show or hide image thumbnails, the method MatrixPage::ShowlmageThumbnails is available.

69

https://www.originlab.com/doc/OriginC/ref/OriginObject-Show
https://www.originlab.com/doc/OriginC/ref/OriginObject
https://www.originlab.com/doc/OriginC/ref/PageBase-SetShow
https://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
https://www.originlab.com/doc/OriginC/ref/Page-Clone
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
https://www.originlab.com/doc/OriginC/ref/PageBase-Label
https://www.originlab.com/doc/OriginC/ref/MatrixPage-ShowImageThumbnails

Origin C Programming Guide

MatrixPage mp ("tangent'") ;

mp.ShowImageThumbnails (true); // Pass true to make thumbnail visible

5.3 Matrix Sheets

5.3.1 Matrix Sheets

Origin C provides the MatrixLayer class for working with a matrix sheet.

This section covers the following topics:

Basic Matrix Sheet Operation

Matrix Sheet Data Manipulation

5.3.2 Basic Matrix Sheet Operation

Examples in this section are similar to those found in the Basic Worksheet Operation section, because matrix

sheet and worksheet are at the same level in the Origin object structure.

5.3.2.1 Add New Matrix Sheet
Add a matrixsheet in a matrixbook using the AddLayer method.

// Access the matrixbook named "MBookl"

MatrixPage mp ("MBookl") ;

// Add a new sheet to the matrixbook

int index = mp.AddLayer ("New Matrix Sheet");

// Access the new matrixsheet

MatrixLayer mlayerNew = mp.Layers (index) ;

5.3.2.2 Activate a Matrixsheet

70

https://www.originlab.com/doc/OriginC/ref/MatrixLayer
https://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
https://www.originlab.com/doc/OriginC/guide/Matrix-Sheet-Data-Manipulation
https://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation
https://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Matrix Books Matrix Sheets and Matrix Objects

To make a matrixsheet in matrixbook to be activated, the function set_active layer can be used.

// Access a matrixsheet by full name

MatrixLayer mLayer (" [MBookl]MSheetl") ;

// Set this matrixsheet to be active

set active layer (mLayer) ;

5.3.2.3 Delete Matrixsheet

Use the Destroy method to delete a matrixsheet.

MatrixLayer ly = Project.Activelayer();
if(1y) // If the active layer is a matrixsheet

ly.Destroy(); // Delete the matrixsheet

5.3.2.4 Access Matrixsheets in Matrixbook
Similar to accessing worksheets in workbook, matrixsheets in matrixbook can also be accessed by the following

ways.

By full layer name.

// Full matrixsheet name

string strFullName = "[MBookl]MSheetl!";

// Construct a matrixsheet instance and attach it to the named sheet

MatrixLayer matLyl (strFullName) ;

// Attach an existing matrixsheet instance to the named sheet

matLy2.Attach (strFullName) ;

71

https://www.originlab.com/doc/OriginC/ref/set_active_layer
https://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

Origin C Programming Guide

A matrixbook constains a collection of matrix layers. Loop through all matrix layers in a specified matrixbook

using the foreach statement.

MatrixPage matPage ("MBookl") ;
foreach(Layer ly in matPage.Layers)

out str(ly.GetName());

Access a specified matrixsheet by its name or index.

// Assume there are at least two matrixsheets on the page MBookl,
// and they are named MSheetl and MSheet2 separately.

MatrixPage matPage ("MBookl") ;

MatrixLayer lyFirst = matPage.Layers(0); //by index

MatrixLayer lySecond = matPage.Layers ("MSheet2"); //by name

5.3.2.5 Modify Matrixsheet Properties
5.3.2.5.1 Get and Set Dimensions

In Origin, all matrix objects in matrixsheet share the same dimension (the same number of columns and rows).

To get number of rows and columns in a matrixsheet, you can get the first matrix object of a matrixsheet, and

then use the methods (GetNumCols and GetNumRows) in MatrixObject class.

// get num rows and cols
MatrixLayer ml = Project.Activelayer(); // Get active matrixsheet

MatrixObject mo = ml.MatrixObjects(0); // Get the first matrix object

int nNumRows = mo.GetNumRows () ; // Get the row number

int nNumCols = mo.GetNumCols(); // Get the column number

72

https://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumCols
https://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumRows
https://www.originlab.com/doc/OriginC/ref/MatrixObject

Matrix Books Matrix Sheets and Matrix Objects

To set dimensions of a matrixsheet, you can use the MatrixLayer::SetSize method.

// set num rows and cols
MatrixLayer ml = Project.Activelayer(); // Get active matrixsheet

ml.SetSize (-1, 5, 5); // Set dimensions by 5x5
Also, the MatrixObject class has provided the SetSize method for setting dimensions. However, please note,
even this method is defined in MatrixObject, what it changes is the matrixsheet's dimension, because all matrix

objects in the same matrixsheet have the same dimensions.

// set num rows and cols
MatrixLayer ml = Project.Activelayer(); // Get active matrixsheet

MatrixObject mo = ml.MatrixObjects(0); // Get the first object

int nNumRows = 5, nNumCols = 5;

mo.SetSize (nNumRows, nNumCols); // Set dimensions by 5x5
Matrices have numbered columns and rows which are mapped to linearly spaced X and Y values. You can use
the SetXY method to set the XY mapping coordinates. Note: this method is available by matrix object, however,

the XY mapping is shared by all matrix objects in the same matrixsheet.

MatrixLayer ml = Project.Activelayer(); // Get active layer
MatrixObject mo = ml.MatrixObjects(0); // Get the first matrix object

mo.SetXY (-10, 20, -2.3, 12.4); // Set X from -10 to 20, and Y from -2.3 to
12.4

5.3.2.5.2Get and Set Labels

A matrix label includes a Long Name, Units, and Comments for X, Y, Z. The labels of X and Y are for all matrix
objects in the matrixsheet, the label of Z is for each matrix object. The following code shows how to get and set

the labels.

73

https://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize
https://www.originlab.com/doc/OriginC/ref/MatrixObject
https://www.originlab.com/doc/OriginC/ref/MatrixObject-SetSize
https://www.originlab.com/doc/OriginC/ref/MatrixObject
https://www.originlab.com/doc/OriginC/ref/MatrixObject-SetXY

Origin C Programming Guide

Set XY Labels

MatrixPage mp ("MBookl") ;

MatrixLayer ml = mp.Layers(0); // the first matrixsheet
Tree tr;

tr.Root.Dimensions.X.LongName.strVal = "X Values";
tr.Root.Dimensions.X.Unit.strVal = "X Units";
tr.Root.Dimensions.X.Comment.strVal = "X Comment";
tr.Root.Dimensions.Y.LongName.strVal = "Y Values";
tr.Root.Dimensions.Y.Unit.strVal = "Y Units";
tr.Root.Dimensions.Y.Comment.strVal = "Y Comment";

// Note, set format on matrixsheet for XY labels.

if(0 == ml.UpdateThemeIDs (tr.Root))

ml.ApplyFormat (tr, true, true);
Get XY Labels

MatrixPage mp ("MBookl") ;

MatrixLayer ml = mp.Layers(0); // the first matrixsheet

// Note, get XY labels from matrixsheet, not matrix object.

Tree tr;

74

Matrix Books Matrix Sheets and Matrix Objects

tr = ml.GetFormat (FPB ALL, FOB ALL, TRUE, TRUE);

TreeNode trX = tr.Root.Dimensions.X;
if(!'trX.LongName.IsEmpty())
printf ("X Long Name: %s\n", trX.LongName.strVal);
if(!'trX.Unit.IsEmpty())
printf ("X Unit: %$s\n", trX.Unit.strVal);
if(!'trX.Comment.IsEmpty ())

printf ("X Comment: %s\n\n", trX.Comment.strVal):;

TreeNode trY = tr.Root.Dimensions.Y;
if(!'trY.LongName.IsEmpty())
printf ("Y Long Name: %s\n", trY.LongName.strVal);
if('trY.Unit.IsEmpty())
printf("Y Unit: %s\n", trY.Unit.strVal);
if(!'trY.Comment.IsEmpty())

printf ("Y Comment: %s\n", trY.Comment.strVal);

Set Z Labels

MatrixPage mp ("MBookl") ;
MatrixLayer ml = mp.Layers(0); // the first matrixsheet

MatrixObject mo = ml.MatrixObjects(0);// the first matrix object

// construct format tree and assign string value to tree nodes

Tree tr;

75

Origin C Programming Guide

tr.Root.LongName.strVal = "Z Long Name'";
tr.Root.Unit.strVal = "Z Units";
tr.Root.Comment.strVal = "7 Comment";

// Note, here apply format on matrix object to set Z labels, not

matrixsheet.
if(0 == mo.UpdateThemeIDs (tr.Root)) // add id for each tree node
mo.ApplyFormat (tr, true, true); // do apply
Get Z Labels

MatrixPage mp ("MBookl") ;
MatrixLayer ml = mp.Layers(0); // the first matrixsheet

MatrixObject mo = ml.MatrixObjects (0);

Tree tr;

tr = mo.GetFormat (FPB ALL, FOB ALL, TRUE, TRUE);

printf ("Z Short Name: %$s\n", tr.Root.ShortName.strVal);
if('tr.Root.LongName.IsEmpty())// if not empty
printf ("Z Long Name is %s\n", tr.Root.LongName.strVal);
if(!'tr.Root.Unit.IsEmpty())
printf ("Z Unit is %s\n", tr.Root.Unit.strVal);
if(!'tr.Root.Comment.IsEmpty())

printf ("Z Comment is %s\n", tr.Root.Comment.strvVal);

5.3.2.5.3 Format Matrixsheet

A matrixsheet can be formatted programmatically using a theme tree.

76

Matrix Books Matrix Sheets and Matrix Objects

The example below formats a block of cells in the active matrixsheet to have a blue background and light-

magenta text.

MatrixLayer ml = Project.Activelayer () ;

LBEE EES
tr.Root.CommonStyle.Fill.FillColor.nVal = SYSCOLOR BLUE;

tr.Root.CommonStyle.Color.nVal = SYSCOLOR LTMAGENTA;

DataRange dr;
dr.Add (NULL, ml, 2, 2, 5, 3); // first row, col, last row, col
if(0 == dr.UpdateThemeIDs (tr.Root))

dr.ApplyFormat (tr, TRUE, TRUE) ;

5.3.2.5.4 Get and Set Matrix Cell Text Color

The next example shows how to get and set the text color of a cell.

// Wrap the 'set' code into a simpler utility function.

bool setCellTextColor (Datasheet& ds, int row, int col, uint color)

Grid grid;

if(!'grid.Attach(ds))
return false;

vector<uint> vTextColor (1) ;

vTextColor[0] = color;

return grid.SetCellTextColors (vTextColor, col, row, row);

77

Origin C Programming Guide

// Wrap the 'get' code into a simpler utility function.

bool getCellTextColor (Datasheet& ds, int row, int col, uinté& color)

Grid grid;

if(!grid.Attach(ds))
return false;

vector<uint> vTextColor;

if(!grid.GetCellTextColors (vTextColor, col, row, row))
return false;

color = vTextColor[0];

return true;

// Simple function for testing the above utility functions.

void testCellTextColor (int nRow = 3, int nCol = 4)

MatrixLayer ml = Project.Activelayer();
// nRow, nCol use LT/GUI indexing, l-offset, but OC is 0O-offset
int row = nRow-1, col = nCol-1;

setCellTextColor (ml, row, col, SYSCOLOR BLUE) ;

uint color;

getCellTextColor (ml, row, col, color);

printf ("color == %d\n", color);

5.3.3 Matrix Sheet Data Manipulation

78

Matrix Books Matrix Sheets and Matrix Objects

5.3.3.1 Conversion Between Matrixsheets and Matrix Objects
In Origin, a matrixsheet can hold multiple matrix objects. Using the matobj move function, you can split multiple
matrix objects into separate matrixsheets, or combine multiple matrixsheets into one (provided all matrices share

the same dimensions).

// This code snippet is to merge the matrix objects in three sheets to
// a new sheet

MatrixPage mp ("MBookl"); // Matrixbook

MatrixLayer mll = mp.Layers(l); // 2nd sheet

MatrixLayer ml2 = mp.Layers(2); // 3rd sheet

MatrixLayer ml3 = mp.Layers(3); // 4th sheet

MatrixLayer mlMerge;

mlMerge.Create ("Origin"); // Create a new sheet for merging

MatrixObject mol = mll.MatrixObjects(0); // Matrix object in 2nd sheet
MatrixObject mo2 = ml2.MatrixObjects(0); // Matrix object in 3rd sheet
MatrixObject mo3 = ml3.MatrixObjects(0); // Matrix object in 4th sheet
matobj move (mol, mlMerge); // Move the matrix object to the end of the sheet
matobj move (mo2, mlMerge) ;

matobj move (mo3, mlMerge);

5.4 Matrix Objects

5.4.1 Matrix Objects
Matrix object, which is MatrixObject class, is the basic unit for storing matrix data, and its container is matrix
sheet, that relationship is like column and worksheet. The following pages will show the practical examples on

the operation of matrix object.

This chapter covers the following topics:

79

https://www.originlab.com/doc/OriginC/ref/matobj_move
https://www.originlab.com/doc/OriginC/ref/MatrixObject

Origin C Programming Guide

Basic Matrix Object Operation

Matrix Object Data Manipulation

Converting Matrix to Worksheet

5.4.2 Basic Matrix Object Operation

A matrix sheet can have multiple matrix objects, which share the same dimensions. A matrix object is analogous
to a worksheet column and can be added or deleted, etc. The following sections provide some practical

examples on the basic operations of matrix object.

5.4.2.1 Add or Insert Matrix Object

It allows to set the number of matrix objects in the matrix sheet by using MatrixLayer::SetSize, so to add matrix

objects.

// Set 5 matrix objects in the active matrix sheet
MatrixLayer ml = Project.Activelayer () ;
ml.SetSize (5);

The method MatrixLayer::Insert will insert a specified number of matrix objects before the current matrix object.

// add matrix object to sheet

MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

int nNum 1; // the number of added matrix objects
int nPos = -1; // -1, add as the end

int nDataType = -1; // Optional, -1 as default for double type.

int index = ml.Insert (nNum, nPos, nDataType); // Returns the index of the first one

5.4.2.2 Activate Matrix Object

To activate a matrix object in the matrix sheet, the MatrixLayer::SetActive is available.

80

https://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Object-Operation
https://www.originlab.com/doc/OriginC/guide/Matrix-Object-Data-Manipulation
https://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet
https://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize
https://www.originlab.com/doc/OriginC/ref/MatrixLayer-Insert
https://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetActive

Matrix Books Matrix Sheets and Matrix Objects

MatrixLayer ml = Project.Activelayer();

ml.SetActive(2); // Set 3rd (index is O-based) matrix object active

5.4.2.3 Access Matrix Object

To access a matrix object, you can use the collection of MatrixObjects from MatrixLayer.

// Attach to one matrix page by name

MatrixPage matPage ("MBook3") ;

// Attach to the sheet named MSheetl from matrix page

// Also support get sheet from matrix page by index

MatrixLayer mll = matPage.Layers ("MSheetl");

// Get a matrix object from sheet by index

MatrixObject mo = mll.MatrixObjects (0);

// The data type of matrix object must keep consistent with the matrix window

1f(FSI SHORT == mo.GetInternalDataType())

matrix<short>§& mat = mo.GetDataObject () ;

5.4.2.4 Delete Matrix Object

To delete a specified number of matrix objects from a matrix sheet, you can use the MatrixLayer::Delete method.

// delete matrix object from sheet

MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

// Delete two matrix objects from the beginning

81

https://www.originlab.com/doc/OriginC/ref/MatrixLayer-MatrixObjects
https://www.originlab.com/doc/OriginC/ref/MatrixLayer
https://www.originlab.com/doc/OriginC/ref/MatrixLayer-Delete

Origin C Programming Guide

int nPos = 0;
int nNum = 2;
ml.Delete (nPos, nNum) ;

5.4.2.5 Switch Between Image Mode and Data Mode

The MatrixLayer::SetViewlmage method has provided the option for switching between image mode and data

mode of the specified matrix object (by index).

// set image view

MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

int nImgIndex = 0;

MatrixObject mo = ml.MatrixObjects (nImgIndex) ;

if(!'mo.IsImageView())

BOOL bAllObjs = FALSE;

ml.SetViewImage (TRUE, bA110bjs, nImgIndex); // FALSE for data view

5.4.2.6 Get and Set Labels

For each matrix object, you can set Long Name, Comments, and Units. And it actually is to get and set the Z

labels, please refer to the Get and Set Z Labels on Base Matrix Sheet Operation chapter.

5.4.2.7 Data Type and Format
5.4.2.7.1 Get and Set Data Type

Matrix object's internal data types include double, real, short, long, char, text, mixed, byte, ushort, ulong, and

complex, etc. And Origin C provides the GetInternalDataType and SetinternalDataType methods in MatrixObject

class to get and set matrix object internal data type respectively.

// get and set data type

82

https://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetViewImage
https://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
https://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
https://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataType
https://www.originlab.com/doc/OriginC/ref/DataObject-SetInternalDataType

Matrix Books Matrix Sheets and Matrix Objects

MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

MatrixObject mo = ml.MatrixObjects (0);

if (mo.GetInternalDataType() != FSI BYTE) // Get data type

// OCD_RESTORE to backup the data and
// attempt to restore it after changing type
DWORD dwFlags = OCD RESTORE;

mo.SetInternalDataType (FSI_BYTE, dwFlags); // Set data type

5.4.2.7.2Get and Set Data Format

The MatrixObject::GetFormat and MatrixObject::SetFormat are provided for getting and setting the data format of

a matrix object respectively.

// get and set data format
MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

MatrixObject mo = ml.MatrixObjects (0);

int nFormat = mo.GetFormat(); // Only OKCOLTYPE NUMERIC(= 0) supported

mo.SetFormat (OKCOLTYPE NUMERIC) ;

5.4.3 Matrix Object Data Manipulation

5.4.3.1 Set Values by Formula

The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set column/matrix

values, which is the same as setting values in the Set Values dialog. The example below shows how to set

values to a matrix object by formula.

// new a matrix window

83

https://www.originlab.com/doc/OriginC/ref/MatrixObject-GetFormat
https://www.originlab.com/doc/OriginC/ref/MatrixObject-SetFormat
https://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
https://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula

Origin C Programming Guide

MatrixPage matPage;
matPage.Create ("Origin™);

MatrixLayer ml = matPage.Layers(); // get active matrix sheet

// set formula and execute
MatrixObject mo = ml.MatrixObjects (0); //get first matrixobject
mo.SetFormula ("sin (i) + cos(j)");

mo.ExecuteFormula () ;

5.4.3.2 Copy Matrix Data
The matobj copy function is used to copy matrix data.

MatrixLayer mlSrc = Project.Activelayer(); // Get the active matrix sheet

MatrixObject moSrc = mlSrc.MatrixObjects (0); // Get the 1lst matrix object in the
sheet

MatrixLayer mlDst;
mlDst.Create ("Origin"); // Create a new matrix sheet
MatrixObject moDst = mlDst.MatrixObjects(0); // Get the 1st matrix object

bool bRet = matobj copy(moDst, moSrc); // Copy the active data to the newly
created matrix

5.4.3.3 Math on Matrix Data
To perform mathematical operation on matrix, it always gets the data out of matrix object into a data matrix, and
then do the calculation, and put the data back into matrix object. The math includes multiplying matrix by

constant, dot multiply, dot divide, dot power, cross, cumulative product, cumulative sum, difference, etc.

The following shows two examples on the matrix operations, one is multiply matrix by constant, and the other is

dot multiply.

5.4.3.3.1 Multiply Matrix by Constant

MatrixLayer ml = Project.Activelayer(); // Get active matrix sheet

MatrixObject mo = ml.MatrixObjects(0); // Get the first matrix object

84

https://www.originlab.com/doc/OriginC/ref/matobj_copy
https://www.originlab.com/doc/OriginC/ref/matrixbase-DotMultiply
https://www.originlab.com/doc/OriginC/ref/matrixbase-DotDivide
https://www.originlab.com/doc/OriginC/ref/matrixbase-DotPower
https://www.originlab.com/doc/OriginC/ref/matrixbase-Cross
https://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeProduct
https://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeSum
https://www.originlab.com/doc/OriginC/ref/matrixbase-Difference

Matrix Books Matrix Sheets and Matrix Objects

//Get the reference of the internal data object of matrix window.
//Here assume data type of the matrix is double.

matrix<double>& mat = mo.GetDataObject () ;

// multiply 10 for each data in matrix, this change also effect on window
mat = mat * 10;

5.4.3.3.2Dot Multiply Two Matrix

// Attach to two matrix pages
MatrixPage matPagel ("MBookl") ;
MatrixPage matPage2 ("MBook2") ;
if(!'matPagel || !matPage2)

return;

// Get the matrix sheet from page by name or index

MatrixLayer matLayerl = matPagel.Layers ("MSheetl");

MatrixLayer matLayer2 = matPage2.Layers(l); // get the second sheet
if(!'matLayerl || !matLayer?2)

return;

// Get matrix object from matrix sheet by index, name is not allowed.

MatrixObject mol = matlLayerl.MatrixObjects (0);

MatrixObject mo2 = matlLayer2.MatrixObjects (0);

// Get the reference of the internal data object of matrix window

matrix<double>& matl = mol.GetDataObject () ;

85

Origin C Programming Guide

matrix<double>& mat2 = mo2.GetDataObject () ;

// Prepare new matrix window

MatrixPage matPageNew;

matPageNew.Create ("Origin") ;

MatrixLayer mlNew = matPageNew.Layers (0);
MatrixObject moNew = mlNew.MatrixObjects (0);

matrix<double>& matNew = moNew.GetDataObject () ;

// Copy values from matl to new matrix

matNew = matl;

// Multiply two matrices element by element and put result
// to a newly created matrix window

matNew.DotMultiply (mat2) ;

5.4.3.4 Conversion between Matrix Object and Vector

The methods matrixbase::GetAsVector and matrixbase::SetByVector can be used to convert between matrix

object and vector.

// To vector

MatrixLayer ml = Project.Activelayer(); // Active matrix sheet
MatrixObject mo = ml.MatrixObjects(0); // The 1lst matrix object
matrixbase &mb = mo.GetDataObject(); // Get data from matrix object

vector vb;

mb.GetAsVector (vb); // Convert the matrix data into vector

// From vector

86

https://www.originlab.com/doc/OriginC/ref/matrixbase-GetAsVector
https://www.originlab.com/doc/OriginC/ref/matrixbase-SetByVector

Matrix Books Matrix Sheets and Matrix Objects

MatrixLayer mll;

mll.Create("Origin"); // Create a matrix sheet

MatrixObject mol = mll.MatrixObjects(0); // Get matrix object
matrixbase &mbl = mol.GetDataObject(); // Get data object
mbl.SetSize (2, 3); // Set size 2 rows x 3 columns

vector v = {1, 2, 3, 4, 5, 6}; // Vector data

// Set vector data to matrix object

// First row: 1, 2, 3

// Second row: 4, 5, 6

int iRet = mbl.SetByVector (v);

5.4.3.5 Manipulate Matrix Object with Complex Values

Origin C provides a set of methods in matrixbase class for handling complex, including making a complex matrix

from two real matrices, getting real and imaginary, getting phase and amplitude, calculating conjugate, etc.

The following code is used to set a matrix object as complex matrix with two real matrices data, and then get its
real, imaginary, phase, and amplitude into separate matrix objects, and then use the conjugate to replace the

original complex matrix object.

void MatrixObject Complex EX()

// Original data for real

matrix mR =

{0, 1, 99, 99}

// Original data for imaginary

matrix mI =

87

https://www.originlab.com/doc/OriginC/ref/matrixbase
https://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
https://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
https://www.originlab.com/doc/OriginC/ref/matrixbase-GetReal
https://www.originlab.com/doc/OriginC/ref/matrixbase-GetImaginary
https://www.originlab.com/doc/OriginC/ref/matrixbase-GetPhase
https://www.originlab.com/doc/OriginC/ref/matrixbase-GetAmplitude
https://www.originlab.com/doc/OriginC/ref/matrixbase-Conjugate

Origin C Programming Guide

{0, 99, 1, 99}

matrix<complex> mC;
// Create a complex data
int iRet = mC.MakeComplex (mR, mI);

if (iRet == 0)

// Create a new matrix sheet for complex data
MatrixLayer ml;

ml.Create ("Origin");

MatrixObject mo = ml.MatrixObjects (0);
ml.SetInternalData (FSI COMPLEX) ;

matrixbase &mb = mo.GetDataObject () ;

mb = mC;

// Get real part
matrix mReal;
mb.GetReal (mReal) ;

// Get imaginary part
matrix mImg;
mb.GetImaginary (mImg) ;
// Get phase

matrix mPha;
mb.GetPhase (mPha) ;

// Get amplitude

matrix mAmp;

88

Matrix Books Matrix Sheets and Matrix Objects

mb.GetAmplitude (mAmp) ;

// Create new matrix sheet for the results
MatrixLayer mlRes;

mlRes.Create ("Origin™);

// Set 4 matrix objects, the same size as the matrix
mlRes.SetSize (4, mb.GetNumRows (), mb.GetNumCols());
MatrixObject moReal = mlRes.MatrixObjects (0);
MatrixObject moImg = mlRes.MatrixObjects (1) ;
MatrixObject moPha = mlRes.MatrixObjects (2);
MatrixObject moAmp = mlRes.MatrixObjects (3);
matrixbase &mbReal = moReal.GetDataObject();
matrixbase &mbImg = moImg.GetDataObject () ;

matrixbase &mbPha = moPha.GetDataObject () ;

matrixbase &mbAmp = moAmp.GetDataObject () ;

mbReal = mReal; // Set real part to matrix object

mbImg = mImg; // Set imaginary part to matrix object

mbPha = mPha; // Set phase to matrix object

mbAmp = mAmp; // Set amplitude to matrix object

// Use the conjugate to replace the original complex matrix

mb.Conjugate () ;

5.4.3.6 Transform Matrix Object Data

Origin C contains a set of methods in matrixbase for the matrix transformation, such as flip a matrix horizontally

or vertically, rotate a matrix, shrink a matrix, transpose a matrix, etc.

89

https://www.originlab.com/doc/OriginC/ref/matrixbase-FlipHorizontal
https://www.originlab.com/doc/OriginC/ref/matrixbase-FlipVertical
https://www.originlab.com/doc/OriginC/ref/matrixbase-Rotate
https://www.originlab.com/doc/OriginC/ref/matrixbase-Shrink
https://www.originlab.com/doc/OriginC/ref/matrixbase-Transpose

Origin C Programming Guide

MatrixLayer ml = Project.Activelayer();
MatrixObject mo = ml.MatrixObjects (0);

matrixbase &mb = mo.GetDataObject () ;

mb.FlipHorizontal(); // Flip horizontally

mb.FlipVertical(); // Flip vertically

mb.Rotate (90); // Rotate 90 degrees counter-clockwise, need to be multiple of 90
mb.Shrink (2, 2); // Shrink by factor of 2 for both row and column
mb.Transpose(); // Transpose

5.4.4 Converting Matrix to Worksheet

You may need to re-organize your data by converting from matrix to worksheet, or vice versa, for certain analysis
or graphing needs. This page provides information and examples of converting matrix to worksheet, and please

refer to Converting Worksheet to Matrix for the "vice versa" case.

5.4.4.1 Matrix to Worksheet
To convert a matrix object data to worksheet, you can firstly get the data in matrix object out to a data matrix, and

then use the CopyTo method defined in class.

Here is the example on how to convert the whole matrix object directly into worksheet.

// Convert the active matrix object's data into a newly created worksheet directly,
// without tranposing, and with setting the column type the same as matrix
MatrixLayer ml = Project.Activelayer(); // Active matrixsheet

MatrixObject mo = ml.MatrixObjects(0); // Get the first matrix object

matrixbase &mb = mo.GetDataObject(); // Get the data from matrix object

Worksheet wks;

wks.Create ("Origin"); // Create a new worksheet

mb.CopyTo (wks, 0, 0, -1, -1, 0, 0, FALSE, TRUE); // Convert the data to worksheet

90

https://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
https://www.originlab.com/doc/OriginC/ref/matrixbase-CopyTo

6 Workbooks Worksheets and Worksheet Columns

6.1 Workbooks Worksheets and Worksheet Columns

The Origin C WorksheetPage class is for working with Origin workbooks. Each workbook contains a collection of

Worksheets and each worksheet contains a collection of Columns.

| oo oo

AlX) B(Y) i

Long Mami=

— WorksheetPage

m

00 | = [o [en | b | o || =

| Worksheet |

Fl j\m]{ ||¢ T b

This section covers the following topics:
Workbooks

Worksheet Columns

Worksheets

6.2 Workbooks

6.2.1 Workbooks

The Origin C WorksheetPage class provides methods and properties common to Origin workbooks. This class is

derived from Page class, from which it inherits its methods and properties.

91

https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Column-Class
https://www.originlab.com/doc/OriginC/guide/Workbooks
https://www.originlab.com/doc/OriginC/guide/Worksheet-Columns
https://www.originlab.com/doc/OriginC/guide/Worksheets
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/Page-Class

Origin C Programming Guide

This chapter covers the following topics:

Basic Workbook Operation

Workbook Manipulation

6.2.2 Basic Workbook Operation

6.2.2.1 Create New Workbook

The Create method is used for creating new workbooks.

// create a hidden workbook using the STAT template
WorksheetPage wksPg;

wksPg.Create ("STAT", CREATE HIDDEN) ;

6.2.2.2 Open Workbook

If the workbook with data is saved (as extension of ogw), it can be opened by the Open method.

Worksheet wks; // The Open method belongs to Worksheet
string strOGW = "D:\\Bookl.ogw"; // Path of the workbook

wks.Open (strOGW); // Open the workbook

6.2.2.3 Access Workbook

There are multiple ways to access an existing workbook. The Project class contains a collection of all the

workbooks in the project. The following example shows how to loop through them.

foreach (WorksheetPage wksPg in Project.WorksheetPages)
out str(wksPg.GetName ()); // output workbook name

You can also access a workbook by passing its index to the Item method of the Collection class.

WorksheetPage wksPg;

92

https://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/OriginC/guide/Workbook-Manipulation
https://www.originlab.com/doc/OriginC/ref/Page-Create
https://www.originlab.com/doc/OriginC/ref/Worksheet-Open
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Collection-Item
https://www.originlab.com/doc/OriginC/ref/Collection

Workbooks Worksheets and Worksheet Columns

wksPg = Project.WorksheetPages.Item(2) ;
if (wksPg) // if there is a 3rd workbook
out str (wksPg.GetName ()); // output workbook name

If the workbook name is known, this workbook can be accessed by passing its name to the class constructor.

WorksheetPage wksPg ("Bookl");
if (wksPg) // if there is a workbook named "Bookl"

wksPg.SetName ("MyBookl"); // rename the workbook

6.2.2.4 Save Workbook

Origin allows you to save a workbook with data to a file (*.ogw), or as a template without data (*.otw), and for the
workbook with analysis, it is able to be saved as an analysis template (*.ogw). And methods SaveToFile and

SaveTemplate are used for saving workbook as *.ogw and *.otw files respectively.

WorksheetPage wksPg ("Bookl") ;

// Save workbook as OGW file

bool bRetl = wksPg.SaveToFile ("D:\\" + wksPg.GetName () + ".ogw");
// Save workbook as OTW template

bool bRet2 = wksPg.SaveTemplate ("D:\\" + wksPg.GetName () + ".otw");
// get template name and output

out str(page get template name (pg))

6.2.2.5 Show or Hide Workbook

The WorksheetPage class inherits the Show property from OriginObject class to show or hide itself.

WorksheetPage wksPg ("Bookl") ;

wksPg.Show = false; // Hide the workbook. If true, show the workbook

6.2.2.6 Activate Workbook
To activate a workbook, the method SetShow can be used by passing parameter of value PAGE_ACTIVATE.

93

https://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile
https://www.originlab.com/doc/OriginC/ref/PageBase-SaveTemplate
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/OriginObject-Show
https://www.originlab.com/doc/OriginC/ref/OriginObject
https://www.originlab.com/doc/OriginC/ref/PageBase-SetShow

Origin C Programming Guide

WorksheetPage wksPg ("Bookl") ;

wksPg.SetShow (PAGE ACTIVATE) ; // Activate the workbook

// More operations can be done by passing different values, such as
// wksPg.SetShow (PAGE HIDDEN); // Hide the workbook

// wksPg.SetShow (PAGE MINIMIZED); // Minimize the workbook

// wksPg.SetShow (PAGE MAXIMIZED); // Maximize the workbook

6.2.2.7 Delete Workbook
All of Origin C's internal classes are derived from the OriginObject class. This class has a Destroy method that is

used to destroy the object. Calling this method on a workbook will destroy it, together with all the sheets in the

workbook, and all the columns in each sheet.

WorksheetPage wksPg;
wksPg = Project.WorksheetPages.Item(0); // get first workbook in project
if(wksPg) // if there is a workbook

wksPg.Destroy(); // delete the workbook

6.2.2.8 Clone/Duplicate Workbook

The WorksheetPage class (for a Workbook) is derived from the Page class. This class has a Clone method that

is used to clone the source page.

// Duplicate "Bookl" window with data and style
// Before calling make sure these windows exist
WorksheetPage wksPage ("Bookl");

WorksheetPage wksPagel = wksPage.Clone();

6.2.2.9 Name and Label Workbook

For a workbook, there will be short name, Long Name, and Comments. The inherited methods, SetName,

SetLongName, SetComments, which are defined in OriginObject class, can be used to control workbook's name

(both short name and Long Name) and comments.

94

https://www.originlab.com/doc/OriginC/ref/OriginObject
https://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/Page-Class
https://www.originlab.com/doc/OriginC/ref/Page-Clone
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
https://www.originlab.com/doc/OriginC/ref/OriginObject

Workbooks Worksheets and Worksheet Columns

WorksheetPage wksPg ("Bookl") ;

if (wksPqg)

wksPg.SetName ("MyBook"); // Rename workbook
wksPg.SetLongName ("This is Long Name", false); // Set Long Name

wksPg.SetComments ("Comments") ; // Set Comments

Also, Label property is provided for changing Long Name. And TitleShow property is for how to show short name

and Long Name on the workbook's title.

WorksheetPage wksPgl ("Book2") ;

if (wksPgl)

wksPgl.Label = "My Label"; // Set Label (also called Long Name)
// Show only Label on workbook's title

wksPgl.TitleShow = WIN TITLE SHOW LABEL;

// Show only short name on workbook's title

// wksPgl.TitleShow = WIN TITLE SHOW NAME;

// Show both short name and Label on workbook's title

// wksPgl.TitleShow = WIN TITLE SHOW BOTH;

6.2.3 Workbook Manipulation

Origin provides the capabilities for workbook manipulation by using Origin C, such as merging, splitting, etc.

6.2.3.1 Merge Workbooks
To merge many workbooks into one workbook, actually it is to copy the worksheets from the source workbooks

to the target workbook. To add worksheet to a workbook, the AddLayer method is available.

95

https://www.originlab.com/doc/OriginC/ref/PageBase-Label
https://www.originlab.com/doc/OriginC/ref/PageBase-TitleShow
https://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

The following example is to merge all workbooks in current folder to the newly created workbook.

WorksheetPage wksPgTarget;
wksPgTarget.Create ("Origin"); // Create the target workbook
Folder fld = Project.ActiveFolder(); // Get the active/current folder
foreach (PageBase pb in fld.Pages)
{ // Loop all Pages in folder
WorksheetPage wksPgSource = pb; // Convert the Page to WorksheetPage
// If convert failed, that is to say the Page is not WorksheetPage

if (!wksPgSource)

continue; // Next Page

// Skip the target workbook

if (wksPgTarget.GetName () == wksPgSource.GetName ())

continue;

// Loop all worksheet in workbook for merging

foreach (Layer lay in wksPgSource.Layers)

Worksheet wks = lay; // Get the worksheet
// Add the worksheet to target workbook

wksPgTarget.AddLayer (wks, 0, false);

// If not to keep the source workbook, destroy it

wksPgSource.Destroy () ;

96

Workbooks Worksheets and Worksheet Columns

6.2.3.2 Split Workbook

The example above is merging multiple workbooks into one workbook. It is also able to split a workbook into

multiple workbooks, which contain single worksheet.

WorksheetPage wksPgSource ("Bookl"); // Workbook with multiple worksheets
// Loop over all worksheets

foreach (Layer lay in wksPgSource.lLayers)

Worksheet wks = lay; // Get worksheet

WorksheetPage wksPgTarget;

wksPgTarget.Create ("Origin"); // Create new workbook
wksPgTarget.AddLayer (wks); // Add worksheet to the new workbook

wksPgTarget.Layers (0) .Destroy(); // Delete the first worksheet

6.3 Worksheet Columns

6.3.1 Worksheet Columns

Origin C provides the Column class for handling the columns in a worksheet. A Column object is usually used to
control the style, format and data type of the dataset, which is contained in the column. Example codes,

demonstrating how to use the Column class, are provided in this sub-chapter.

This section covers the following topics:

Worksheet Column Operation

Worksheet Column Data Manipulation

6.3.2 Worksheet Column Operation

To perform operation on worksheet column, you can use Column class or Worksheet class.

6.3.2.1 Add or Insert Column

97

https://www.originlab.com/doc/OriginC/ref/Column-Class
https://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Operation
https://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Data-Manipulation
https://www.originlab.com/doc/OriginC/ref/Column-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class

Origin C Programming Guide

To add a column to the end of the worksheet, the AddCol method in Worksheet class is available, and also the

InsertCol for inserting a column before a specified position.

// Add column with default name

int nColIndex = wks.AddCol () ;

// Add column with namestring strName;

int nColIndex = wks.AddCol ("AA", strName); // Returns the index of column
// If the column named AA already exist, name enumeration automatically
out str(strName) ;

Column col (wks, nColIndex); // Construct column object by column index

// Insert a new column as the first column

int nPos = 0; // The position to insert

string strNewCreated; // the real name of the new column

// The name will be auto enumerated if name MyCol already existed

if(wks.InsertCol (nPos, "MyCol", strNewCreated))

printf ("Insert column successfully, name is %s\n", strNewCreated):;

6.3.2.2 Delete Column

The Worksheet::DeleteCol method is capable of removing a column from worksheet.

// Delete the column by index

wks.DeleteCol (0) ;

6.3.2.3 Rename and Label Column

98

https://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-InsertCol
https://www.originlab.com/doc/OriginC/ref/Worksheet-DeleteCol

Workbooks Worksheets and Worksheet Columns

To rename (short name) a column, Origin provides the SetName method.

Column col = wks.Columns(0); // Get the 1lst column in worksheet
BOOL bRet = col.SetName ("MyNewName"); // Rename the column

Worksheet column labels support Long Name, Units, Comments, Parameters and User-Defined labels. We can

use Origin C code to show/hide labels or to add text to the specified column label.

Worksheet wks;

wks.Create () ;

Grid gg;

gg.Attach (wks) ;

// if Parameters lable not show, show it.
bool bShow = gg.IsLabelsShown (RCLT PARAM) ;
if (!'bShow)

gg.ShowLabels (RCLT PARAM) ;

wks.Columns (0) . SetLongName ("X Data");

wks.Columns (1) .SetLongName ("Y Data");

wks.Columns (0) .SetComments ("This is a test");

wks.Columns (0) .SetUnits ("AA") ;

wks.Columns (1) .SetUnits ("BB") ;

// put text to Parameters label for two columns.

99

https://www.originlab.com/doc/OriginC/ref/OriginObject-SetName

Origin C Programming Guide

wks.Columns (0) .SetExtendedLabel ("Param A", RCLT PARAM) ;

wks.Columns (1) . SetExtendedLabel ("Param B", RCLT PARAM) ;

.
Q RCLT_PARAM is the type of Parameters column label, other types see

OriginC\system\oc_const.h file ROWCOLLABELTYPE enum.

6.3.2.4 Hide/Unhide Column

To hide/unhide column(s), you can use the Workhseet::ShowCol method.

wks.ShowCol (1, 1, false); // to hide column 1.

6.3.2.5 Move and Swap Columns

Move Column To move columns or swap columns, the super class of Worksheet class, Datasheet class,

provides the method MoveColumns and [[OriginC:Datasheet-SwapColumns|SwapColumns] respectively for such

purposes.

// Move three columns - starting with column 5 - to the first column
// Example requires first worksheet in project with at least 7 columns
Worksheet wks = Project.Activelayer();

if (wks)

wks.MoveColumns (4, 3, MOVE COL TO FIRST);

// Reverse the column order in the active worksheet
for(int ii = 1; ii <= wks.GetNumCols () / 2 ; 1ii++)

wks.SwapColumns (ii - 1, wks.GetNumCols () - ii);

6.3.2.6 Add Sparkline to Column

To add sparkline to column(s), Origin C provides the wks_set show_labels with the RCLT_SPARKLINE label
type.

100

https://www.originlab.com/doc/OriginC/ref/Worksheet-ShowCol
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Datasheet-class
https://www.originlab.com/doc/OriginC/ref/Datasheet-MoveColumns
https://www.originlab.com/doc/OriginC/ref/wks_set_show_labels

Workbooks Worksheets and Worksheet Columns

// Configure active sheet to show Sampling Inverval and SparkLine in order
// append to the curernt Labels

Worksheet wks = Project.Activelayer();

vector<int> vn = {RCLT_ SAMPLE RATE, RCLT SPARKLINE};

wks add show labels(wks, vn, false);

6.3.2.7 Data Type, Format, SubFormat
6.3.2.7.1 Get & Set Data Type

Worksheet wks = Project.Activelayer();

Column col (wks, 0);

// Get column type, can be:

// 0: Y

// 1: None

// 2: Y Error

// 3: X
// 4: L
// 5: 2

// 6: X Error

int nType = col.GetType();

out_int ("Type: ", nType);

// Set column type. See more define OKDATAOBJ DESIGNATION * in oc_const.h

col.SetType (OKDATAOBJ DESIGNATION Z);

6.3.2.7.2Get & Set Data Format

// Get and set data format

101

Origin C Programming Guide

// The default format of column is OKCOLTYPE TEXT NUMERIC.
// Set the format of column to Date

if (OKCOLTYPE DATE != col.GetFormat())

col.SetFormat (OKCOLTYPE DATE) ;

6.3.2.7.3 Get & Set Data Subformat

// Get and set data subformat
// The options of the sub format will be different according to the above format,
// numeric, date, time and so on.

if (LDF_YYMMDD != col.GetSubFormat ())

col.SetSubFormat (LDF YYMMDD) ;

6.3.3 Worksheet Column Data Manipulation

6.3.3.1 Basic Arithmetic Operation
To perform the base arithmetic operation on the column data, you can first get the column data into vector, and

then operate on the corresponding vectors.

// Get data from the 1st and 2nd columns
// Then add two columns together,

// and put results to 3rd column
Worksheet wks = Project.Activelayer();

if (!wks)

return;

102

Workbooks Worksheets and Worksheet Columns

Column coll = wks.Columns(0); // lst column
Column col2 = wks.Columns(1l); // 2nd column
Column col3 = wks.Columns(2); // 3rd column

vectorbase &vl = coll.GetDataObject(); // Get data object
vectorbase &v2 = col2.GetDataObject();
vectorbase &v3 = col3.GetDataObject();

v3 = vl + v2; // Add together

6.3.3.2 Set Value by Formula

The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set column/matrix values,

which is the same as setting values in the Set Values dialog. The following example is of creating a worksheet

with three columns, and then setting values by a formula to each column.

Worksheet wks;
wks.Create ("origin", CREATE VISIBLE) ;

wks.AddCol () ;

// set value to the first column
Column colA;

colA.Attach(wks, 0);
colA.SetFormula ("5* (1-1)");

colA.ExecuteFormula () ;

// for the next two columns we will set Recalculate = Auto

Column colB;

colB.Attach (wks, 1);

103

https://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
https://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula

Origin C Programming Guide

colB.SetFormula ("sin (4*col (A) *pi/180)", AU AUTO) ;

colB.ExecuteFormula () ;

// using declared variables in Before Formula Script

Column colC;

colC.Attach (wks, 2);

string strExpression = "cos (Amp*x*pi/180)";

string strBeforeScript = "double Amp=4.5;" + "\r\n" + "range x=col(A);";

string strFormula = strExpression + STR _COL FORMULAR SEPARATOR + strBeforeScript;
colC.SetFormula (strFormula, AU AUTO);

colC.ExecuteFormula () ;

6.3.3.3 Sort Column
To sort a specified column, first get the column's data into a vector, and then put the data back after sorting the
vector. By using a vector reference for getting data object from column, the vector will attach to the column

automatically, and the data update on vector will map back to column.

Worksheet wks = Project.Activelayer();
if (!wks)
{
return;
}
Column coll = wks.Columns(0); // lst column

vectorbase &vl = coll.GetDataObject(); // Get data object using reference

vl.Sort (SORT_DESCENDING); // Sort descendingly

6.3.3.4 Reverse Column
To reverse column's data, first you can get the column data into a vector, and then reverse the data in vector and

put them back.

104

Workbooks Worksheets and Worksheet Columns

// Reverse the 1lst column's data

Worksheet wks = Project.Activelayer();
if (!wks)
{

return;
}
Column coll = wks.Columns(0); // 1lst column
vectorbase &vl = coll.GetDataObject(); // Get data object
vector<uint> vnIndices; // vector for reverse indices
vnIndices.Data(vl.GetSize() - 1, 0, -1); // Reverse indices
vl.Reorder (vnIndices); // Reverse the data

6.3.3.5 Get & Set Data from Column
6.3.3.5.1Get & Set Numeric Data Values from Column

// Attach to the first column, make sure the format of the column is
// Text & Numeric (default) or Numeric.

Column col (wks, 0);

// Here assume the data type of the column is double.
// Other numeric data type supported, for example, int, short, complex.

vector<double>& vec = col.GetDataObject ()

// Append 100 at the end of this column
vec.Add (100) ;

Or we can use a Dataset object to get and set numeric data for a column. For example:

Worksheet wks = Project.Activelayer();

105

https://www.originlab.com/doc/OriginC/ref/Dataset

Origin C Programming Guide

Dataset ds(wks, 1);

for(int 1i=0; ii<ds.GetSize(); 1ii++)
out double("", ds[ii]);

6.3.3.5.2Get & Set String Values from Column

Column col (wks, 0); // Attach to the first column

// Get string array from column
vector<string> vs;

col.GetStringArray(vs) ;

// Put string array back to column
vs.Add("test");
col.PutStringArray(vs) ;

6.3.3.5.3Get & Set Date and Time Data from Column

If the column's format is Date or Time, the data you get from this column will be Julian date/time data, but not

the display-date-time-format string.

// Get active worksheet

Worksheet wks = Project.Activelayer();

Column coll(wks, 0); // The first column

Column col2(wks, 1); // The second column

// Check if the first column's format is Date or Time, or not

if (coll.GetFormat () == OKCOLTYPE DATE || coll.GetFormat () == OKCOLTYPE TIME)

106

Workbooks Worksheets and Worksheet Columns

// Get data from 1lst column, vl holds Julian data

vector &vl = coll.GetDataObject () ;

vector &v2 = col2.GetDataObject(); // Get data from 2nd column

v2 = vl; // Set 1lst column's Julian data to 2nd column
col2.SetFormat (OKCOLTYPE DATE) ; // Set 2nd column to be Date column
// Set display format to be MM/dd/yyyy HH:mm:ss

colZ2.SetSubFormat (LDF SHORT AND HHMMSS SEPARCOLON) ;

6.3.3.6 Get the columns of different worksheets\workbooks
To calculate the sum of a specific column of all worksheets in all workbooks, you can loop all the worksheets in

the current folder, and operate on the wanted column(s).

// Retrieve the second column of each worksheet in each workbook of current folder,
calculate its sum and output to a new worksheet.

void Calculate Column_ Sum()

StringArray ColNames;

vector<double> ColMeans;

int K = 1;

Dataset ds;

double colSum;

Folder fld = Project.ActiveFolder(); // Get the active/current folder

foreach (PageBase pb in fld.Pages)

// Loop all Pages in folder
WorksheetPage wksPgSource = pb; // Convert the Page to WorksheetPage
// If convert failed, that is to say the Page is not WorksheetPage

if (!wksPgSource)

107

Origin C Programming Guide

continue; // Next Page

// Loop all worksheet in workbook

foreach (Layer lay in wksPgSource.lLayers)

Worksheet wks = lay;

// Get column info

ds.Attach (wks, K);

DataRange dr;

dr.Add ("X", wks,0,K,-1,K);
ColNames.Add (dr.GetDescription()) ;
// Calculate column sum
ds.Sum(colSum) ;

ColMeans.Add (colSum) ;

// Prepare the resulting worksheet
Worksheet wksResult;
wksResult.Create ("Origin™);
DataRange dr;

dr.Add (wksResult,0,"X");

dr.Add (wksResult,1,"Y");

dr.SetData (&ColMeans, &ColNames) ;

108

Workbooks Worksheets and Worksheet Columns

6.4 Worksheets

6.4.1 Worksheets

Origin C provides the Worksheet class for working with the worksheets in a WorksheetPage. While a workbook

contains a collection of worksheets, a worksheet contains a collection of Columns. The Worksheet class is

derived from the Layer class.

This section covers the following topics:

Worksheet Basic Operation

Worksheet Data Manipulation

Converting Worksheet to Matrix

Virtual Matrix

6.4.2 Worksheet Basic Operation

The basic worksheet operations include adding worksheet to workbook, activating a worksheet, getting and

setting worksheet properties, deleting worksheet, etc. Some practical examples are provided below.

6.4.2.1 Add New Worksheet
Add a worksheet to a workbook using the AddLayer method.

// Access the workbook named "Bookl"

WorksheetPage wksPage ("Bookl") ;

// Add a new sheet to the workbook

int index = wksPage.AddLayer ("New Sheet");

// Access the new worksheet

Worksheet wksNew = wksPage.Layers (index) ;

6.4.2.2 Activate a Worksheet

109

https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/Column-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Layer
https://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation
https://www.originlab.com/doc/OriginC/guide/Worksheet-Data-Manipulation
https://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
https://www.originlab.com/doc/OriginC/guide/Virtual-Matrix
https://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

Workbook is an Origin object that contains worksheets. To make a worksheet in workbook to be activated, the

function set_active layer can be used.

// Access a worksheet by full name

Worksheet wks (" [Bookl]Sheetl™);

// Set this worksheet to be active

set active layer (wks);

6.4.2.3 Delete Worksheet

Use the Destroy method to delete a worksheet.

Worksheet wks = Project.Activelayer();
if(wks) // If the active layer is a worksheet
wks.Destroy(); // Delete the worksheet

6.4.2.4 Access Worksheets in Workbook

There are two ways to access a worksheet by its name. You can pass the layer's full name to the constructor or
to the Attach method. The layer's full name contains the page name in square brackets followed by the layer

name.

// Assume wksPage is a valid WorksheetPage holding the sheet we want to access.

string strFullName = okutil make book sheet string(wksPage.GetName (), "Sheetl");

// If book and sheet name are known, the string can be constructed manually.

string strFullName = okutil make book sheet string("Book5", "Sheetl");

With the full layer name we can now access the worksheet.

// Construct a new Worksheet instance and attach it to the named sheet.

110

https://www.originlab.com/doc/OriginC/guide/Workbooks
https://www.originlab.com/doc/OriginC/ref/set_active_layer
https://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

Workbooks Worksheets and Worksheet Columns

Worksheet wksl (strFullName) ;

// Attach an existing Worksheet instance to the named sheet.
wks2.Attach (strFullName) ;

A workbook contains a collection of worksheets. You can loop through all the worksheets in a specified workbook

using the foreach statement.

WorksheetPage wksPage ("Bookl") ;
foreach (Layer wks in wksPage.Layers)
out str (wks.GetName ()) ;

You can also access a specified worksheet by its name or index.

//assume there are at least two worksheets on the page Bookl,
//and they are named Sheetl and Sheet2 separately.
WorksheetPage wksPage ("Bookl") ;

Worksheet wksFirst = wksPage.Layers(0); //by index

Worksheet wksSecond = wksPage.Layers ("Sheet2"); //by name

6.4.2.5 Reorder Worksheets

The Reorder method allows you to change the position of a worksheet in a workbook.

// This example assumes the active workbook contains two sheets

// Get the active page from the active layer
WorksheetPage wksPage;

Worksheet wks = Project.Activelayer();

if (wks)

wksPage = wks.GetPage() ;

111

https://www.originlab.com/doc/OriginC/ref/Worksheet-Reorder

Origin C Programming Guide

// Move the 2nd worksheet to the 1lst position
if (wksPage.Reorder(1l, 0))

out str ("Reorder sheets successfully");

6.4.2.6 Copy Worksheet
The AddLayer method is used to copy a layer from one page to another, and can be used with GraphPage,
WorksheetPage or MatrixPage.

The following example shows how to drag all worksheets from the active folder to merge into the active

workbook.

WorksheetPage wksPageDest = Project.Pages();

if(!wksPageDest) // no active window or active window is not a worksheet
return;
bool bKeepSourcelayer = false; // delete source layer after copying

Folder fld = Project.ActiveFolder();

foreach (PageBase pb in fld.Pages)

WorksheetPage wbSource (pb) ;

if (!wbSource)

continue;//not a workbook

if (wbSource.GetName () == wksPageDest.GetName ())

continue;//skip our destination book

// copy worksheet to destination book and delete it from source book

foreach (Layer lay in wbSource.Layers)

112

https://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Workbooks Worksheets and Worksheet Columns

Worksheet wks = lay;

wksPageDest.AddLayer (wks, 0, bKeepSourcelayer) ;

wbSource.Destroy () ;// destroy the empty workbook

6.4.2.7 Format a Worksheet

A worksheet can be formatted programmatically using a theme tree. The example below demonstrates obtaining

and saving an existing theme tree:

// get format tree from worksheet

Worksheet wks = Project.Activelayer();

Tree tr;
tr = WkS.GetFormat(FPB_ALL, FOB_ALL, TRUE, TRUE) ;
out tree(tr); // Output tree to Script window

Or, you may construct a theme tree as in the following three steps. First, create a worksheet and insert some

data:

// Create worksheet
Worksheet wks;
wks.Create ("Origin") ;

wks.SetCell (0, 0, "abc"); // Put text to (0, 0) cell

// Establish data range to apply formatting:

DataRange dr;

int r1 =0, ¢cl1 =0, r2 =4, c2 = 1;

113

Origin C Programming Guide

dr.Add ("Rangel", wks, rl, cl, r2, c2);

Second, construct the tree using the range information and provide values for desired properties:

Tree tr;

// Fill color

tr.Root.CommonStyle.Fill.FillColor.nVal = SYSCOLOR LTCYAN;

// Alignment of text in cell, 2 for center

tr.Root.CommonStyle.Alignment.Horizontal.nVal = 2;

// The font size of text

tr.Root.CommonStyle.Font.Size.nVal = 11;

// The color of text
tr.Root.CommonStyle.Color.nVal = SYSCOLOR BLUE;

Third, apply the formatting to the data range:

// BApply the format to the specified data range

if(0 == dr.UpdateThemeIDs (tr.Root)) // Returns 0 for no error

bool bRet = dr.ApplyFormat (tr, true, true);

6.4.2.8 Merge Cells

We can use Origin C code to merge Worksheet cells with the specified range. The selected range can be data

area or column label area. If you want to merge label cells, just change bLabels to true in the following code.

114

https://www.originlab.com/doc/OriginC/ref/Grid-MergeCells

Workbooks Worksheets and Worksheet Columns

Worksheet wks;

wks.Create ("Origin");

//Define a Grid and attach it to the worksheet
Grid gg;

gg.Attach (wks) ;

// to merge the first two rows in two columns
ORANGE rng;
rng.rl = 0;
rng.cl = 0;
rng.r2 = 1;

rng.c2 = 1;

bool blLabels = false;

bool bRet = gg.MergeCells (rng, bLabels);

if (bRet)
printf ("Successfully merged cells in %s!\n", wks.GetName()):;
else

printf ("Failed to merge cells in %s!\n", wks.GetName())

6.4.2.9 Read Only Cells
If you don't want the contents in a cell of worksheet to be changed, you can set the cells to be read-only by using

theme tree.

The example below shows how to set the data cells in worksheet to be read-only, and then change the second

data cell in column 1 to be editable.

115

Origin C Programming Guide

// Create a worksheet by using default template (Origin)
// so to make sure that Long Name, Units, and Comments rows are shown
Worksheet wks;

wks.Create ("Origin");

Tree tr;

tr = wks.GetFormat (FPB ALL, FOB ALL, true, true); // Get theme tree of worksheet

// Start to get the specific tree node from the theme tree

// to set the read-only format for the data cells

string strName = "ogData"; // Use to get the node with the desired format
TreeNode trGrid, trNameStyles;

trGrid = tr.Root.Grid; // Get Grid node

if (!'trGrid.IsvValid())

return;

// Read-only format is under some child node of this node
trNameStyles = trGrid.NameStyles;
if (!trNameStyles.IsValid())

return;

TreeNode trNameStyle;
bool bRet = false;
// Loop all children nodes to find out the desired tree node

foreach (trNameStyle in trNameStyles.Children)

// Find the node with "ogData"

116

Workbooks Worksheets and Worksheet Columns

if (0 == trNameStyle.Name.strVal.Compare (strName))

bRet = true;

break;

if (!bRet)

return;

trNameStyle.Style.ReadOnly.nvVal = 1; // Set all data cells to be read-only

// Start to get/create the specific tree node from the theme tree

// to cancel the read-only format for the specified data cell

TreeNode trRangeStyles;

trRangeStyles = trGrid.RangeStyles; // Get RangeStyles node from Grid node
TreeNode trRangeStyle;

if (!trRangeStyles.IsValid()) // If RangeStyles node does not exist yet

// Create RangeStyles node
trRangeStyles = trGrid.AddNode ("RangeStyles") ;
// And create a sub node named RangeStylel

trRangeStyle = trRangeStyles.AddNode ("RangeStylel");

else // If RangeStyles node already exist

// Find how many children nodes

int tagNum = trRangeStyles.Children.Count();

17

Origin C Programming Guide

// And create a sub node name RangeStyle#, # = tagNum+l

trRangeStyle = trRangeStyles.AddNode ("RangeStyle"+ (tagNum+tl)) ;

// Define the range for setting, here range is just one cell
// Left cell of the range, start from 1
trRangeStyle.Left.nval = 1;

// Top cell of the range, start from 5, including label rows
// there are 4 label rows, then 5 means the first data cell
trRangeStyle.Top.nval = 5;

// Just one cell, so right of the range is the same with left
trRangeStyle.Right.nVal = 1;

// Just one cell, so bottom of the range is the same with top
trRangeStyle.Bottom.nVal = 5;

trRangeStyle.Style.ReadOnly.nval = 0; // Set read-only to 0 to cancel it

// Apply the setting format to worksheet

if (0 == wks.UpdateThemeIDs (tr.Root))

bool bb = wks.ApplyFormat (tr, true, true);

if (bb)

printf("Cell 1 in column 1 is editable.\n");

It is also able to set the Read-Only format for the cells in label rows. We can just make some simple changes on
the code above. For example, we are going to make the Comments row to be read-only except the one in

column 2, then the corresponding changes are like below.

118

Workbooks Worksheets and Worksheet Columns

/* Comment out the line below in the above code

string strName = "ogData";

*/

// This line is for the Data, just change it for Comments, as following

string strName = "ogComment";

/* Comment out the following 4 lines in the above code
trRangeStyle.Left.nval = 1;

trRangeStyle.Top.nval = 5;

trRangeStyle.Right.nVal = 1;

trRangeStyle.Bottom.nVal = 5;

2y

// These 4 lines are used to set for the second data
// cell (assume 3 label rows displayed in worksheet)
// Now we need to set for the Comments cell,

// assume the Comments row is the third row,

// and is for column 2, but not column 1 anymore, then
trRangeStyle.Left.nval =

trRangeStyle.Right.nval = 2; // Column 2

// Comments row (the third row displayed in worksheet)
trRangeStyle.Top.nVal =

trRangeStyle.Bottom.nVal = 3;

6.4.3 Worksheet Data Manipulation

In this section we present examples of how to manipulate worksheet data by Origin C.

6.4.3.1 Get Worksheet Selection

119

Origin C Programming Guide

Worksheet::GetSelectedRange can be used to get one or multiple selected data ranges from a worksheet. The

following code shows how to get data from one column by worksheet selection. This function returns range type,

like one column, one row, whole worksheet, etc.

Worksheet wks = Project.Activelayer();

int rl, cl, r2, c2;

int nRet = wks.GetSelectedRange(rl, cl, r2, c2);

if (WKS_SEL ONE COL & nRet) // exactly one column selected

// construct a data range object by selection

DataRange dr;

dr.Add ("X", wks, rl, cl, r2, c2);

// get data from the selected column

vector vData;

dr.GetData (&vData, 0);

6.4.3.2 Set Display Range in Worksheet

If you want to set a display range in a Worksheet, you can use Worksheet::SetBounds, and it is the same as

using the Set As Begin/End menu.

The following code shows how to set a beginning and end for all columns in the current worksheet window.

Worksheet wks = Project.Activelayer();

// the beginning and end of rows

120

https://www.originlab.com/doc/OriginC/ref/Worksheet-GetSelectedRange
https://www.originlab.com/doc/OriginC/ref/Worksheet-SetBounds

Workbooks Worksheets and Worksheet Columns

int begin = 9, end = 19;

// set beginning and end for all columns

int ¢l = 0, c2 = -1; // -1 means end

wks.SetBounds (begin, cl, end, c2);

6.4.3.3 Put Large Dataset to Worksheet

In order to keep an Origin C function running efficiently when working with a large data set (e.g. 1000 columns) in

a worksheet, use the steps below.
Prepare the columns and rows before putting data into the worksheet.

Use Worksheet::SetSize, don't use Worksheet::AddCol to set the size.

Set the size on an empty worksheet, meaning no columns and rows, since otherwise Origin will need to check
the short names of the existing columns to avoid duplicate names when adding new columns, and this could cost

you lots of time. You can use while(wks.DeleteCol(0)); to remove all columns to make an empty Worksheet.

Put data into worksheet columns by buffer, DataObject::GetInternalDataBuffer.

Keep Code Builder closed when running functions to improve the speed of execution.

See the following example codes:

// prepare worksheet size
Worksheet wks;

wks.Create ("Origin");

while(wks.DeleteCol (0));
int rows = 100, cols = 1000;

wks.SetSize (rows, cols);

// put data set into worksheet columns one by one

foreach (Column col in wks.Columns)

121

https://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize
https://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
https://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataBuffer

Origin C Programming Guide

col

col

col

int

.SetFormat (OKCOLTYPE NUMERIC) ;

.SetInternalData (FSI_SHORT) ;

.SetUpperBound (rows-1) ; //index of last row, 0 offset

nElementSize;

uint nNum;

LPVOID pDhata = col.GetInternalDataBuffer (&nElementSize, &nNum) ;

short* psBuff = (short*)pData;

// OC loop is still slow, but you might pass this pointer to your DLL

// for much faster manipulation, here we just show that the pointer works

for

col

(int ii = 0; ii < rows; 1ii++, psBuff++)
*psBuff = (ii+l) * (col.GetIndex()+1);
.ReleaseBuffer(); // do NOT forget to call this

6.4.3.4 Access Embedded Graph in a Worksheet

Create a new graph and a new worksheet, and then embed the graph within one of the worksheet's cells:

GraphPage gp;

gp.Create ("Origin") ;

Worksheet wks;

wks.Create () ;

int nOptions = EMBEDGRAPH KEEP ASPECT RATIO | EMBEDGRAPH HIDE LEGENDS;

122

Workbooks Worksheets and Worksheet Columns

// Put the graph in worksheet cell (0, 0)
wks.EmbedGraph (0, 0, gp, nOptions);

Access a graph that is embedded within a worksheet; by name or by index:

// Get embedded graph from active worksheet

Worksheet wks = Project.Activelayer();

GraphPage gp;

gp = wks.EmbeddedPages (0); // Get embedded graph page by index

gp = wks.EmbeddedPages ("Graphl"); // Get embedded graph page by name

6.4.3.5 Sort Worksheet Data

Perform a row-wise sort of column data with the Sort method. For sorting a single column, use the

vectorbase::Sort method:

// Sort column

// Before running, please keep active worksheet with two columns fill with data.
// For example, import \Samples\Mathematics\Sine Curve.dat to worksheet.
Worksheet wks = Project.Activelayer();

Column colY(wks, 1); // Y column

// After sort, the original relation for (x, y) will be broken.
vectorbase& vec = colY.GetDataObject () ;

vec.Sort () ;

To sort all columns in a worksheet, use the Worksheet::Sort method:

123

https://www.originlab.com/doc/OriginC/ref/vectorbase-Sort
https://www.originlab.com/doc/OriginC/ref/Worksheet-Sort

Origin C Programming Guide

// Sort worksheet

// Before running, please keep active worksheet with two columns fill with data.
// For example, import \Samples\Mathematics\Sine Curve.dat to worksheet.
Worksheet wks = Project.Activelayer();

int nCol = 1; // Ascending sort all worksheet data on the second column

BOOL bIsAscending = true;

BOOL bMissingValuesSmall = TRUE; // Treat missing value as smallest

int r1 =0, ¢1 =0, r2 = -1, ¢c2 = -1; // -1 means end for r2 and c2

// After sort, each (x, y) still keep the original relation

wks.Sort (nCol, bIsAscending, bMissingValuesSmall, rl, cl, r2, c2);

6.4.3.6 Mask Worksheet Data

The following code shows how to set a mask on the rows of data that are less than or equal to O for the specified

column.

int nCol = 1;
Worksheet wks = Project.Activelayer();
Column col (wks, nCol);

vector vData = col.GetDataObject () ;

// to find all less than and equal 0 and return row index

vector<uint> vnRowIndex;

vData.Find (MATREPL TEST LESSTHAN | MATREPL TEST EQUAL, 0, vnRowIndex);

// construct a range including multiple subranges added by row and column index

DataRange dr;

124

Workbooks Worksheets and Worksheet Columns

for(int nn = 0; nn < vnRowIndex.GetSize(); nn++)

int rl, cl, r2, c2;
rl = r2 = vnRowIndex[nn];
cl = c2 = nCol;

dr.Add ("X", wks, rl, cl, r2, c2);

// set mask on data range

dr.SetMask () ;

6.4.3.7 Set Size

The Worksheet::SetSize method is used to set the number of rows and columns in a worksheet.

// Set the number of rows and columns, and data will be kept.

// If want to add a lots of columns and rows at once time, better use SetSize
int nNumRows = 100;

int nNumCols = 20;

wks.SetSize (nNumRows, nNumCols) ;

// If want to change the number of rows but keep the number of columns,

// can use -1 replace. For example:

wks.SetSize (nNumRows, -1);

// The same usage also used to change column number and keep row number.

6.4.3.8 Reduce Worksheet Data

Origin C provides some functions for reducing XY data in worksheet, such as ocmath_reducexy_fixing_increbin

for reducing XY data by X increment, ocmath_reducexy n_groups for reducing XY data by number of groups,

ocmath_reducexy n_points for reducing XY data by every N points, etc. The following is an example to show

how to reduce XY data by every N points.

125

https://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize
https://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_fixing_increbin
https://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_groups
https://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_points

Origin C Programming Guide

Worksheet wks = Project.Activelayer(); // Get active worksheet
if (!'wks)
{
return;
}
Column colX(wks, 0); // First column in worksheet
Column colY(wks, 1); // Second column in worksheet

if (colX && colY)

vectorbase &vbInterY = colY.GetDataObject(); // Get Y column data

vector vY = vbInterY;

vector vReduced (vY.GetSize());

int nPoints = 3;

// Reduce every 3 points, and result is the mean of every 3 points

int nNewSize = ocmath reducexy n points(vY, vReduced, vY.GetSize(),
nPoints, REDUCE XY STATS MEAN) ;

int iReduced = wks.AddCol ("Reduced"); // Add a new column for result

Column colReduced (wks, iReduced);

vectorbase &vbReduced = colReduced.GetDataObject () ;

vbReduced = vReduced;

6.4.3.9 Extract Data from Worksheet with LT Condition

Select worksheet data using the Worksheet::SelectRows method. Rows can be selected across many columns.

// Select data from a worksheet based on a condition;
// put the indices of the selected rows into a vector of type 'uint'.

Worksheet wks = Project.Activelayer();

126

https://www.originlab.com/doc/OriginC/ref/Worksheet-SelectRows

Workbooks Worksheets and Worksheet Columns

// Check the worksheet data based on the condition expression and

// output the row index into 'vnRowIndices'.

// Define Labtalk range objects, 'a' = column 1, 'b' = column 2.
string strLTRunBeforeloop = "range a=1; range b=2";
string strCondition = "abs(a) >= 1 && abs(b) >= 1";

vector<uint> vnRowIndices; // This is output

int rl = 0, r2 = -1; // The row range, -1 means the last row for r2

// Optional maximum number of rows to select, -1 indicates no limit

int nMax = -1;

int num = wks.SelectRows (strCondition, vnRowIndices, rl, r2, nMax,
strLTRunBeforeloop) ;

There are two ways to highlight the selection. The first is to highlight the selected indices.

// Method 1 of show selection: highlight rows by vnRowIndices
Grid gg;

if(gg.Attach (wks))

// convert uint type vector to int type vector

vector<int> vnRows;

vnRows = vnRowIndices;

gg.SetSelection (vnRows) ;

The second method of highlighting a data selection is to prescribe a fill color for the selected rows.

127

Origin C Programming Guide

// Method 2 of show selection: fill color on the selected rows by vnRowIndices

DataRange dr;

// Construct data ranges by the row indices in wvnRowIndices.

for (int index=0; index<vnRowIndices.GetSize (); index++)

// The following 0(lst col) and -1(last col) for all columns

// ™" for range name variable, not specified, default name will be used

dr.Add("", wks, vnRowIndices[index], 0, vnRowIndices[index], -1);

Tree tr;

tr.Root.CommonStyle.Fill.FillColor.nVal = SYSCOLOR BLUE; // fill color = blue

tr.Root.CommonStyle.Color.nVal = SYSCOLOR WHITE; // font color = white

if(0 == dr.UpdateThemeIDs (tr.Root)) // Return 0 for no error

bool bRet = dr.ApplyFormat (tr, true, true);

6.4.3.10 Compare Data in Two Worksheets

It may be useful to compare the number of rows or columns between two worksheets, or compare the data

themselves. Get a row or column count from a worksheet with the Datasheet::GetNumRows and

Datasheet::GetNumCols methods.

if (wksl.GetNumRows () != wks2.GetNumRows ()

|| wksl.GetNumCols () !'= wks2.GetNumCols ())

128

https://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumRows
https://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumCols

Workbooks Worksheets and Worksheet Columns

out str("The two worksheets are not the same size");

return;

Another way to perform a similar operation is to copy the data from each worksheet into a vector, and compare

the size of the vectors.

// get all data from worksheet 1 columns one by one
vector vecl;

foreach (Column col in wksl.Columns)

vector& vecCol = col.GetDataObject () ;

vecl.Append (vecCol) ;

// get all data from worksheet 2 columns one by one
vector vec2;

foreach (col in wks2.Columns)

vector& vecCol = col.GetDataObject () ;

vec2.Append (vecCol) ;

if(vecl.GetSize () != vec2.GetSize())

out str("The size of the two data sets is not equal");

return;

129

Origin C Programming Guide

To compare data elements themselves, use the ocmath compare data function on the vectors in the example

above.

bool bIsSame = false;
double dTolerance = 1le-10;
ocmath compare data(vecl.GetSize(), vecl, vec2, &bIsSame, dTolerance);

if(bIsSame)

out str("Data in the two worksheets are the same");

6.4.4 Converting Worksheet to Matrix

You may need to re-organize your data by converting from worksheet to matrix, or vice versa, for certain analysis
or graphing needs. This page provides information and examples of converting worksheet to matrix, and please

refer to Converting Matrix to Worksheet for the "vice versa" case.

6.4.4.1 Worksheet Gridding
Run the following command in the Command Window to compile the nag_utils.c file and add it into the current

workspace

Run.LoadOC (Originlab\nag utils.c, 16);

Include header files in the Origin C file.

#include <wks2mat.h>

#include <Nag utils.h>

Get XYZ data from the active worksheet XYZ columns.

// Construct XYZ data range from XYZ columns

XYZRange rng;

130

https://www.originlab.com/doc/OriginC/ref/ocmath_compare_data
https://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet

Workbooks Worksheets and Worksheet Columns

rng.Add (wks, 0, "X");
rng.Add (wks, 1, "Y");

rng.Add (wks, 2, "z");

// Get XYZ data from data range objects to vectors
vector vX, vY, VvZ;

rng.GetData (vZ, vY, vX);

Examine source data type, for example: regular, sparse.

UINT nVar;

double xmin, xstep, xmax, ymin, ystep, ymax;

int nSize = vX.GetSize();

int nMethod = ocmath xyz examine data (nSize, vX, vY, vZ,

&nVar, &xmin, &xstep, &xmax, &ymin, &ystep, &ymax);

Calculate the number of rows and columns for the result matrix window.

int nRows = 10, nCols = 10;

if(0 == nMethod || 1 == nMethod) // Regular or sparse

double dGap = 1.5;
if(!is_equal (ystep, 0))

nRows = abs(ymax - ymin)/ystep + dGap;

if(!is_equal (xstep, 0))
nCols = abs(xmax - xmin)/xstep + dGap;

}

Prepare the result matrix window.

131

1.0e-8,

1.0e-8,

Origin C Programming Guide

// Prepare matrix window to put gridding result

MatrixPage mp;

mp.Create ("origin"); // Create matrix window

MatrixLayer ml = mp.Layers(0); // Get the first matrixsheet

MatrixObject mo(ml, 0); // Get the first matrix object

mo.SetXY (xmin, ymin, xmax, ymax); // Set the from/to for X and Y

mo.SetSize (nRows, nCols); // Set the number of rows and columns

Do XYZ gridding with the different method types.

matrix& mat = mo.GetDataObject(); // Get data object from matrix object

int iRet;

switch (nMethod)

case 0: // Regular
iRet = ocmath convert regular xyz to matrix(nSize, vX, vY, vz,
mat, xmin, xstep, nCols, ymin, ystep, nRows);
printf("--- %d: regular conversion ---\n", iRet);

break;

case 1l: // Sparse
iRet = ocmath convert sparse xyz to matrix(nSize, vX, vY¥Y, vZ,
mat, xmin, xstep, nCols, ymin, ystep, nRows);

printf ("--- %d: sparse conversion ---\n", iRet);

132

Workbooks Worksheets and Worksheet Columns

break;

case 2: // Random(Renka Cline)

vector vxGrid (nRows*nCols), vyGrid(nRows*nCols) ;

iRet = ocmath mat to regular xyz (NULL, nRows, nCols, xmin,

xmax, ymin, ymax, vxGrid, vyGrid);

if(iRet >= 0)

iRet = xyz gridding nag(vX, vY, vZ, vxGrid, vyGrid, mat);

printf ("--- %d: random conversion ---\n", iRet);

break;

default: // Error.

printf ("--- Error: Other method type ---\n");

6.4.4.2 Worksheet to Matrix

Data contained in a worksheet can be converted to a matrix using a set of functions.

To converts matrix-like worksheet data directly into a matrix, data in source worksheet can contain the X or Y
coordinate values in the first column, first row. However, because the coordinates in a matrix should be uniform
spaced, you should have uniformly spaced X/Y values in the source worksheet. The CopyFramWks method can

be used directly, or just attach XYZ data range to matrix.

The following example show how to perform direct worksheet to matrix conversion:

// Method 1: using CopyFromWks
Worksheet wks = Project.Activelayer();

if (!wks)

133

https://www.originlab.com/doc/OriginC/ref/matrixbase-CopyFromWks

Origin C Programming Guide

return;

MatrixPage matPg;
matPg.Create ("Origin") ;
MatrixLayer matly = matPg.Layers (0);

Matrix mat (matly);

matrix<double> matl;

if(!matl.CopyFromwWks (wks, 1, -1, 1, -1))

out str("Error: CopyFromWks failed!");

return;

mat = matl;

// Method 2: attach to MatrixObject

Worksheet wks = Project.Activelayer();

if (!wks)

return;

int nCols = wks.GetNumCols () ;

int nRows = wks.GetNumRows () ;

DataRange dr;

dr.Add("xX", wks, 0, 1, 0, nCols - 1);

dr.Add("vy", wks, 1, 0, nRows - 1, 0);

134

// First

// First

row excep the first cell

column except the first cell

Workbooks Worksheets and Worksheet Columns

dr.Add("z", wks, 1, 1, nRows - 1, nCols - 1);
MatrixPage matPg;

matPg.Create ("Origin") ;

MatrixLayer matly = matPg.Layers (0);
MatrixObject mo = matLy.MatrixObjects (0);
MatrixObject moTmp;

moTmp.Attach (dr) ;

matrixbase &matTmp = moTmp.GetDataObject () ;
matrixbase &mat = mo.GetDataObject () ;

mat = matTmp;

moTmp.Detach () ;

When your worksheet data is organized in XYZ column form, you should use Gridding to convert such data into a
matrix. Many gridding methods are available, which will interpolate your source data and generate a uniformly

spaced array of values with the X and Y dimensions specified by you.

The following example converts XYZ worksheet data by Renka-Cline gridding method.

// Convert worksheet data into a 20 x 20 matrix by Renka-Cline gridding method
Worksheet wks = Project.Activelayer();

if (!wks)

return;

Dataset dsX(wks, 0);
Dataset dsY (wks, 1);
Dataset dsZ(wks, 2);
int nPoints = dsX.GetSize();

vector vX = dsX;

135

Origin C Programming Guide

vector vY = ds¥Y;

vector vZ = dsZ;

ocmath RenkaCline Struct comm;

ocmath renka cline interpolation(nPoints, vX, vY, vZ, &comm);

//set X and Y of the gridding
double dXMin, dXMax, dYMin, dYMax;
vX.GetMinMax (dXMin, dXMax) ;

vY.GetMinMax (dYMin, dYMax);

//perform random matrix conversion using Kriging algorithm

20;

int nRows
int nCols = 20;

matrix mZ (nRows, nCols);
vector vEvalX (nRows * nCols);
vector vEvalY (nRows * nCols);

ocmath mat to regular xyz (NULL, nRows, nCols, dXMin, dXMax, dYMin, dYMax, vEvalX,
vEvalY, NULL, true);

ocmath renka cline eval (&comm, nRows * nCols, vEvalX, vEvalY, mZ);

ocmath renka cline struct free (&comm);

//create Matrix storing the result
MatrixLayer mResultLayer;
mResultLayer.Create () ;

Matrix matResult (mResultlLayer) ;

136

Workbooks Worksheets and Worksheet Columns

matResult = mZ;
MatrixObject mo = mResultLayer.MatrixObjects (0);
mo.SetXY (dXMin, dYMin, dXMax, dYMax);//set X and Y range of Matrix

6.4.5 Virtual Matrix

You can construct a virtual matrix from a worksheet window. Pick separate data ranges from the worksheet for
X, Y, Z data of the virtual matrix. If you do not specify X and Y data, it will automatically use default data. The
following code shows how to construct a virtual matrix from an active worksheet window, and then plot this virtual

matrix on a graph.

// before running, make sure there is active worksheet window with data.
// For example, new a worksheet window, import XYZ Random Gaussian.dat from
// Origin folder Samples\Matrix Conversion and Gridding subfolder to worksheet.

Worksheet wks = Project.Activelayer();

int rl, r2;
int ¢l = 0, c2 = 2;

wks.GetBounds (rl, cl, r2, c2);

// construct a data range object only with Z data, X and Y data will be auto
// assigned.
DataRange dr;

dr.Add("z", wks, rl, cl, r2, c2);

MatrixObject mo;

mo.Attach (dr) ;

int nRows = mo.GetNumRows () ;

int nCols = mo.GetNumCols () ;

137

Origin C Programming Guide

// get the default x, y range
double xmin, xmax, ymin, ymax;

mo.GetXY (xmin, ymin, xmax, ymax);

GraphPage gp;
gp.Create ("CONTOUR") ;

Graphlayer gl = gp.Layers(0);

gl.AddPlot (mo, IDM PLOT CONTOUR) ;

gl.Rescale();

mo.Detach () ;

If you want to assign X and Y data then the data should be monotone. The following example shows how to

construct a virtual matrix with an XYZ data range.

// Assume the active layer is a worksheet with 5 columns of data.

Worksheet wks = Project.Activelayer();

// Get min and max row indices for columns 0 to 4.
int rl, r2, ¢l = 0, c2 = 4;

wks.GetBounds (rl, cl, r2, c2);

// Create a data range object with XYZ data.
DataRange dr;
dr.Add ("X", wks, 0, 1, 0, c2); // First row except the first cell

dr.add("y", wks, 1, 0, r2, 0); // First column except the first cell

138

Workbooks Worksheets and Worksheet Columns

dr.Add("z", wks, 1, 1, r2, c2);

MatrixObject mo;

mo.Attach (dr) ;

139

7 Graphs

7.1 Graphs

The GraphPage class is for working with a graph window. There is a GraphPage object for each graph window.

A GraphPage object contains a collection of layers. Each of these layers is a GraphLayer object.
Accessing an Existing Graph

There are multiple ways to access an existing graph. The methods used are the same as those used for

workbooks and matrix books.

You can access a graph by passing its name to the class constructor.

GraphPage grPg("Graphl");
if(grPg) // if there is a graph named "Graphl"
grPg.SetName ("MyGraphl"); // rename the graph

The Project class contains a collection of all the graphs in the project. The following example shows how to loop

through the collection and output the name of each graph.

foreach (GraphPage grPg in Project.GraphPages)
out str(grPg.GetName()); // output graph name

You can access a graph by passing its zero-based index to the Item method of the Collection class.

GraphPage grPg;
grPg = Project.GraphPages.Item(2);
if(grPg) // if there is a 3rd graph
out str(grPg.GetName()); // output graph name

Deleting a Graph

All Origin C's internal classes are derived from the OriginObject class. This class has a Destroy method that is
used to destroy the object. Calling this method on a graph will destroy the graph, all the layers in the graph, and

all the graph objects on each layer.

141

Origin C Programming Guide

GraphPage grPg;
grPg = Project.GraphPages.Item(0); // get first graph in project
if(grPg) // if there is a graph

grPg.Destroy(); // delete the graph

This section covers the following topics:

Creating and Customizing Graph

Adding Data Plots

Customizing Data Plots

Managing Layers

Creating and Accessing Graphical Objects

7.2 Creating and Customizing Graph

7.2.1 Creating Graph Window

The Create method is used for creating new graphs.

GraphPage gp;

gp.Create ("3D"); // create a graph using the 3D template

7.2.2 Getting Graph Page Format

GraphPage gp ("Graphl");

Tree tr;

tr = gp.GetFormat(FPB_ALL, FOB ALL, true, true);

out tree(tr);

142

https://www.originlab.com/doc/OriginC/guide/Creating-and-Customizing-Graph
https://www.originlab.com/doc/OriginC/guide/Adding-Data-Plots
https://www.originlab.com/doc/OriginC/guide/Customizing-Data-Plots
https://www.originlab.com/doc/OriginC/guide/Managing-Layers
https://www.originlab.com/doc/OriginC/guide/Creating-and-Accessing-Graphical-Objects

Graphs

7.2.3 Setting Graph Page Format

The following example code shows how to set page background color as a gradient in two colors.

Tree tr;
tr.Root.Background.BaseColor.nVal = SYSCOLOR RED;
tr.Root.Background.GradientControl.nvVal = 1;

tr.Root.Background.GradientColor.nVal = SYSCOLOR BLUE;

GraphPage gp ("Graphl");
if (0 == gp.UpdateThemelIDs (tr.Root))

gp.ApplyFormat (tr, true, true);

7.2.4 Getting Graph Layer Format

Graphlayer gl = Project.Activelayer();

Tree tr;

tr = gl.GetFormat (FPB ALL, FOB ALL, true, true);

out tree(tr);

7.2.5 Setting Graph Layer Format

The following example code shows how to set the background of a graph layer object to Black Line format.

Graphlayer gl = Project.Activelayer();

Tree tr;

tr.Root.Background.Border.Color.nVal SYSCOLOR BLACK;

tr.Root.Background.Border.Width.nVal

1;

143

Origin C Programming Guide

tr.Root.Background.Fill.Color.nVal = SYSCOLOR WHITE;

if(0 == gl.UpdateThemeIDs (tr.Root))

gl.ApplyFormat (tr, true, true);

7.2.6 Show Additional Lines

This example shows how to show additional lines, the Y=0/X=0 line, and the opposite line.

Graphlayer gl = Project.Activelayer () ;

Axis axesX = gl.XAxis;

axesX.Additional.ZerolLine.nVal = 1; // Show Y = 0 line

axesX.Additional.OppositeLine.nVal = 1; // Show X Axes opposite line

7.2.7 Show Grid Lines

This example shows how to set gridlines to show, and how to color them.

Color values can be an index into Origin's internal color palette or an RGB value. See Color in the Data Types

and Variables section for more information about working with color values.

Graphlayer gl = Project.Activelayer () ;
Axis axisY = gl.YAxis;

Tree tr;

// Show major grid
TreeNode trProperty = tr.Root.Grids.HorizontalMajorGrids.AddNode ("Show") ;
trProperty.nvVal = 1;

RGB20OCOLOR (RGB (100, 100, 220)):;

tr.Root.Grids.HorizontalMajorGrids.Color.nVal

tr.Root.Grids.HorizontalMajorGrids.Style.nval = 1; // Solid

tr.Root.Grids.HorizontalMajorGrids.Width.dval = 1;

144

https://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
https://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
https://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables

Graphs

// Show minor grid
trProperty = tr.Root.Grids.HorizontalMinorGrids.AddNode ("Show") ;
trProperty.nval = 1;

tr.Root.Grids.HorizontalMinorGrids.Color.nVal = SYSCOLOR GREEN; // Green

tr.Root.Grids.HorizontalMinorGrids.Style.nVal 2; // Dot

tr.Root.Grids.HorizontalMinorGrids.Width.dval = 0.3;

if (0 == axisY.UpdateThemeIDs (tr.Root))

bool bRet = axisY.ApplyFormat (tr, true, true);

7.2.8 Setting Axis Scale

This example shows how to set scale parameters, increment, type and so on.

GraphLayer gl = Project.Activelayer();

Axis axesX = gl.XAxis;

axesX.Scale.From.dval = 0;

axesX.Scale.To.dval = 1;

axesX.Scale.IncrementBy.nval = 0; // O=increment by value; l=number of major ticks
axesX.Scale.Value.dval = 0.2; // Increment value

axesX.Scale.Type.nVal = 0;// Linear

axesX.Scale.Rescale.nVal = 0; // Rescake type

axesX.Scale.RescaleMargin.dval = 8; // precent 8

This example shows how to set scale major ticks number for Y axis.

145

Origin C Programming Guide

GraphlLayer gl = Project.Activelayer();

Axis axesY = gl.YAxis;

axesY.Scale.IncrementBy.nVal = 1; // 0: increment by value; 1: number of major
ticks
axesY.Scale.MajorTicksCount.nVal = 5;

7.2.9 Getting Axis Format

GraphlLayer gl = Project.Activelayer();

Axis axisX = gl.XAxis;

// Get all axis format settings to tree

Tree tr;

tr = axisX.GetFormat (FPB_ALL, FOB ALL, true, true);
out tree(tr);

7.2.10 Setting Axis Label

An axis label is an ordinary text object and is accessed in Origin C using the GraphObject class. On a default
graph the X axis is named XB and the Y axis is named YL. The following code shows how to access the X and Y

axis labels and assumes a default graph is the active page.

GraphLayer gl = Project.Activelayer(); // Get active graph layer

GraphObject grXL = gl.GraphObjects("XB"); // Get X axis label
GraphObject grYL = gl.GraphObjects("YL"); // Get Y axis label

Now that we have access to the axis labels we can change their values. The following code sets the X axis label
directly and sets the Y axis label indirectly by linking it to a LabTalk string variable. Linking to a LabTalk variable

requires the label's Programming Control option "Link to variables" to be turned on. This option is on by default.

146

Graphs

grXL.Text = "My New X Asis Label";

LT set str("abc$", "My String Variable");
grYL.Text = "% (abc$)";

To make sure the label changes appear, it may be necessary to refresh the graph page. With our GraphLayer

object we can refresh the page with the following code.

gl.GetPage () .Refresh () ;

7.2.11 Show Top Axis

This example shows how to show X top axes.

// Show axes and ticks
Tree tr;
TreeNode trProperty = tr.Root.Ticks.TopTicks.AddNode ("Show") ;

trProperty.nval = 1;

// Show tick labels

trProperty = tr.Root.Labels.TopLabels.AddNode ("Show") ;
trProperty.nval = 1;

Graphlayer gl = Project.Activelayer();

Axis axesX = gl.XAxis;

1if (0 == axesX.UpdateThemeIDs (tr.Root))

bool bRet = axesX.ApplyFormat (tr, true, true);

147

Origin C Programming Guide

7.2.12 Customizing Axis Ticks

This example shows how to set the format in the Axis dialog -> Title & Format tab.

Graphlayer gl = Project.Activelayer();

Axis axesX = gl.XAxis;

Tree tr;
// Set ticks color as Auto, depend on the color of data plot

tr.Root.Ticks.BottomTicks.Color.nVal = INDEX COLOR AUTOMATIC;

tr.Root.Ticks.BottomTicks.Width.dval = 3;
tr.Root.Ticks.BottomTicks.Major.nVal = 0; // 0: In and Out
tr.Root.Ticks.BottomTicks.Minor.nvVal = 2; // 2: Out

tr.Root.Ticks.BottomTicks.Style.nvVal = 0; // Solid

if (0 == axesX.UpdateThemeIDs (tr.Root))
bool bRet = axesX.ApplyFormat (tr, true, true);

7.2.13 Customizing Tick Labels

This example shows how to set tick labels with custom positions. It performs the same action as going in the Axis

dialog Custom Tick Labels tab.

GraphlLayer gl = Project.Activelayer();

Axis axesX = gl.XAxis;

Tree tr;
// Show axes begin and end as scale value
tr.Root.Labels.BottomLabels.Custom.Begin.Type.nVal = 2;

tr.Root.Labels.BottomLabels.Custom.End.Type.nVal = 2;

148

Graphs

// Set special point as Manual type with the special value and text.
tr.Root.Labels.BottomLabels.Custom.Special.Type.nVal = 3;
tr.Root.Labels.BottomLabels.Custom.Special.Label.strVal = "Mid";

tr.Root.Labels.BottomLabels.Custom.Special.Value.dval = 12;

if (0 == axesX.UpdateThemeIDs (tr.Root))

bool bRet = axesX.ApplyFormat (tr, true, true);

7.2.14 Change Scale Factor

This example shows how to scale the font size and line thickness when page size changed by changing scale

factor.

void change graph and font size(double dNewWidth = 5)

GraphPage gp = Project.Activelayer () .GetPage();

Tree trl;trl = gp.GetFormat (FPB ALL, FOB ALL, true, true);
double dOldWwidth = trl.Root.Dimension.Width.dVal;

double factor = dOldWidth/trl.Root.Dimension.Height.dval;
Tree tr2;

tr2.Root.Dimension.Width.dVal = dNewWidth;
tr2.Root.Dimension.Height.dval = dNewWidth / factor;

if (0 == gp.UpdateThemeIDs (tr2.Root))

gp.ApplyFormat (tr2, true, true);

string strScript;

149

Origin C Programming Guide

//page -afu : Change Scale Factor
//win -z0 : fit page to window size
strScript.Format ("page -AFU %$f;win -z0", -dNewWidth/dOldwidth) ;

gp.LT execute (strScript);

Note:
In this case, tr1 is only used to get current dimension value and does not apply new value.

It's because tr1 also has graph object position settings, which are outdated if you want to change graph

dimension.

The correct way is to apply dimension setting only and graph object position will automatically update.

7.3 Adding Data Plots

Plots or Data plots are representations of your data within a graph layer. Each graph layer may contain one or

more plots.

7.3.1 2D Plot (XY, YErr, Bar/Column)

7.3.1.1 Plot XY Scatter

The following code shows how to construct an XYYErr data range from the active worksheet, and then plot the

data range in a newly created graph.

Worksheet wks = Project.Activelayer();

// The range name must be X, Y, Z or ED(for YErr) to make sense.

DataRange dr;

dr.Add (wks, 0, "X"); // 1lst column for X data

150

Graphs

dr.Add (wks, 1, "Y"); // 2nd column for Y data

dr.Add (wks, 2, "ED"); // Optional, 3th column for Y Error data

// Create a graph window
GraphPage gp;
gp.Create ("Origin") ;

GraphLayer gl = gp.Layers(); // Get active layer

// Plot XY data range as scatter

// IDM_PLOT SCATTER is plot type id, see other types plot id in oPlotIDs.h file.
int nPlotIndex = gl.AddPlot (dr, IDM PLOT SCATTER);

// Returns plot index (offset is 0), else return -1 for error

if(nPlotIndex >= 0)

gl.Rescale(); // Rescale axes to show all data points

7.3.1.2 Attach YErr Plot
Attach YErr data to an existing XY data plot.

GraphLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(-1); // Get active data plot

// Get Y Error column
WorksheetPage wksPage ("Bookl");
Worksheet wks = wksPage.Layers();

Column colErrBar (wks, 2);

151

Origin C Programming Guide

// Plot Y Error column to the active data plot

Curve crv (dp) ;
int nErrPlotIndex = gl.AddErrBar (crv, colErrBar);
out int("nErrPlotIndex = ", nErrPlotIndex):;

7.3.1.3 Bar/Column Plot

// before running make sure the active window is worksheet
Worksheet wks = Project.Activelayer();
DataRange dr;

dr.Add (wks, 1, "Y"); // Construct data range with one column

GraphPage gp;
gp.Create ("BAR"); // Create graph with the specified template

GraphLayer gl = gp.Layers(-1); // Get active graph layer

int index = gl.AddPlot (dr, IDM PLOT BAR);

if(index >= 0)

out str("Plot bar");

gl.Rescale();

7.3.2 3D Plot

Plot a 3D surface from a matrix on a graph window.

// Prepare matrix data

MatrixLayer ml;

152

Graphs

string strFile = GetAppPath (true) + "Samples\\Matrix Conversion and Gridding\\
2D Gaussian.ogm";
ml.Open(strFile);

MatrixObject mo = ml.MatrixObjects (0);

// Create graph page with template
GraphPage gp;
gp.Create ("CMAP") ;

Graphlayer gl = gp.Layers(0);

// Plot 3D surface
int nPlotIndex = gl.AddPlot (mo, IDM PLOT SURFACE COLORMAP) ;

if (0 == nPlotIndex)

gl.Rescale () ;

printf ("3D Surface plotted successfully\n");

7.3.3 Contour Plot

7.3.3.1 Plot XYZ Contour

// Before running, make sure there are XYZ columns with data in the active

// worksheet window. Or you can import \Samples\Matrix Conversion and Gridding\
// XYZ Random Gaussian.dat into worksheet.

Worksheet wks = Project.Activelayer();

DataRange dr;

dr.Add (wks, 0, "X");

dr.Add (wks, 1, "Y");

153

Origin C Programming Guide

dr.Add (wks, 2, "z");

// Create graph with template
GraphPage gp;
gp.Create ("TriContour") ;

Graphlayer gl = gp.Layers();

// Plot XYZ contour with type id

int nPlot = gl.AddPlot (dr, IDM PLOT TRI CONTOUR) ;

if(nPlot >= 0)

gl.Rescale ()

printf ("XYZ contour plotted successfully\n");

7.3.3.2 Plot Color Fill Contour

MatrixLayer ml = Project.Activelayer();

MatrixObject mo = ml.MatrixObjects (0);

// Create graph window with template
GraphPage gp;
gp.Create ("contour") ;

GraphLayer gl = gp.Layers();

int nPlot = gl.AddPlot (mo, IDM PLOT CONTOUR) ;

if(nPlot >= 0)

154

Graphs

gl.Rescale () ;

7.3.4 Image Plot

MatrixLayer ml = Project.Activelayer () ;

MatrixObject mo = ml.MatrixObjects (0);

// Create graph window with template
GraphPage gp;
gp.Create ("image") ;

GraphLayer gl = gp.Layers();

int nPlot = gl.AddPlot (mo, IDM PLOT MATRIX IMAGE) ;

if(nPlot >= 0)

gl.Rescale ()

7.3.5 Multi-Axes

The following example code shows how to show/hide and set format on the four axes - left, bottom, right, and top

in one graph layer.

#include <..\Originlab\graph utils.h> // needed for AXIS *

Graphlayer gl = Project.Activelayer();

// Show all axes and labels. 0 or 1, 1 for show.
vector<int> vnAxes (4), vnLabels(4), vnTitles(4);

vnAxes [AXIS BOTTOM] = 1;

155

Origin C Programming Guide

vnAxes [AXIS LEFT] = 1;
vnAxes [AXIS TOP] = 1;
vnAxes [AXIS RIGHT] = 1;

vnLabels = vnAxes;

// Show axis titles of left and bottom axes. 0 or 1, 1 for show.
vnTitles [AXIS BOTTOM] = 1;

vnTitles [AXIS LEFT] = 1;

vnTitles [AXIS TOP] = O;

vnTitles [AXIS RIGHT] = O;

// Set the major tick and minor tick of all axes as IN format
// See other TICK * items in graph utils.h.
vector<int> vnMajorTicks (4), vnMinorTicks (4);

vnMajorTicks [AXIS BOTTOM] = TICK IN;

vnMajorTicks [AXIS LEFT] = TICK IN;
vnMajorTicks [AXIS TOP] = TICK IN;
vnMajorTicks [AXIS RIGHT] = TICK IN;

vnMinorTicks = vnMajorTicks;

gl smart show object(gl, vnAxes, vnLabels, vnTitles, vnMajorTicks, vnMinorTicks);

7.3.6 Multi-Panels (Multi-Layer, with Shared X-Axis)

The following example shows how to construct multiple graph layers in one graph page, all layers sharing the x

axis in one layer, then plot XY data sets one by one from a worksheet to each graph layer.

Before compiling the following codes, you need to run this command to build the graph_utils.c file to your current

workspace.

156

Graphs

run.LoadOC (Originlab\graph utils.c, 16);

Compile the following Origin C code. Before running, make sure there is a workbook named Book1, and it has

one X column and at least two Y columns.

#include <..\Originlab\graph utils.h> // needed for page add layer function
// Construct data range from Bookl

WorksheetPage wksPage ("Bookl");

Worksheet wks = wksPage.Layers(0); // get the first worksheet in Bookl
DataRange dr;

dr.Add (wks, 0, "X"); // 1lst column as X data

dr.Add (wks, 1, "Y", -1); // 2nd column to last one for Y data

// Get the number of Y
DWORD dwRules = DRR GET DEPENDENT | DRR NO FACTORS;

int nNumYs = dr.GetNumData (dwRules) ;

// Add more layers with right Axis and link to the 1st layer
GraphPage gp;
gp.Create ("Origin") ;

while (gp.Layers.Count () < nNumYs)

page add layer (gp, false, false, false, true,

ADD LAYER INIT SIZE POS MOVE OFFSET, false, 0, LINK STRAIGHT);

// Loop and add plot from each XY data range to graph layer

foreach (GraphlLayer gl in gp.Layers)

157

Origin C Programming Guide

int nLayerIndex = gl.GetIndex();

// Get the sub XY range from dr
DataRange drOne;

dr.GetSubRange (drOne, dwRules, nLayerIndex);

// Plot one XY range to graph layer
int nPlot = gl.AddPlot (drOne, IDM PLOT LINE);

if(nPlot >= 0)

DataPlot dp = gl.DataPlots(nPlot);

dp.SetColor (nLayerIndex); // Set data plot as different color

// Set the ticks and ticklabels of right Y axis auto color

gl.YAxis.AxisObjects (AXISOBJPOS AXIS SECOND) .RightTicks.Color

gl.YAxis.AxisObjects (AXISOBJPOS LABEL SECOND).RightLabels.Color.nVal =

INDEX COLOR AUTOMATIC;

gl.Rescale();

7.4 Customizing Data Plots

7.4.1 Adding Data Marker

Origin C supports the following methods for customizing data markers.

158

.nVal

Graphs

DataPlot::AddDataMarkers to add a data marker on the data plot to select a sub range

DataPlot::SetDataMarkers to change the position of the present data marker

DataPlot::GetDataMarkers to get all existing data plots

DataPlot::RemoveDataMarker to remove the specified data marker.

The following code shows how to add two data markers to the active graph window.

Graphlayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots();

// the indices of the data markers

vector<int> vnBegin = {0, 9};

vector<int> vnEnd = {4, 14};

// to add two data markers

int nRet = dp.AddDataMarkers (vnBegin, vnEnd);

if(0 == nRet)

out str("Add data marker successfully.");

The code below shows how to change the position of the present data marker.

GraphlLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots();

// the indices of the data markers

vector<int> vnBegin = {11, 2};

159

https://www.originlab.com/doc/OriginC/ref/DataPlot-AddDataMarkers
https://www.originlab.com/doc/OriginC/ref/DataPlot-SetDataMarkers
https://www.originlab.com/doc/OriginC/ref/DataPlot-GetDataMarkers
https://www.originlab.com/doc/OriginC/ref/DataPlot-RemoveDataMarker

Origin C Programming Guide

vector<int> vnEnd = {19, 5};

vector<int> wvnIndices = {1, 0};

// to add two data markers
int nRet = dp.SetDataMarkers (vnBegin, vnEnd, vnIndices);

if(0 == nRet)

out str("Set data marker successfully.");

gl.GetPage () .Refresh () ;

7.4.2 Setting Color

The following code shows how to set the color of the data plot.

GraphlLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(0);

bool bRepaint = true;

dp.SetColor (SYSCOLOR GREEN, bRepaint) ;

7.4.3 Getting Format Tree

OriginObject::GetFormat and OriginObject::ApplyFormat are used to get and set Origin object formats. The
following getting, setting and copying format mechanisms can be used for all Origin objects whose classes derive
from the OriginObject base class (see Reference: Class Hierarchy). For example, the Origin objects can be
objects of the DataPlot class, Worksheet class, WorksheetPage class, MatrixLayer class, MatrixPage class,

GraphLayer class, or GraphPage class.

The DataPlot class derives from the DataObjectBase class, and the DataObjectBase class derives from the

OriginObject class, so we can call DataPlot::GetFormat to get the format tree structure.

There are two ways to see the format tree structure via the following code.

160

https://www.originlab.com/doc/OriginC/guide/Class-Hierarchy

Graphs

Set a break point on the GetFormat line in the following code, activate one data plot, run the code, press F10
(Step Over) to execute the GetFormat line, and see the details of the format tree in the Code Builder Local

Variables Window tr variable. (press Alt+4 to open/hide the Local Variables window).

Use the last line, out_tree(tr);, to print out the format tree.

Graphlayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(-1); // Get the active data plot

// Different plot types (for example, Line, Box Chart...) have
// different structure in the format tree.

Tree tr;

// Get the format tree to see details of the tree structure.

tr = dp.GetFormat (FPB ALL, FOB ALL, true, true);

out tree(tr); // print out the format tree.

7.4.4 Setting Format on Line Plot

GraphlLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(-1); // Get the active data plot

// Set format on a line plot

// Note: See the previous section to get the structure of format tree
Tree tr;

tr.Root.Line.Connect.nval = 2; // 2 for 2 point segment

tr.Root.Line.Color.nVal

RGB20OCOLOR (RGB (100, 100, 220));

tr.Root.Line.Width.dval

1.5;

161

Origin C Programming Guide

if(0 == dp.UpdateThemeIDs (tr.Root))

bool bRet = dp.ApplyFormat (tr, true, true);

7.4.5 Copying Format from One Data Plot to Another

7.4.5.1 Copying Format via Theme File
Getting and saving a format tree from a data plot into a theme file, then loading the theme file to a tree and

applying the format tree to another data plot.

// Save plot settings from Graphl to a theme file
GraphPage gpSource ("Graphl");
GraphLayer glSource = gpSource.Layers (0);

DataPlot dpSource = glSource.DataPlots(0);

Tree tr;
tr = dpSource.GetFormat (FPB ALL, FOB ALL, true, true);
string strTheme = GetAppPath (false) + "plotsettings.XML";

tr.Save (strTheme) ;

// Load plot settings from a theme file to a tree, and apply format from
// tree to data plot object.

GraphPage gpDest ("Graph2") ;

GraphlLayer glDest = gpDest.Layers(0);

DataPlot dpDest = glDest.DataPlots(0);

Tree tr2;

162

Graphs

tr2.Load (strTheme) ;

dpDest.ApplyFormat (tr2, true, true);

7.4.5.2 Copying Format via Tree

Getting plot settings from one data plot to a tree, then apply settings from this tree to another data plot object.

GraphPage gpSource ("Graphl");
GraphLayer glSource = gpSource.Layers (0);

DataPlot dpSource = glSource.DataPlots(0);

GraphPage gpDest ("Graph2") ;
Graphlayer glDest = gpDest.Layers(0);

DataPlot dpDest = glDest.DataPlots (0);

// Get format from source data plot
Tree tr;

tr = dpSource.GetFormat (FPB_ALL, FOB ALL, true, true);

// Apply format to another data plot

dpDest.ApplyFormat (tr, true, true);

7.4.6 Setting Format on Scatter Plot

Graphlayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(-1); // Get the active data plot

// Set symbol format
Tree tr;

tr.Root.Symbol.Size.nvVal = 12; // Size of symbol

163

Origin C Programming Guide

tr.Root.Symbol.Shape.nVal = 1; // Circle
tr.Root.Symbol.Interior.nvVal = 1; // Interior type
tr.Root.Symbol.EdgeColor.nVal = SYSCOLOR RED;

tr.Root.Symbol.FillColor.nVal = SYSCOLOR BLUE;

// Show vertical droplines

tr.Root.DroplLines.Vertical.nVal = 1;

tr.Root.DroplLines.VerticalColor.nVal SYSCOLOR LTGRAY;
tr.Root.DroplLines.VerticalStyle.nVal = 1;

tr.Root.Droplines.VerticalWidth.nVal = 1.5;

1f(== dp.UpdateThemeIDs (tr.Root))

bool bRet = dp.ApplyFormat (tr, true, true);

7.4.7 Setting Format on Grouped Line + Symbol Plots

Use Origin C to set the format for grouped plots. The same action can be completed by going into the Plot
Details dialog, under the Group tab. The formats included Line Color, Symbol Type, Symbol Interior, and Line
Style.

The following example shows how to set format on Line and Symbol plots. This group is assumed to contain 4

data plots.

Graphlayer gl = Project.Activelayer();

GroupPlot gplot = gl.Groups(0); // Get the first group in layer

// the Nester is an array of types of objects to do nested cycling in the group
// four types of setting to do nested cycling in the group

vector<int> vNester (3);

164

Graphs

vNester[0] = 0; // cycling line color in the group
vNester([1l] = 3; // cycling symbol type in the group
vNester[2] = 8; // cycling symbol interior in the group

gplot.Increment.Nester.nVals = vNester; // set Nester of the grouped plot

// Put format settings to vector for 4 plots
vector<int> vLineColor = {SYSCOLOR BLUE, SYSCOLOR OLIVE, SYSCOLOR RED,

SYSCOLOR_CYAN};

vector<int> vSymbolShape = {1, 3, 5, 8};

vector<int> vSymbolInterior = {1, 2, 5, 0};

Tree tr;

tr.Root.Increment.LineColor.nVals = vLineColor; // set line color to theme tree

tr.Root.Increment.Shape.nVals = vSymbolShape; // set symbol shape to theme tree
// set symbol interior to theme tree

tr.Root.Increment.SymbolInterior.nVals = vSymbolInterior;

if (0 == gplot.UpdateThemeIDs (tr.Root))

bool bb = gplot.ApplyFormat (tr, true, true); // apply theme tree

7.4.8 Setting Colormap Settings

DataPlot class has two overloaded methods to set colormap.

DataPlot::SetColormap(const vector<double> & vz, BOOL bLogScale = FALSE) is just used to set Z level and

scale type (log type or not). The values in vz argument are Z values.

DataPlot::SetColormap(TreeNode& trColormap) is used to set all colormap settings, for example, Z values,

colors, line format and text label format.

165

Origin C Programming Guide

This example shows how to set up colormap Z levels on a Contour graph.

GraphlLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(0);

// Get original colormap Z levels

vector vZs;

BOOL bLogScale = FALSE;

BOOL bRet = dp.GetColormap(vZs, bLogScale);

int nLevels = vZs.GetSize();

// Decrease Z levels vector and set back to DataPlot
double min, max;

vZs.GetMinMax (min, max);

double dChangeVal = fabs(max - min) * 0.2;

bool bIncrease = true;

if (!'bIncrease)

dChangeVal = 0 - dChangeVal;

min = min - dChangeVal;

max max - dChangeVal;

double inc = (max - min) / nLevels;

vZs.Data (min, max, inc);

dp.SetColormap (vZs) ;

The following example shows how to set up colormap Z levels with log10 scale type.

166

Graphs

bool plot matrix (LPCSTR lpsczMatPage, LPCSTR lpcszGraphTemplate = "contour"

, int nPlotID = IDM PLOT CONTOUR)

// Get the active matrix object from the specific matrix page
MatrixPage matPage = Project.MatrixPages (lpsczMatPage) ;

if(!'matPage)

out str("Invalid matrix page");

return false;

// get the active sheet in this matrix page
MatrixLayer ml = matPage.Layers(-1);
// get the active matrix object in matrixsheet

MatrixObject mobj = ml.MatrixObjects(-1);

// Create hidden graph page with template and add plot
// Create as hidden to avoid unneeded drawing
GraphPage gp;

gp.Create (lpcszGraphTemplate, CREATE HIDDEN) ;

GraphlLayer glay = gp.LlLayers();

int nPlot = glay.AddPlot (mobj, nPlotID);

if (nPlot < 0)

out_str("fail to add data plot to graph");

return false;

167

Origin C Programming Guide

glay.Rescale(); // rescale x y axes

// Construct Z levels vector
int nNewLevels = 4;
double min = 0.1, max = 100000.;

double step = (loglO(max) - 1loglO(min)) / (nNewLevels - 1);

vector vLevels;
vievels.SetSize (nNewLevels) ;
vLevels.Data (logl0 (min), loglO(max), step);

vievels = 10%vLevels;

// Setup z levels in percent, not real z values.
// First value must be 0 and last value must be < 100

vLevels = 100* (vLevels - min)/ (max - min);

Tree tr;

tr.ColorMap.Details.Levels.dVals = vLevels;
tr.ColorMap.ScaleType.nVal = 1; // 1 for logl0
tr.ColorMap.Min.dvVal = min;

tr.ColorMap.Max.dVal = max;

DataPlot dp = glay.DataPlots (nPlot);
bool bRet = dp.SetColormap (tr):;

if(!bRet)

168

Graphs

out str("fail to set colormap");

return false;

gp.Label = "Plot created using template: " + (string)lpcszGraphTemplate;

gp.TitleShow = WIN TITLE SHOW BOTH;

gp.SetShow(); // show it when all it ready

return true;

Call the above plot_matrix function with coutour template and IDM_PLOT_CONTOUR plot id to plot contour

graph and then set colormap on it.

void plot contour ex(LPCSTR lpcszMatPage)

plot matrix(lpcszMatPage, "contour", IDM PLOT CONTOUR) ;

Call the above plot_matrix function with image template and IDM_PLOT_MATRIX_IMAGE plot id to plot image

graph and then set colormap on it.

void plot image ex (LPCSTR lpcszMatPage)

plot matrix(lpcszMatPage, "image'", IDM PLOT MATRIX IMAGE);

The following example shows how to remove fill color, and set up line color, style, width and text labels on a

Contour graph.

169

Origin C Programming Guide

GraphlLayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(0);

Tree tr;

dp.GetColormap (tr) ;

// Remove fill color

tr.ColorFillControl.nVal = 0;

// Set line color

vector<int> vnLineColors;

vnLineColors = tr.Details.LineColors.nVals;
int nLevels = vnLineColors.GetSize() ;
vnLineColors.Data (1, nLevels, 1);

tr.Details.LineColors.nVals = vnLineColors;

// Set line style as Dash for all lines
vector<int> vnlLineStyles (vnLineColors.GetSize());
vnLineStyles = 1;

tr.Details.LineStyles.nVals = vnLineStyles;

// Set line width for all lines
vector vdLineWidths (vnLineColors.GetSize())
vdLineWidths = 3;

tr.Details.LineWidths.dVals = vdLineWidths;

170

Graphs

// Show/hide labels, show all except that the first two.
vector<int> vnLabels (vnLineColors.GetSize());

vnLabels = 1;

vnLabels[0] 0;
vnLabels[1l] = 0;

tr.Details.Labels.nVals = vnLabels;

// Set back settings to graph
dp.SetColormap (tr) ;

This example shows how to set the format(i.e. color, size, bold, italic) of the text labels on a Contour graph.

Graphlayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(0);

// Get all properties of the related objects of the colormap data plot
Tree tr;

tr = dp.GetFormat (FPB_ALL, FOB ALL, true, true);

// Show all labels

vector<int> vnLabels;

vnLabels = tr.Root.ColorMap.Details.Labels.nVals;
vnLabels = 1;// 0 to hide, 1 to show

tr.Root.ColorMap.Details.Labels.nVals = vnLabels;

// Set the numeric format for labels
tr.Root.NumericFormats.Format.nVal = 0; // Decimal

tr.Root.NumericFormats.DigitsControl.nVal = 0;

171

Origin C Programming Guide

tr.Root.NumericFormats.SignificantDigits.nVal = 5;//DecimalPlaces
tr.Root.NumericFormats.Prefix.strval = " ";
tr.Root.NumericFormats.Suffix.strVal = "Label";
tr.Root.NumericFormats.MinArea.nvVal = 5; // Labeling Criteria - Min Area (%)

// Set text format for labels

tr.Root.Labels.Color.nVal = SYSCOLOR BLUE;

//FontFaceIndex to DWORD is used to convert font from GUI index to DWORD real value
tr.Root.Labels.Face.nVal = FontFaceIndex to DWORD(2);// choose the 3rd font in GUI
tr.Root.Labels.Size.nVal = 20;

tr.Root.Labels.WhiteOut.nval = 1;

tr.Root.Labels.Bold.nvVal = 1;

tr.Root.Labels.Italic.nvVal = 1;

tr.Root.Labels.Underline.nVal = 1;

if (0 == dp.UpdateThemeIDs (tr.Root))

dp.ApplyFormat (tr, true, true);

7.5 Managing Layers

7.5.1 Creating a Panel Plot

7.5.1.1 Creating a 6 Panel Graph
The following example will create a new graph window with 6 layers, arranged as 2 columns and 3 rows. This

function can be run independent of what window is active.

GraphPage gp;

gp.Create ("Origin") ;

172

Graphs

while (gp.Layers.Count () < 6)

gp.AddLayer () ;

graph arrange layers(gp, 3, 2);

7.5.1.2 Creating and Plotting into a 6 Panel Graph

The following example will import some data into a new workbook, create a new graph window with 6 layers,

arranged as 2 columns and 3 rows, and loop through each layer (panel), plotting the imported data.

// Import data file to worksheet

ASCIMP ai;

Worksheet wks;

string strDataFile = GetOpenBox (FDLOG ASCII, GetAppPath (true));

if (AscImpReadFileStruct (strDataFile, &ai) == 0)

wks.Create ("Origin") ;

wks.ImportASCII (strDataFile, ai);

// Add XY data from worksheet to graph each layers
GraphPage gp("Graphl"); // the graph has the 3x2 panel layers created above
int index = 0;

foreach (GraphLayer gl in gp.Layers)

DataRange dr;

dr.Add (wks, 0, "X");

173

Origin C Programming Guide

dr.Add (wks, index+1, "Y");

if(gl.AddPlot (dr, IDM PLOT LINE) >= 0)

gl.Rescale () ;

index++;

7.5.2 Adding Layers to a Graph Window

The following example will add an independent right Y axis scale. A new layer is added, displaying only the right
Y axis. Itis linked in dimension and the X axis is linked to the current active layer at the time the layer is added.

The new added layer becomes the active layer.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <..\Originlab\graph utils.h>// Needed for page add layer function

Graphlayer gl = Project.Activelayer () ;

GraphPage gp gl.GetPage () ;

bool bBottom = false, bLeft = false, bTop = false, bRight = true;

int nLinkTo = gl.GetIndex(); // New added layer link to the active layer
bool bActivateNewlLayer = true;
int nLayerIndex = page add layer(gp, bBottom, bLeft, bTop, bRight,

ADD LAYER INIT SIZE POS_SAME AS PREVIOUS, bActivateNewLayer, nLinkTo);

7.5.3 Hiding Layers Except Active One

174

Graphs

GraphPage gp ("Graphl");

if(gp)

GraphLayer glActive = gp.Layers(-1); // -1 to get active layer

foreach (GraphLayer gl in gp.Layers)

if(gl.GetIndex () != glActive.GetIndex())

gl.Show (false);

7.5.4 Arranging the Layers

The following example will arrange the existing layers on the active graph into two rows by three columns. If the

active graph does not already have 6 layers, it will not add any new layers. It arranges only the layers that exist.

GraphlLayer gl = Project.Activelayer();

GraphPage gp = gl.GetPage();

int nRows = 3, nCols = 2;
graph arrange layers(gp, nRows, nCols);

7.5.5 Moving a Layer

The following example will left align all layers in the active graph window, setting their position to be 15% from

the left-hand side of the page.

Graphlayer gl = Project.Activelayer();

GraphPage gp = gl.GetPage();

175

Origin C Programming Guide

int nRows = gp.Layers.Count();

int nCols = 1;

stLayersGridFormat stFormat;

stFormat.nXGap = 0; // the X direction gap of layers

stFormat.nYGap 5; // the Y direction gap of layers
stFormat.nLeftMg = 15; // left margin
stFormat.nRightMg = 10;

stFormat.nTopMg = 10;

stFormat.nBottomMg = 10;

page arrange layers (gp, nRows, nCols, &stFormat);
7.5.6 Resizing a Layer
The following example will resize the current layer to reduce the width and height to half of the original size.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <..\Originlab\graph utils.h> // Needed for layer set size function

GraphLayer gl = Project.Activelayer();

// get the original size of graph layer
double dWidth, dHeight;

layer get size(gl, dwWwidth, dHeight);
// resize layer
dwidth /= 2;

dHeight /= 2;

176

Graphs

layer set size(gl, dWidth, dHeight);
7.5.7 Swap two Layers
The following example will swap the position on the page of layers indexed 1 and 2.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <..\Originlab\graph utils.h> // Needed for layer swap position function
GraphPage gp ("Graphl");
Graphlayer gll = gp.Layers(0);

Graphlayer gl2 = gp.Layers(l);

layer swap position(gll, gl2);

The following example will swap the position on the page of layers named Layer1 and Layer2.

GraphPage gp ("Graphl");

GraphLayer gll = gp.Layers ("Layerl");

GraphLayer gl2 = gp.Layers ("Layer2");

layer swap position(gll, gl2);
7.5.8 Aligning Layers
The following example will bottom align layer 2 with layer 1 in the active graph window.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <..\Originlab\graph utils.h> // Needed for layer aligns function
// Get the active graph page

GraphlLayer gl = Project.Activelayer();

177

Origin C Programming Guide

GraphPage gp = gl.GetPage();

Graphlayer gll = gp.Layers(0);

Graphlayer gl2 = gp.Layers(l);

// Bottom align layer 2 with layer 1
layer aligns(gll, gl2, POS BOTTOM) ;

7.5.9 Linking Layers

The following example will link all X axes in all layers in the active graph to the X axis of layer 1. The Units will be

set to a % of Linked Layer.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <..\Originlab\graph utils.h> // Needed for layer set link function
GraphlLayer gl = Project.Activelayer();
GraphPage gp = gl.GetPage();

GraphLayer gll = gp.Layers(0); // Layer 1

foreach (GraphLayer glOne in gp.Layers)

int nUnit = M LINK; // Set layer unit as % of linked layer

if(glOne != gll)

layer set link(glOne, gll.GetIndex(), LINK STRAIGHT, LINK NONE,
&nUnit) ;

7.5.10 Setting Layer Unit

int nUnit = M PIXEL;

178

Graphs

GraphlLayer gl = Project.Activelayer();

// Get the current position
double dPos[TOTAL POS];

gl.GetPosition (dPos) ;

// Convert position to the specified unit

gl.UnitsConvert (nUnit, dPos);

// Set position with unit

gl.SetPosition (dPos, nUnit);

7.6 Creating and Accessing Graphical Objects

7.6.1 Creating Graphical Object

Add a Graphical Object, for example: text, or a rectangle or line.

The following example shows how to add a rectangle to the active graph. For other Graph object types see
GROT_* (for example: GROT_TEXT, GROT_LINE, GROT_POLYGON) in the oc_const.h file.

GraphLayer gl = Project.Activelayer();
string strName = "MyRect";
GraphObject goRect = gl.CreateGraphObject (GROT RECT, strName);

Add a text label on the current graph window:

Graphlayer gl = Project.Activelayer () ;
GraphObject go = gl.CreateGraphObject (GROT TEXT, "MyText");
go.Text = "This is a test";

The example below shows how to add an arrow to a graph. The object type of an arrow is GROT_LINE, the

same type as a line. And for both lines and arrows, the number of data points required is 2.

179

Origin C Programming Guide

GraphPage gp;

gp.Create () ;

GraphLayer gl =

string strName =

GraphObject go =

go.Attach = 2; /

Tree tr;

tr.Root.Dimensio

gp.Layers () ;

"MyArrow"; // the name of the graph object

gl.CreateGraphObject (GROT LINE, strName);

/ change attach mode to Layer and Scale

n.Units.nval = 5; // Set unit as Scale

// Set position by scale value

vector vx = {2,

vector vy = {6,

6};

2};

tr.Root.Data.X.dVals = vx;

tr.Root.Data.Y.dVals = vy;

tr.Root.Arrow.Be

gin.Style.nvVal = 0O;

tr.Root.Arrow.End.Style.nvVal = 1;

if(0 == go.UpdateThemeIDs (tr.Root))

go.Apply

180

Format (tr, true, true);

Graphs

The example below shows how to add a curved arrow to a graph. For a curved arrow, the number of data points

required is 4.

GraphPage gp;
gp.Create();

Graphlayer gl = gp.Layers();

string strName = "MyArrow"; // the name of the graph object

GraphObject go = gl.CreateGraphObject (GROT LINE4, strName);

go.Attach = 2; // change attach mode to Layer and Scale

Tree tr;

tr.Root.Dimension.Units.nVal = 5; // Set unit as Scale

// Set position by scale value
vector vx = {2, 4, 6, 5};
vector vy = {7, 6.9, 6.8, 2};

tr.Root.Data.X.dVals

VX;

tr.Root.Data.Y.dVals = vy;

tr.Root.Arrow.Begin.Style.nvVal = 0O;

tr.Root.Arrow.End.Style.nvVal = 1;

if(0 == go.UpdateThemeIDs (tr.Root))

go.ApplyFormat (tr, true, true);

181

Origin C Programming Guide

7.6.2 Setting Properties

Set Properties for a Graphical Object, for example, text font, color, line width.

// Set color and font for graph object
GraphLayer gl = Project.Activelayer();
GraphObject goText = gl.GraphObjects ("Text");
goText.Text = "This is a test";

goText.Attach = 2; // Attach to layer scale

Tree tr;

tr.Root.Color.nVal = SYSCOLOR RED; // the color of text
tr.Root.Font.Bold.nVal = 1;

tr.Root.Font.Italic.nvVal = 1;
tr.Root.Font.Underline.nVal = 1;

tr.Root.Font.Size.nVal = 30; // font size of text

if(0 == goText.UpdateThemeIDs (tr.Root))

bool bRet = goText.ApplyFormat (tr, true, true);

7.6.3 Setting Position and Size

Graphlayer gl = Project.Activelayer();
GraphObject go = gl.GraphObjects ("Rect");

go.Attach = 2; // Attach to layer scale

182

Graphs

// Move text object to the layer left top

Tree tr;

tr.Root.Dimension.Units.nVal = UNITS SCALE;
tr.Root.Dimension.Left.dval = gl.X.From; // Left

tr.Root.Dimension.Top.dval = gl.Y.To/2; // Top

tr.Root.Dimension.Width.dval = (gl.X.To - gl.X.From)/2; // Width
tr.Root.Dimension.Height.dval = (gl.Y.To - gl.Y.From)/2; // Height
if(0 == go.UpdateThemeIDs (tr.Root))

bool bRet = go.ApplyFormat (tr, true, true);

7.6.4 Updating Attach Property

The attach property has 3 choices, Page, Layer Frame, and Layer Scale.

// Attach graph object to the different object:

// 0 for layer, when move layer, graph object will be moved together;

// 1 for page, when move layer, not effect on graph object;

// 2 for layer scale, when change the scale, the position of graph object
// will be changed according.

go.Attach = 2;

7.6.5 Getting and Setting Disable Property

// To check disable properties, for example, movable, selectable.
Tree tr;
tr = go.GetFormat (FPB_OTHER, FOB ALL, true, true);

DWORD dwStats = tr.Root.States.nval;

183

Origin C Programming Guide

// To check vertical and horizontal movement.
// More property bits, see GOC_* in oc_const.h file.

if((dwStats & GOC_NO VMOVE) && (dwStats & GOC _NO HMOVE))

out str("This graph object cannot be move");

7.6.6 Programming Control

// 1. Add a line

GraphLayer gl = Project.Activelayer () ;
GraphObject go = gl.CreateGraphObject (GROT LINE) ;
go.Attach = 2; // Set attach mode to layer scale

go.X = 5; // Set init position to X =5

// 2. Set line properties

Tree tr;

tr.Root.Direction.nvVal = 2; // 1 for Horizontal, 2 for vertical
tr.Root.Span.nval = 1; // Span to layer

tr.Root.Color.nVal = SYSCOLOR RED; // Line color

if(0 == go.UpdateThemeIDs (tr.Root))

go.ApplyFormat (tr, true, true);

// 3. Set event mode and LT script.

184

Graphs

// Move line will print out line position, x scale value.
Tree trEvent;
trEvent.Root.Event.nVal = GRCT MOVE;// More other bits, see GRCT_* in oc_const.h

trEvent.Root.Script.strvVal = "type -a $(this.X)";

if(0 == go.UpdateThemelIDs (trEvent.Root))

go.ApplyFormat (trEvent, true, true);

7.6.7 Updating Legend

A legend is a graphical object named "Legend" on a graph window. After adding/removing data plots, we can use

the legend update function to refresh the legend according to the current data plots.

// Simple usage here, just used to refresh legend.
// Search this function in OriginC help to see the description of other arguments
// for more usages.

legend update(gl); // gl is a GraphLayer object

7.6.8 Adding Table Object on Graph

// 1. Create the worksheet with Table template
Worksheet wks;
wks.Create ("Table", CREATE HIDDEN) ;

WorksheetPage wksPage = wks.GetPage();

// 2. Set table size and fill in text

wks.SetSize (3, 2);

185

https://www.originlab.com/doc/OriginC/ref/legend_update

Origin C Programming Guide

wks.

wks.

wks.

wks.

wks.

wks.

//3.

SetCell (0, O,

SetCell (0, 1,

SetCell (1, O,

SetCell (1, 1,

SetCell (2, O,

SetCell (2, 1,

Add table as

"1"),’

"Layer 1");

n2n);

"Layer 2");

11311);

"Layer 3");

link to graph

GraphlLayer gl = Project.Activelayer();

GraphObject grTable = gl.CreatelLinkTable (wksPage.GetName (),

186

wks) ;

8 Working with Data

8.1 Working with Data

This section covers the following topics:
Numeric Data

String Data

Date and Time Data

8.2 Numeric Data

This section gives examples of working with numeric data in Origin C. Numeric data can be stored in variables of

the following data types:
double

integer

vector

matrix

Numeric data and strings can be stored in the nodes of a tree, provided the nodes have one of the data types

above.
Note:Values such as 0.0, NANUM (missing value) and values between -1.0E-290 to 1.0E-290 will be evaluated

to be False in logic statement.

8.2.1 Missing Values

As important as numeric data is, it is also important to be able to represent missing data. Origin C defines the
NANUM macro for comparing and assigning values to missing data. Missing values are only supported with the

double data type.

double d = NANUM;
if (NANUM ==)

out str("The value is a missing value.");

187

https://www.originlab.com/doc/OriginC/guide/Numeric-Data
https://www.originlab.com/doc/OriginC/guide/String-Data
https://www.originlab.com/doc/OriginC/guide/Date-and-Time-Data

Origin C Programming Guide

Origin C also provides the is_missing value function for testing if a value is a missing value.

if(is missing value(d))

out str("The value is a missing value.");

8.2.2 Precision and Comparison

In the following example code, the prec and round functions are used to control the precision of double type

numeric data. The is_equal function is used to compare two pieces of double type numeric data.

double dval = PI; // PI defined as 3.1415926535897932384626

// convert the double value to have 6 significant digits
int nSignificantDigits = 6;

printf ("$f\n", prec(dval, nSignificantDigits));

// force the double value to only have two decimal digits
uint nDecimalPlaces = 2;

double dd = round(dvVal, nDecimalPlaces);

printf ("$f\n", dd):

// compare two double values

if(is_equal(dd, 3.14))

out_str("equal\n");

else

out str("not equalln");

188

https://www.originlab.com/doc/OriginC/ref/is_missing_value

Working with Data

8.2.3 Convert Numeric to String

// assign int type numeric to string
string str = 10;

out str(str);

int nn = 0;
str = nn;

out str(str);

// convert double type numeric to string
double dd = PI;
str = ftoa(dd, "*"); // Use "*" for Origin's global setting in Options dialog

out str(str);

str = ftoa(dd, "*8"); // Use "*8" for 8 significant

out str(str);

8.2.4 Vector

// One-Dimensional array with basic data type, for example, double, int, string,
// complex.

vector vx, Vvy;

int nMax = 10;
vx.Data (1, nMax, 1); // assign value to vx from 1 to 10 with increment 1

vy.SetSize(nMax); // set size(10) to vy

189

Origin C Programming Guide

for(int nn = 0; nn < nMax; nn++)

{
vy[nn] = rnd(); // assign random data to each item in vy
printf("index = %d, x = %g, y = %g\n", nn+l, vx[nn], vy[nn]);

// Access the data in a worksheet window

Worksheet wks = Project.Activelayer();

Column col (wks, 0);

vector& vec = col.GetDataObject () ;

vec = vec * 0.1; // Multiply 0.1 by each piece of data in vec

vec = sin(vec); // Find the sine of each piece of data in vec

8.2.5 Matrix

// Two-Dimensional array with basic data type, for example, double, int, complex,

// but not string.

matrix mat (5, 6);

for(int ii = 0; ii < 5; 1ii++)

for(int jj = 0; jj < 6; Jjj++)

mat[1ii][JJ] = 1ii + J3;

printf ("%g\t", mat[ii]1[j3]1);

190

Working with Data

printf("\n"); // new line

// Access the data in matrix window
MatrixLayer ml = Project.Activelayer();

MatrixObject mo = ml.MatrixObjects (0);

matrix& mat = mo.GetDataObject () ;

mat = mat + 0.1; // Add 0.1 for the each data in matrix

8.2.6 TreeNode

The Origin C TreeNode class provides several methods for constructing multi-level trees, traversing trees and

accessing the value/attributes of tree nodes.

Tree tr;

// Access the value of a tree node
TreeNode trName = tr.AddNode ("Name'") ;

trName.strVal = "Jane";

tr.UserID.nVal = 10;

vector<string> vsBooks = {"C++", "MFC"};

tr.Books.strVals = vsBooks;

out tree(tr); // output tree

8.2.7 Complex

191

Origin C Programming Guide

complex cc(l.5, 2.2);

cc.m re = cc.m re +1;
cc.m_im = cc.m _im * 0.1;
out complex("cc = ", cc); // output cc = 2.500000+0.2200001

// Access complex dataset

Worksheet wks = Project.Activelayer();

Column col (wks, 1);

if (FSI_COMPLEX == col.GetInternalDataType())

{
vector<complex>& vcc = col.GetDataObject () ;
vcc[0] = 0.5 + 3.6i;

// Access complex matrix
MatrixLayer ml = Project.Activelayer();

MatrixObject mo = ml.MatrixObjects () ;

if (FSI_COMPLEX == mo.GetInternalDataType())

matrix<complex>& mat = mo.GetDataObject () ;

mat[0][0] =1 + 2.51i;

8.2.8 DataRange

192

Working with Data

The DataRange class is a versatile mechanism to get and put data in a Worksheet, Matrix or Graph window.

8.2.8.1 Data Range in Worksheet
For a Worksheet, a data range can be specified by column/row index as one column, one row, any sub block

range, one cell or entire Worksheet.

// Construct a data range on the active worksheet, all columns and rows
// from 1lst row to 5th row.
Worksheet wks = Project.Activelayer();

int r1 =0, ¢l =0, r2 =4, c2 = -1;

DataRange dr;

// range name should be make sense, for example, "X", "Y",

// "ED" (Y error), "Z". If the data range is not belong to dependent
// or independent type, default can be "X".

dr.Add ("X", wks, rl, cl, r2, c2);

Get data from data range to vector. DataRange::GetData supports multiple overloaded methods. For example:

vector vData;
int index = 0; // range index

dr.GetData (&vData, index);

8.2.8.2 Data Range in Matrixsheet

For a Matrix window, the data range can be a matrix object index.

MatrixLayer ml = Project.Activelayer();

DataRange dr;

int nMatrixObjectIndex = 0;

193

https://www.originlab.com/doc/OriginC/ref/DataRange-GetData

Origin C Programming Guide

dr.Add (ml, nMatrixObjectIndex, "X");

Get data from data range to matrix.

matrix mat;

dr.GetData (mat) ;

8.2.8.3 Data Range in Graph

For a Graph window, the data range can be one data plot, or a sub range of one data plot.

Graphlayer gl = Project.Activelayer();

DataPlot dp = gl.DataPlots(); // Get active data plot

DataRange dr;

int il 0; // from the first data point
int i2 = -1; // to the last data point

dp.GetDataRange (dr, i1, i2);

Get XY data from data plot to vector by data range object.

vector vx, Vvy;
DWORD dwRules = DRR GET DEPENDENT;

dr.GetData (dwRules, 0, NULL, NULL, &vy, &vx);

8.2.8.4 Data Range Control

OriginC supports a GetN dialog interactive control to choose a data range.

#include <GetNBox.h>
// Open a dialog to choose a range from one graph data plot.

// And construct a data range object by this selection.

194

Working with Data

GETN_TREE (tr)
GETN_ INTERACTIVE (Rangel, "Select Range", "")

if (GetNBox (tr)) // returns true if click OK button

DataRange dr;

dr.Add ("Rangel", tr.Rangel.strVal):;

vector vData;

int index = 0; // range index

dr.GetData (&vData, index); // The data in vData is the selected data points

8.3 String Data

8.3.1 String Variables

string strl; // Declare a string variable named strl

strl = "New York"; // Assigns to strl a character sequence

string str2 = "Tokyo"; // Declare a string variable and assignment

// Declare a character array and initialize with a character sequence

char ch[] = "This is a test!";

// Declare a character array, set size and initialize with a character sequence

char chArr[255] = "Big World.";

195

Origin C Programming Guide

8.3.2 Convert String to Numeric

string str = PI; // Assigns a numeric value to string variable

// Convert string to numeric

double dd = atof (str, true);

out_double ("dd=", dd); // dd=3.14159

// Convert string to complex

str = "1+2.51";
complex cc = atoc(str);
out complex("cc =", cc); // cc = 1.000000+2.5000001

// Convert string to int

str = "100";
int nn = atoi(str);
out_int("nn = ", nn); // nn = 100

8.3.3 Append Numeric/String to another String

// Append numeric or string to another string
// In Origin C, support use '+' to add a numeric/string type const or variable

string str = "The area is " + 30.7; // Append a double type const to string

str += "\n"; // Append a string const to string variable

int nLength = 10;

196

Working with Data

str += "The length is " + nLength; // Append a int type variable to string

out str(str);

8.3.4 Find Sub String

// Find and get sub string

string str = "[Bookl]Sheetl!A:C";

int begin = str.Find(']'); // Find and return the index of ']'
begin++; // Move to the next character of]

int end = str.Find('!', begin); // Find and return the index of '!'

end--; // Move the previous character of !

// Get the sub string with the begin index and substring length
int nLength = end - begin + 1;
string strSheetName = str.Mid(begin, nLength);

out str(strSheetName);// Should output "Sheetl"

8.3.5 Replace Sub String

// Find and replace one character

string str ("A+B+C+");

int nCount = str.Replace('+','-");
out_int ("", nCount); // nCount will be 3

out str(str); // "A-B-C-"

197

Origin C Programming Guide

// Find and replace a character string

str = "I am a student.\nI am a girl.";
nCount = str.Replace ("I am", "You are");
out_int("", nCount); // nCount will be 2

out str(str);

8.3.6 Path String Functions

8.3.6.1 File Path String

// string::IsFile is used to check the file if exist
string strFile = "D:\\TestFolder\\abc.txt";
bool bb = strFile.IsFile();

printf ("The file %s is %sexist.\n", strFile, bb ? "" : "NOT ");

// GetFilePath function is used to extract the path from a full path string
string strPath = GetFilePath (strFile);

out str(strPath);

// GetFileName function is used to extracts the file name part
// from a string of full path

bool bRemoveExtension = true;

string strFileName = GetFileName (strFile, bRemoveExtension);

out str(strFileName) ;

// string::IsPath to check if the path is exist
bb = strPath.IsPath();

out int("", bb);

198

Working with Data

8.3.6.2 Origin System Path

string strSysPath = GetOriginPath (ORIGIN PATH SYSTEM) ;

printf ("Origin System Path: %$s\n", strSysPath);

string strUserPath = GetOriginPath (ORIGIN PATH USER) ;

printf ("User File Path: %s\n", strUserPath);

8.4 Date and Time Data

Origin C provides support for date and time data.

8.4.1 Get Current Date Time

// Get current time
time t aclock;

time (&aclock);

// Converts a time value and corrects for the local time zone
TM tmLocal;

convert time to local (&aclock , &tmLocal);

// Convert time value from TM format to system time format
SYSTEMTIME sysTime;

tm to systemtime (&tmLocal, &sysTime);

// Get date string from system time

char lpcstrTime [100] ;

if (systemtime to date str(&sysTime, lpcstrTime, LDF SHORT AND HHMM SEPARCOLON))

199

Origin C Programming Guide

printf ("Current Date Time is %s\n", lpcstrTime);

8.4.2 Convert Julian Date to String

SYSTEMTIME st;

GetSystemTime (&st); // Gets current date time

double dJulianDate;

SystemTimeToJulianDate (&dJulianDate, &st); // Convert to Julian date

// Convert Julian date to string with the specified format
string strDate = get date str(djulianDate, LDF SHORT AND HHMM SEPARCOLON) ;

out str(strDate);

8.4.3 Convert String to Julian Date

string strDate = "090425 17:59:59";

double dt = str to date(strDate, LDF YYMMDD AND HHMMSS) ;

200

9 Projects

9.1 Projects

The Origin C Project class is used for accessing the various high level objects contained in an Origin project.

This includes workbooks, matrixbooks, graphs, notes, folders, and more.

This section covers the following topics:

Managing Projects

Managing Folders

Accessing Pages

Accessing Metadata

Accessing Operations

9.2 Managing Projects

Origin C provides the Project class for opening, saving, and appending projects and for accessing the various
objects contained in a project. The Project class contains collections for all the page types and loose data sets.

There are methods to get the active objects such as the active curve, layer, and folder.

9.2.1 Open and Save a Project

The code below demonstrates saving a project, starting a new project, and opening a saved project.

string strPath = "c:\\abc.opj"; // Project path and name

Project.Save (strPath); // Save current project
Project.Open () ; // Start a new project
Project.Open(strPath); // Open saved project

9.2.2 Append One Project to Another

You can append a project to the current project by using the optional second argument of the Project::Open

method. The appended project's folder structure will be put into the current project's active folder.

201

https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/guide/Managing-Projects
https://www.originlab.com/doc/OriginC/guide/Managing-Folders
https://www.originlab.com/doc/OriginC/guide/Accessing-Pages
https://www.originlab.com/doc/OriginC/guide/Accessing-Metadata
https://www.originlab.com/doc/OriginC/guide/Accessing-Operations
https://www.originlab.com/doc/OriginC/ref/Project-Open

Origin C Programming Guide

Project.Open("c:\\abc.opj", OPJ OPEN APPEND) ;

9.2.3 The Modified Flag

When a project is modified, the IsModified flag is set internally by Origin. Origin C allows setting and clearing the
IsModified flag. When a project is being closed, this flag is checked. If the flag is set then Origin will ask the user
if they want to save their changes. If your Origin C code made changes that you know should not be saved, then

you may want to clear the flag to prevent Origin from prompting the user.

if(Project.IsModified())

// Set the active project as not modified. We do this when we know
// we do not want to save the changes and want to prevent Origin
// from prompting the user about unsaved changes.

Project.ClearModified() ;

// Start a new project, knowing the user will not be prompted about
// unsaved changes in the active project.

Project.Open () ;

9.3 Managing Folders

Pages in an Origin project (workbooks, matrixbooks, and graphs) can be organized in a hierarchical folder
structure, visible in Origin's Project Explorer. The Origin C Folder class allows you to create, activate, select, and

arrange folders.

9.3.1 Create a Folder and Get Its Path

Folder fldRoot, fldSub;

fldRoot = Project.RootFolder;

202

http://www.originlab.com/index.aspx?s=8&lm=150&pid=549

Projects

// Add a sub folder in root folder with name
fldSub = fldRoot.AddSubfolder ("MyFolder") ;

printf ("Folder added successfully, path is %s\n", fldSub.GetPath());

9.3.2 Get the Active Folder

Folder fldActive;

fldActive = Project.ActiveFolder();

// Add a sub folder to it
Folder f1ldSub;
fldSub = fldActive.AddSubfolder ("MyFolder") ;

printf ("Folder added successfully, path is %s\n", fldSub.GetPath());

9.3.3 Activate a Folder

// activate root folder
Folder fldRoot = Project.RootFolder;

fldRoot.Activate () ;

// activate the specified sub folder
Folder fldSub ("/MyFolder");

fldSub.Activate ()

9.3.4 Get Path for a Specific Page

GraphPage gp ("Graphl");

if(gp.IsValid())

203

Origin C Programming Guide

Folder fld = gp.GetFolder();

out str(fld.GetPath());

9.3.5 Move a Page/Folder to Another Location

Folder::Move is used to move a window (Worksheet, Graph...) or folder to another location. The following

example shows how to move a folder.

// Add two sub folders to root folder

Folder subfldl

Project.RootFolder.AddSubfolder ("subl") ;

Folder subfld2 = Project.RootFolder.AddSubfolder ("sub2");

// Move the sub2 folder under the subl folder
if(!Project.RootFolder.Move (subfld2.GetName (), "/"+subfldl.GetName()+"/", true))

printf ("move folder failed!");

9.4 Accessing Pages

Pages in Origin consist of workbooks, matrixbooks and graphs, and are the core objects in a project. Origin C
allows you to access a page by name or by index, or access all instances of a particular page type in the current

project using the foreach statement.

9.4.1 Access a Page by Name and Index

All pages have names, which can be used to access them, as in the following example:

// RAccess a page by its name

GraphPage gpl ("Graphl");

// Access a page by its zero based index

GraphPage gp2 = Project.GraphPages(0); // 0 for first page

204

https://www.originlab.com/doc/OriginC/ref/Folder-Move

Projects

9.4.2 Get the Active Page and Layer

In a workbook page, a layer is a worksheet; in a graph page, a layer is a pair of axes; in a matrix page, a layer is

a matrixsheet.

If you want to access the page associated with a particular layer, such as the active layer, it can be done with the

Layer::GetPage method:

// get active layer

Graphlayer gl = Project.Activelayer();

// get active page from layer
GraphPage gp = gl.GetPage();

9.4.3 Activate One Page

If want to activate a window, you can use PageBase::SetShow(PAGE_ACTIVATE) to cause the window to be

activated.

// attach to a graph window named Graph?2

GraphPage gp("Graph2");

// set the window to be active
gp.SetShow (PAGE ACTIVATE);

9.4.4 Using foreach

The foreach statement simplifies the process of looping through all the items in a collection. The project contains

all the pages in various collections.

// Loop through all workbook pages in the current project
// and output the name of each page.

foreach(WorksheetPage wksPage in Project.WorksheetPages)

205

https://www.originlab.com/doc/OriginC/ref/Layer-GetPage

Origin C Programming Guide

out str (wksPage.GetName ()) ;

// Loop through all matrixbook pages in the current project
// and output the name of each page.

foreach(MatrixPage matPage in Project.MatrixPages)

out str (matPage.GetName ()) ;

// Loop through all graph pages in the current project
// and output the name of each page.

foreach(GraphPage gp in Project.GraphPages)

out str(gp.GetName ());

// Loop through all pages in the current project
// and output the name of each page.

foreach(PageBase pg in Project.Pages)

out str(pg.GetName ()) ;

9.5 Accessing Metadata

Metadata is information which refers to other data. Examples include the time at which data was originally
collected, the operator of the instrument collecting the data and the temperature of a sample being investigated.

Metadata can be stored in Projects, Pages, Layers and Columns.

206

Projects

9.5.1 Access DataRange

The Origin C Project class provides methods to add, get, and remove an Origin C DataRange object to and from

the current project.

Worksheet wks = Project.Activelayer();

DataRange dr; // Construct the range object
dr.Add ("X", wks, 0, 0, -1, -1); // Add whole worksheet to range
dr.SetName ("Rangel") ; // Set range name

int UID = dr.GetUID (TRUE) ; // Get Unique ID for the range object

int nn = Project.AddDataRange (dr); // Add range to project
In the Command Window or Script Window you can use the LabTalk command list r to list all the DataRange

objects in the current project.

9.5.2 Access Tree

9.5.2.1 Access a Tree in a Project

9.5.2.1.1 Add Tree

This code declares a variable of type tree, assigns some data to nodes of the tree, and adds the tree to the

current project.

Tree tr;
tr.FileInfo.name.strVal = "Test.XML";

tr.FileInfo.size.nVal = 255;

// add tree variable to project

int nNumTrees = Project.AddTree ("Test", tr);

out_int ("The number of trees in project: ", nNumTrees);

207

Origin C Programming Guide

9.5.2.1.2Get Tree

Likewise, a similar code extracts data stored in an existing tree variable named Test and puts it into a new tree

variable named frTest:

// get tree from project by name
Tree trTest;
if(Project.GetTree ("Test", trTest))

out tree(trTest);

9.5.2.1.3 Get the Names of All LabTalk Trees

The Project::GetTreeNames method gets the names of all LabTalk tree variables in the project. Here, the

names are assigned to a string vector; the number of strings assigned is returned as an integer.

vector<string> vsTreeNames;

int nNumTrees = Project.GetTreeNames (vsTreeNames) ;

9.5.2.2 Access Tree in a Worksheet

OriginObject::PutBinaryStorage is used to put a tree into many types of Origin object, for example, a

WorksheetPage, Worksheet, Column, GraphPage, or MatrixPage.

9.5.2.2.1Add Tree

Keep an active worksheet window in the current project, to run the example code below. After running the code
to add a user tree, right click on the title of the worksheet window, choose Show Organizer, and you will see the

added user tree show up in the panel on the right.

Worksheet wks = Project.Activelayer();
if(wks)
{

Tree tr;

tr.name.strVal = "Jacky";

208

https://www.originlab.com/doc/OriginC/ref/Project-GetTreeNames
https://www.originlab.com/doc/OriginC/ref/OriginObject-PutBinaryStorage

Projects

tr.id.nvVal = 7856;

// put tree with name wksTree to worksheet object

string strStorageName = "wksTree'";

wks.PutBinaryStorage (strStorageName, tr);

9.5.2.2.2Get Tree

The OriginObject::GetBinaryStorage method is used to get a tree from an Origin object by name.

Worksheet wks = Project.Activelayer();
if (wks)
{
Tree tr;
string strStorageName = "wksTree";

// if the tree named wksTree is existed, return true.
if (wks.GetBinaryStorage (strStorageName, tr))

out tree(tr); // output tree

9.5.2.2.3 Get the Names of All Trees

The OriginObject::GetStorageNames method gets the names of everything in storage in an Origin object.

There are two storage types: INI and binary. Trees belong to binary storage, and the following example code

shows how to get binary storage from a Worksheet.

Worksheet wks = Project.Activelayer();

if(wks)

209

https://www.originlab.com/doc/OriginC/ref/OriginObject-GetBinaryStorage
https://www.originlab.com/doc/OriginC/ref/OriginObject-GetStorageNames

Origin C Programming Guide

// get the names of all binary type storage
vector<string> vsNames;

wks.GetStorageNames (vsNames, STORAGE TYPE BINARY) ;

for(int nn = 0; nn < vsNames.GetSize(); nn++)

out str(vsNames[nn]) ;

9.5.2.3 Access Tree in a Worksheet Column
For setting and getting a tree in a Worksheet Column, use the same methods for setting and getting a tree in a

Worksheet, as described above.

9.5.2.3.1Add Tree

Worksheet wks = Project.Activelayer();

Column col (wks, 0);

Tree tr;

tr.test.strVal = "This is a column'";

tr.value.dval = 0.15;

col.PutBinaryStorage ("colTree", tr);

9.5.2.3.2Get Tree

Worksheet wks = Project.Activelayer();

Column col (wks, 0);

210

Projects

Tree tr;
if(col.GetBinaryStorage ("colTree", tr))
out tree(tr);

9.5.2.3.3 Get the Names of All Trees

Worksheet wks = Project.Activelayer();

Column col (wks, 0);

// get the names of all binary type storage
vector<string> vsNames;

col.GetStorageNames (vsNames, STORAGE TYPE BINARY) ;

for(int nn = 0; nn < vsNames.GetSize(); nn++)

out str(vsNames[nn]);

9.5.2.4 Access Import File Tree Nodes
After importing data into a worksheet, Origin stores metadata in a special tree-like structure at the page level.

Basic information about the file can be retrieved and put into a tree.

Worksheet wks = Project.Activelayer();

WorksheetPage wksPage = wks.GetPage();

storage st;

st = wksPage.GetStorage ("system") ;

Tree tr;

211

Origin C Programming Guide

tr = st;

double dDate = tr.Import.FileDate.dVal;
printf ("File Date: %s\n", get date str(dDate, LDF_SHORT AND HHMMSS SEPARCOLON)) ;

printf ("File Name: %s\n", tr.Import.FileName.strVal);

printf ("File Path: %$s\n", tr.Import.FilePath.strVal);

9.5.2.5 Access Report Sheet Tree

Analysis Report sheets are specially formatted Worksheets based on a tree structure. You can get the report tree

from a report sheet as below.

Worksheet wks = Project.Activelayer();

Tree trReport;

uint uid; // to receive the UID of the report range

// true to translate the escaped operation strings(ex. ?$0P:A=1)
// to real dataset name in the returned tree

bool bTranslate = true;

if (wks.GetReportTree (trReport, &uid, 0, GRT_TYPE RESULTS, true))

out tree (trReport);

9.6 Accessing Operations

9.6.1 List All Operations

Many recalculating analysis tools, such as the Statistics on Columns dialog, the Nonlinear Curve Fitting dialog,
etc., are based on the Operation class. After finishing the whole operation, there will be a lock on the result sheet

or result graph. We can list all operations via Project::Operations. The following code is used to get all

operations objects and print out the operation names.

212

https://www.originlab.com/doc/OriginC/ref/Project-Operations

Projects

OperationManager opManager;

opManager = Project.Operations;

int count = opManager.GetCount () ;

for (int index=0; index < count; index++)

OperationBase& op = opManager.GetOperation (index) ;
string strName = op.GetName () ;

out str(strName);

9.6.2 Check Worksheet if Hierarchy

If you want to check whether a worksheet is a result table sheet, you can check with layer system parameters, as

in the following code.

Worksheet wks = Project.Activelayer();

bool bHierarchySheet = (wks.GetSystemParam (GLI PCD BITS) & WP_SHEET HIERARCHY) ;
if (bHierarchySheet)

out str("This is a report table sheet");
else

out str("This is not a report table sheet");

9.6.3 Accessing Report Sheet

The following code shows how to get a report tree from a report sheet, convert the result gotten from the report

tree into a cell linking format string, and put it into a new worksheet.

This is how to get a report tree from a report sheet. To run this code you need keep a report sheet active.

213

Origin C Programming Guide

Worksheet wks = Project.Activelayer();

Tree trResult;
wks.GetReportTree (trResult) ;

The following code shows how to get the needed results from the report tree, convert them to a cell linking format

string, and put it into a newly created worksheet.

// Add a new sheet for summary table
WorksheetPage wksPage = wks.GetPage();
int index = wksPage.AddLayer () ;

Worksheet wksSummary = wksPage.Layers (index) ;

string strCellPrefix;

strCellPrefix.Format ("cell://%s!", wks.GetName()) ;

vector<string> vsLabels, vsValues;

// Parameters

vsLabels.Add (strCellPrefix + "Parameters.Intercept.row label2");
vsValues.Add (strCellPrefix + "Parameters.Intercept.Value");
vsLabels.Add (strCellPrefix + "Parameters.Slope.row label2");

vsValues.Add (strCellPrefix + "Parameters.Slope.Value");

// Statistics

vsLabels.Add(strCellPrefix + "RegStats.DOF.row label");
vsValues.Add (strCellPrefix + "RegStats.C1l.DOF");
vsLabels.Add(strCellPrefix + "RegStats.SSR.row label");

vsValues.Add (strCellPrefix + "RegStats.Cl.SSR");

214

Projects

// put to columns

Column colLabel (wksSummary, 0);
Column colValue (wksSummary, 1);
collabel.PutStringArray (vsLabels) ;

colValue.PutStringArray (vsValues) ;

215

10 Importing

10.1 Importing

One of the huge benefits of Origin is the ability to import data of different formats into a worksheet or a matrix
sheet. Origin C provides this ability to import ASCIl and binary data files, image files, video files, and data from a

database. The following sections will show you how to import data into a worksheet or matrix sheet.

This section covers the following topics:
Importing Data
Importing Images

Importing Videos

10.2 Importing Data

The Worksheet and MatrixLayer classes are derived from the Datasheet class. The Datasheet class has a
method named ImportASCII. The ImportASCII method is used for importing ASCII data files. There are also

ImportExcel and ImportSPC methods for importing Microsoft Excel and spectroscopic data files, respectively.

10.2.1 Import ASCII Data File into Worksheet

The first example will import an ASCII data file into the active worksheet of the active workbook. It will first call
the AsclmpReadFileStruct global function to detect the file's format. The format information is stored in an

ASCIMP structure. The structure will then be passed to the ImportASCIlI method to do the actual importing.

string strFile = "D:\\data.dat"; // some data file name
ASCIMP ai;

if (0 == AscImpReadFileStruct (strFile, &ai))

// In this example we will disable the ASCII import progress

// bar by setting the LabTalk System Variable @QNPO to zero.

217

https://www.originlab.com/doc/OriginC/guide/Importing-Data
https://www.originlab.com/doc/OriginC/guide/Importing-Images
https://www.originlab.com/doc/OriginC/guide/Importing-Videos

Origin C Programming Guide

// This is optional and is done here to show it is possible.
// The LTVarTempChange class makes setting and restoring a
// LabTalk variable easy. See the Accessing LabTalk section
// for more details about the LIVarTempChange class.

LTVarTempChange progressBar ("@NPO", 0); // 0 = disable progress bar

// Get active worksheet from active work book.

Worksheet wks = Project.Activelayer();

if (0 == wks.ImportASCII(strFile, ai))

out str("Import data successful.");

The next example will also import an ASCII data file into a worksheet but it will also obtain additional information

about each column from the file, and set up the worksheet columns.

// Prompt user with a File Open dialog to choose a file to import.
string strFile = GetOpenBox ("*.dat");
if(strFile.IsEmpty ())

return; // User canceled or error

ASCIMP ai;

if(0 == AscImpReadFileStruct (strFile, &ai))

ai.iAutoSubHeaderLines = 0; // Disable auto detect sub header

// 1, LongName

// 2. Units

218

Importing

// 3. Expanded Description (User defined)
// 4. Type Indication (User defined)

ail.iSubHeaderlLines = 4;

// When iAutoSubHeaderLines is false(0), the beginning index of ai.nLongName,
// ai.nUnits and ai.nFirstUserParams are from main header
ai.nLongNames = ai.iHeaderLines;

ai.nUnits = ai.iHeaderLines + 1;

// Set the index for the first user params
al.nFirstUserParams = ai.iHeaderLines + 2;

ai.nNumUserParams = 2; // Set the number of user params

// Not set any header to Comments label

ai.iMaxLabels = 0;

// Get active worksheet from active work book.

Worksheet wks = Project.Activelayer();

if(0 == wks.ImportASCII(strFile, ai)) // Return 0 for no error

// The names of the user parameter labels

vector<string> vsUserlabels = {"Expanded Description", "Type Indication"};

// Set user parameter labels to specified names
Grid grid;

grid.Attach (wks) ;

219

Origin C Programming Guide

grid.SetUserDefinedLabelNames (vsUserLabels) ;

wks.AutoSize(); // Resize column widths to best fit their contents.

10.2.2 Import ASCII Data File into Matrixsheet

Importing data into a matrixsheet is very similar to importing into a worksheet. This example is almost identical
to the first worksheet example. The only difference is we get the active matrixsheet from the active matrixbook

using the MatrixLayer class instead of the Worksheet class.

string strFile = "D:\\someData.dat";
ASCIMP ai;

if(0 == AscImpReadFileStruct (strFile, &ai))

MatrixLayer ml = Project.Activelayer();
if(0 == ml.ImportASCII(strFile, ai))

out str("Data imported successfully.");

10.2.3 Import Data Using an Import Filter

Functions for importing files are declared in the OriginC\Originlab\Filelmport.h file. These functions are also

documented in the Origin C Language Reference help file.

Prior to calling the import file functions, you need to first programmatically load and compile Filelmport.c. This

can be done from script using the command:

run.LoadOC (Originlab\FileImport.c, 16);
// Option 16 ensures that all dependent Origin C files are loaded,
// by scanning for the corresponding .h in FileImport.c

The following example shows importing data with a filter file.

220

Importing

#include <..\Originlab\FileImport.h>

void import with filter file()

Page pg = Project.Pages(); // Active Page

// Get page book name

string strPageName = pg.GetName () ;

// Get page active layer index

int nIndexLayer = pg.Layers () .GetIndex() ;

// Get Origin sample folder

string strPath = GetAppPath (TRUE) + "Samples\\Signal Processing\\";

// specify .oif filter name

string strFilterName = "TR Data Files";

import file(strPageName, nIndexLayer, strPath + "TR2MM.dat", strFilterName);

Sometimes the existing filter might need to be modified to meet the requirements of the data format, so you need

to load the filter from the file and configure it. See the following case:

#include <..\Originlab\FileImport.h>

void config filter tree()

string strFile = GetAppPath(l) + "Samples\\Curve Fitting\\StepOl.dat";

221

Origin C Programming Guide

if(!strFile.IsFile())

return;

// load filter to tree

Tree trFilter;

string strFilterName = "ASCII";

int nLocation = 1; // build-in Filters folder

Worksheet wks;

wks.Create ("origin") ;

WorksheetPage wp = wks.GetPage();

string strPageName = wp.GetName () ;

int nRet = load import filter(strFilterName, strFile,
strPageName, nLocation, trFilter);

if(0 !'= nRet)

out str("Failed to load import filter");

// update filter tree

trFilter.iRenameCols.nval = 0; // 0 to keep default column name, 1 to rename
column

// import data file with filter tree.

// import files function supports import multiple files one time.
vector<string> vsDataFileName;

vsDataFileName.Add (strFile) ;

nRet = import files(vsDataFileName, strPageName, wks.GetIndex(), trFilter);
if(0 !'= nRet)

out str("Failed to import file");

222

Importing

10.2.4 Import Files with Import Wizard

There are times when the data files are neither ASCII nor simple binary files or there is no existing filter for
importing a data file, in these cases you can use Origin C and impFile X-Functions to import the files with the

Import Wizard.

The Origin C function should have either of the following prototypes:

int YourFunctionName(Page& pgTarget, TreeNode& trFilter, LPCSTR IpcszFile, int nFile)
where:

pgTarget: A reference to a Page object of type worksheet or Matrix. This would be what you defined in your filter

or on the Source page of the Import Wizard, as the target window.

trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or from your wizard

specifications, in a tree structure.
IpcszFile: The full path and name of the file that is being imported.

nFile: The file index number in an ordered sequence of imported files (e.g. If you import n files, your function

gets called n times, and nFile is the file count for the file being processed).

Or

int YourFunctionName(Layer& lyTarget, TreeNode& trFilter, LPCSTR IpcszFile, int nFile)
where:

lyTarget: A reference to a Layer object of type worksheet or Matrix. This would be what you defined in your filter

or on the Source page of the Import Wizard, as the target window.

trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or from your wizard

specifications, in a tree structure.
IpcszFile: The full path and name of the file that is being imported.

nFile: The file index number in an ordered sequence of imported files (e.g. If you import n files, your function

gets called n times, and nFile is the file count for the file being processed).

See an example in the \Samples\Import and Export\User Defined folder, found in the Origin installation folder.

Note: The target window template named on the first page of the Import Wizard (Source page) is only
used when creating new windows (as would happen under some conditions during drag-and-drop

importing). When choosing File: Import, if your active window is consistent with your import filter's Target

223

Origin C Programming Guide

Window specification, no new window is created and a reference to the page object for the active window
is passed to your function. If the active window is of a different type, a new window is created using the

specified template, and the page reference to this new window is passed.

10.2.4.1 Variable Extraction in Import Wizard
When importing ASCII files with the Import Wizard, you can extract variables from the file headers using user-

defined Origin C functions.
Your custom Origin C function should have the following prototype:

int FuncName(StringArray& saVarNames, StringArray& saVarValues, const StringArray& saHdrLines, const
TreeNode &trFilter);

where:
saVarNames: An string array where the user should put the variable names.
saVarValues: An string array where the user should put the variable values.

saHdrLines: A reference to an string array that contains the header lines. Note that the Origin C function does

not need to read the data file because the header lines are automatically passed into the function.

trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or from your wizard

specifications, in a tree structure.

10.3 Importing Images

Origin allows you to import images into a matrix or a worksheet cell, and onto a graph. The following sections will

show you how to import images in your Origin C applications.

10.3.1 Import Image into Matrix

The following example function demonstrates how to import an image file into a matrix. The function takes three
arguments: matrix name, file name, and grayscale depth. The key functions being called in this example are
oimg_image_info and oimg_load_image. The first is used to get information about the image contained in the
image file. The information obtained is used in preparing the target matrix. The latter function is used to do the

actual importing of the image file into the target matrix as grayscale data values.

#include <import image.h> // needed for oimg functions

224

Importing

bool import image to matrix data(

225

LPCSTR lpcszMatrixName, // matrixbook name

LPCSTR lpcszFileName, // image file name

int nGrayDepth)

// Get the target matrix object
MatrixObject mo (lpcszMatrixName) ;
if('mo.IsValid())

return false;

// Get source image information
int nWidth, nHeight, nBPP;
if(!oimg image info(lpcszFileName,

return false;

// Set target matrix to same dimensions as source image

if(!mo.SetSize (nHeight, nWidth, 0)

return false;

// Set target matrix data size

int nDataType = (16 == nGrayDepth ? FSI USHORT

if(!'mo.SetInternalData (nDataType,

return false;

// Import the image into the matrix
bool bRet;

if (FSI_USHORT == nDataType)

FALSE,

&nWidth,

)

&nHeight,

FALSE))

// import as 8-bit or 16-bit gray

&nBPP)

FSI BYTE);

Origin C Programming Guide

Matrix<WORD>& mm = mo.GetDataObject () ;

bRet = oimg load image (lpcszFileName, &mm, 16, nHeight, nWidth);

else // FSI BYTE

Matrix<BYTE>& mm = mo.GetDataObject () ;

bRet = oimg load image (lpcszFileName, &mm, 8, nHeight, nWidth);

return bRet;

10.3.2 Import Image into Worksheet Cell

The following example will embed a JPEG image from a file into a worksheet cell. This is accomplished using the

AttachPicture method of the Worksheet class.

int nRow = 0, nCol = 0;
string strFile = "D:\\Graphl.jpg";

DWORD dwEmbedInfo = EMBEDGRAPH KEEP ASPECT RATIO;

Worksheet wks = Project.Activelayer();

if (wks.AttachPicture (nRow, nCol, strFile, dwEmbedInfo))

wks.Columns (nCol) .SetWidth (20) ;

wks.AutoSize () ;

10.3.3 Import Image to Graph

226

Importing

The following example will embed a JPEG image from a file onto a graph layer. This is accomplished using the

image import to active graph layer global function.

#include <image utils.h>

// make sure image utils.c is compiled before calling
// the image import to active graph layer function.

LT execute ("run.LoadOC (Originlab\\image utils.c)");

string strFile = "D:\\Graphl.jpg";

image import to active graph layer(strFile);

10.4 Importing Videos

10.4.1 Version Info

Minimum Origin Version Required: Origin 93 SRO

Origin C provides the VideoReader class for reading a video file and importing frame(s) of video to matrix

object(s).

To use the VideoReader class, the header file "VideoReader.h" needs to be included in your source code.

#include <..\OriginLab\VideoReader.h>

With the VideoReader class you can open a video file and get the video's properties, such as frame count, frame
rate (frame per second), current position, etc. It also provides methods for seeking frame, seeking time, and

reading frame(s) into matrix object(s).

The following example will create a new matrixbook, seek 10 frames into a video then load 100 frames into 100

matrix objects in the active matrixsheet by skipping every other frame.

#include <..\Originlab\VideoReader.h> // Include the header file

227

https://www.originlab.com/doc/OriginC/ref/image_import_to_active_graph_layer

Origin C Programming Guide

void Import Video Ex1 (string strFile = "d:\\test.avi")

MatrixLayer ml;

ml.Create ("Origin"); // Create a matrixsheet for the

char str[MAXLINE];

VideoReader vr; // Declare a VideoReader

strcpy(str, strFile);

if(!vr.Open(str)) { // Open the video file

out str("Failed to open video file!");

return;

// Get number of frames

int iFrameCount = (int)vr.GetFrameCount () ;

printf ("$u frames\n",iFrameCount) ;

// Starting frame

int 1i0ffset = 10;

// Specify total frames to read

int iTotalFrames = 100;

// Specify frames to skip between each read

int iSkip 1; // Read every other frame

bool bRet = vr.SeekFrame (iOffset);

{

frames

vr.ReadFrames (ml, iTotalFrames, iSkip); // Read frames

if (vr.ReaderReady ()) {

vr.Close(); // Close the video reader

In this example, time is used as the metric by which we seek and import with time skips..

228

Importing

#include <..\Originlab\VideoReader.h> // Include the header file
void Import Video Ex2(string strFile = "d:\\test.avi") {

MatrixLayer ml;

ml.Create ("Origin"); // Create a matrixsheet for the frames

char str[MAXLINE];

VideoReader vr; // Declare a VideoReader

strcpy(str, strFile);

if(!vr.Open(str)) { // Open the video file

out str("Failed to open video filel!");

return;

// Get number of frames

int iFrameCount = (int)vr.GetFrameCount () ;

// Get frame rate

double dFPS = vr.GetFPS();

double dRunningTime = iFrameCount / dFPS;

printf ("%u frames at %f fps with a running time of %f seconds\n",

iFrameCount, dFPS, dRunningTime) ;

// Setup for read

double dStartTime = 5; // Begin reading at 5 seconds

double dSkipLength = 3.333; // Skip 3.333 seconds between reads
vr.SeekFrame ((int) dStartTime * dFPS); // Calculate frame start
int iSkip = (int) dSkipLength * dFPS; // Calculate frames to skip
// Calculate number of frames to actually read

int iTotalFrames = (int) ((dRunningTime - dStartTime) * dFPS)

/ (iSkip + 1);

229

Origin C Programming Guide

vr.ReadFrames (ml, iTotalFrames, iSkip); // Read frames
if (vr.ReaderReady ()) {

vr.Close(); // Close the video reader

230

11 Exporting

11.1 Exporting

This section covers the following topics:

Exporting Worksheets

Exporting Graphs

Exporting Matrices

Exporting Videos

11.2 Exporting Worksheets

The Worksheet class has the ExportASCIl method for saving worksheet data to a file. The method has
arguments for specifying the starting row and column and the ending row and column. It also allows you to

specify how to handle missing data values and whether column labels should be exported or not.

All of the examples below assume wks is a valid Worksheet object and strFileName is a string object containing

the full path and name of the target file.

The first example will save all the data in the worksheet to a file using the tab character as the delimiter and

blanks for missing values.

wks.ExportASCII (strFileName,
WKS_EXPORT ALL|WKS EXPORT MISSING AS BLANK) ;

The next example will save all the data in a worksheet to a file, with a comma as the delimiter and blanks for

missing values. In addition the column labels are also saved.

wks.ExportASCII (strFileName,
WKS_EXPORT ALL|WKS EXPORT LABELS|WKS EXPORT MISSING AS BLANK,

',');

231

https://www.originlab.com/doc/OriginC/guide/Exporting-Worksheets
https://www.originlab.com/doc/OriginC/guide/Exporting-Graphs
https://www.originlab.com/doc/OriginC/guide/Exporting-Matrices
https://www.originlab.com/doc/OriginC/guide/Exporting-Videos
https://www.originlab.com/doc/OriginC/ref/Worksheet-ExportASCII

Origin C Programming Guide

The final example will save the first two columns of data in a worksheet to a file, using a comma as the delimiter
and blanks for missing values. In addition, the column labels are also saved. Row and column indices start with

zero. The end row and column indices can also be -1 to indicate the last row or last column, respectively.

wks.ExportASCII (strFileName,
WKS EXPORT ALL|WKS EXPORT LABELS|WKS EXPORT MISSING AS BLANK,
"\t',
0, 0O, // start with first row, first column

-1, 1); // end with last row, second column

11.3 Exporting Graphs

Origin allows users to export graphs to several different image file types. Origin C allows access to this ability

using the global export _page and export page to image functions.

The following example will export all the graphs in the project to EMF files. The EMF file names will be the same

as the graph names, and will be located in the root of drive C.

string strFileName;

foreach (GraphPage gp in Project.GraphPages)

strFileName.Format ("c:\\%s.emf", gp.GetName()) ;

export page(gp, strFileName, "EME");

The next example will export the active graph to an 800x600 JPEG file. The JPEG file name will be the name of

the graph and will be located in the root of drive C.

GraphPage gp;
gp = Project.Activelayer () .GetPage();

if(gp) // if active page is a graph

232

https://www.originlab.com/doc/OriginC/ref/export_page
https://www.originlab.com/doc/OriginC/ref/export_page_to_image

Exporting

string strFileName;
strFileName.Format ("c:\\%s.emf", gp.GetName ()) ;

export page to image (strFileName, "JPG", gp, 800, 600, 8);

11.4 Exporting Matrices

An Origin Matrix can be exported to an ASCII data file or an image file.

11.4.1 Export Matrix to ASCII Data File

The following example shows how to export ASCII data from the active matrix window to a *.txt file. You need to

add #include <oExtFile.h> for the export matrix ascii_data function.

file ff;
if (!ff.Open("C:\\ExpMatData.txt", file::modeCreate|file::modeWrite))

return; //fail to open file for write

string strRange;
MatrixLayer ml = Project.Activelayer();

ml.GetRangeString (strRange) ;

LPCSTR lpcszSep = "\t";
vector<string> vXLabels, vYLabels; // empty means no label

DWORD dwCntrl = GDAT FULL PRECISION | GDAT MISSING AS DASHDASH;

// return 0 for no error

int nErr = export matrix ascii data(&ff, strRange, ml.GetNumRows (),

ml.GetNumCols (), lpcszSep, &vXLabels, &vYLabels, dwCntrl);

233

https://www.originlab.com/doc/OriginC/ref/export_matrix_ascii_data

Origin C Programming Guide

11.4.2 Export Image from Matrix to Image File

The following example shows how to export a matrix to an image file.

Prior to running the following example, the image_utils.c file need to be loaded and compiled. This can be done

from script with the following command or just add this file to your workspace.

run.LoadOC(Originlab\image_utils.c);

And need to add #include <image_ utils.h> for the export Matrix to image function.

MatrixLayer ml = Project.Activelayer();
MatrixObject mo = ml.MatrixObjects () ;

export Matrix to image ("c:\\matrixImg.jpg", "jpg", mo);

11.5 Exporting Videos

11.5.1 Version Info

Minimum Origin Version Required: Origin 9 SRO

Origin allows user to create a video with a collection of graphs. Origin C allows access to this ability using the
Video Writer, you can define the video codec for compression (Please refer to FourCC Table for more details.),
create a video writer project specifying the video name, path, speed and dimension, write graph pages as

frames.

Note: To use the video writer, you must include its head file:

#include <..\OriginLab\VideoWriter.h>

The following example will write each graph in the project as a frame into the video, and the video is

uncompressed with 2 frames/second speed and 800px * 600 px dimension.

// Use the raw format without compression.

234

https://www.originlab.com/doc/OriginC/ref/export_Matrix_to_image
https://www.originlab.com/doc/LabTalk/ref/FourCC-Table

Exporting

int codec = CV_FOURCC(0,0,0,0);

// Create a VideoWriter object.

VideoWriter vw;

int err = vw.Create ("D:\\example.avi", codec, 2, 800, 600);

if (0 == err)

foreach (GraphPage grPg in Project.GraphPages)

// write the graph page into the video

err = vw.WriteFrame (grPg) ;

// Release the video object when finished.

vw.Release () ;

return err;

The following example shows how to individually write a graph page into video and define the number of frames

of this graph page in the video.

GraphPage gp ("Graphl");

// The defined graph page will last for 10 frames.

int nNumFrames = 10;

vw.WriteFrame (gp, nNumFrames) ;

235

12 Analysis and Applications

12.1 Analysis and Applications

Origin C supports functions that are valuable to data analysis, as well as mathematic and scientific applications.
The following sections provide examples on how to use the more common of these functions, broken down by

categories of use.

This section covers the following topics:
Mathematics
Statistics

Curve Fittin

Signal Processing

Peaks and Baseline

Using NAG Functions

12.2 Mathematics

12.2.1 Normalize

The following example shows how to pick a point in a data plot (curve) and then normalize all curves in the layer
to the same value at that point. This snippet of code assumes a graph layer with multiple curves is active and all

curves share the same X values. This assumption is typical in spectroscopy.

GraphlLayer gl = Project.Activelayer();
if ('gl)

return;

// Allow user to click and select one particular point of one particular curve

GetGraphPoints mypts;

237

https://www.originlab.com/doc/OriginC/guide/Mathematics
https://www.originlab.com/doc/OriginC/guide/Statistics
https://www.originlab.com/doc/OriginC/guide/Curve-Fitting
https://www.originlab.com/doc/OriginC/guide/Signal-Processing
https://www.originlab.com/doc/OriginC/guide/Peaks-and-Baseline
https://www.originlab.com/doc/OriginC/guide/Using-NAG-Functions

Origin C Programming Guide

mypts.SetFollowData (true) ;

mypts.GetPoints (1, gl);

vector vx, Vy;
vector<int> wvn;

if (mypts.GetData (vx, vy, vn) == 1)

// Save index and y value of picked point
int nxpicked = vn[0] - 1;

double dypicked = vy[0];

// Loop over all data plots in layer

foreach(DataPlot dp in gl.DataPlots)

// Get the data range and then the y column for current plot
XYRange xy;
Column cy;

if (dp.GetDataRange (xy) && xy.GetYColumn (cy))

// Get a vector reference to y values from the y column

vectorbase &vycurrent = cy.GetDataObject();

// Scale vector so y value matches user-picked point

vycurrent *= dypicked/vycurrent [nxpicked];

238

Analysis and Applications

12.2.2 Interpolation/Extrapolation

The ocmath _interpolate function is used to do interpolation/extrapolation with modes of Linear, Spline and B-
Spline.

// Make sure there are 4 columns in active worksheet

// The first two columns are source xy data,

// 3rd column has input x data, 4th column to put output y.
Worksheet wks = Project.Activelayer() ;

wks.SetSize (-1, 4);

DataRange drSource;
drSource.Add (wks, 0, "X"); // 1lst column - source x data

drSource.Add (wks, 1, "Y"); // 2nd column - source y data

vector vSrcx, vSrcy;
drSource.GetData (&vSrcx, 0);

drSource.GetData (&vSrcy, 1);

DataRange drOut;
drOut.Add (wks, 2, "X"); // 3rd column - input x data

drOut.Add (wks, 3, "Y"); // 4th column - interpolated y data

vector vOutx, vOuty;

drOut.GetData (&vOutx, 0);

int nSrcSize = vSrcx.GetSize();

int nOutSize = vOutx.GetSize();

239

https://www.originlab.com/doc/OriginC/ref/ocmath_interpolate

Origin C Programming Guide

vOuty.SetSize (nOutSize);

int nMode = INTERP_TYPE BSPLINE;
double dSmoothingFactor = 1;
int iRet = ocmath interpolate(vOutx, vOuty, nOutSize, vSrcx, vSrcy, nSrcSize,

nMode, dSmoothingFactor);

drOut.SetData (&vOuty, &vOutx);

12.2.3 Integration

Origin C provides access to NAG's integral routines to perform integration. With Origin C and NAG you can do
integration on a normal integrand, an integrand with parameters, an integrand with oscillation, an infinite integral,

higher dimension integration, and more. The following examples show how to do integration with NAG.

Your Origin C code will need to include the NAG header file at least once before your code calls any NAG

functions.

#include <OC nag.h> // NAG declarations

12.2.3.1 Simple Integral Function

The first example shows how to do a basic integration on a simple integrand with only one integration variable.

// NAG CALL denotes proper calling convention. You may treat it
// like a function pointer and define your own integrand

double NAG CALL func(double x,Nag User *comm)

int *use comm = (int *)comm->p;

return (x*sin (x*30.0)/sqrt(l.0-x*x/(PI*PI*4.0)));

void nag dO0lsjc ex()

240

Analysis and Applications

241

double a = 0.0;

double

o
|

=PI * 2.0; // integration interval

double epsabs, abserr, epsrel, result;

// you may use epsabs and epsrel and this quantity to enhance your desired
// precision when not enough precision encountered

epsabs = 0.0;

epsrel = 0.0001;

// The max number of sub-intervals needed to evaluate the function in the
// integral. For most cases 200 to 500 is adequate and recommmended.

int max num subint = 200;

Nag QuadProgress gp;

NagError fail;

Nag User comm;

static int use comm[1l] = {1};

comm.p = (Pointer) &use comm;

dO0lsjc(func, a, b, epsabs, epsrel, max num subint, &result, &abserr,

&dp, &comm, &fail);

// For the error other than the following three errors which are due to
// bad input parameters or allocation failure. You will need to free

// the memory allocation before calling the integration routine again

Origin C Programming Guide

// to avoid memory leakage
if (fail.code != NE INT ARG LT && fail.code != NE BAD PARAM &&

fail.code != NE_ALLOC_FAIL)

NAG_FREE (gp.sub_int_beg_pts) ;
NAG FREE (gp.sub_int end pts);
NAG FREE (gp.sub _int result);

NAG FREE (gp.sub_int error);

printf ("$g\n", result);

12.2.3.2 Integral Function with Parameters

The next example shows how to define and perform integration on an integrand with parameters. Notice that the
parameters are passed to the integrator by a user-defined structure. This avoids having to use static variables as

parameters of the integrand, and makes it thread-safe.

This example can also be adapted to use NAG's infinite integrator. For instance, by enabling the line calling the

infinite integrator d01smc function, the example can be used to perform infinite integration.

struct user // integrand parameters

double A;
double Xc;

double W;

// Function supplied by user, return the value of the integrand at a given x.

static double NAG CALL f callback(double x, Nag User *comm)

242

Analysis and Applications

struct user *param = (struct user *) (comm->p);

return param->A * exp (-2 * (x - param->Xc) * (x - param->Xc)

/ param->W / param->W) / (param->W * sqrt(PI / 2));

Now, we set parameter values for the function and define the additional parameters necessary to perform the

integration. The integration is then performed by a single function call, passing the parameters as arguments.

void nag dO0lsjc ex()

243

double a = 0.0;

double b = 2.0; // integration interval

// The following variables are used to control

// the accuracy and precision of the integration.

double epsabs = 0.0; // absolute accuracy, set negative to use relative
double epsrel = 0.0001; // relative accuracy, set negative to use absolute
int max_num subint = 200; // max sub-intervals, 200 to 500 is recommended

// Result keeps the approximate integral value returned by the algorithm
// abserr is an estimate of the error which should be an upper bound
// for |I - result| where I is the integral value

double result, abserr;

// The structure of type Nag QuadProgress, it contains pointers

// allocated memory internally with max num subint elements

Origin C Programming Guide

Nag QuadProgress gp;

// The NAG error parameter (structure)

NagError fail;

// Parameters passed to integrand by NAG user communication struct

struct user param;

param.A = 1.0;
param.Xc = 0.0;
param.W = 1.0;

Nag User comm;

comm.p = (Pointer) ¶m;

// Perform integration

// There are 3 kinds of infinite boundary types you can use in Nag infinite
// integrator Nag LowerSemiInfinite, Nag UpperSemiInfinite, Nag Infinite

/*

dOlsmc (f callback, Nag LowerSemiInfinite, b, epsabs, epsrel, max num subint,
&result, &abserr, &gp, &comm, &fail);

*/

d0lsjc(f callback, a, b, epsabs, epsrel, max num subint,

&result, &abserr, &gp, &comm, &fail);

// check the error by printing out error message
if (fail.code != NE NOERROCR)

printf ("%s\n", fail.message);

244

Analysis and Applications

// For errors other than the following three errors which are due to
// bad input parameters, or allocation failure,

// you will need to free the memory allocation before calling the

// integration routine again to avoid memory leakage.

if (fail.code != NE INT ARG LT && fail.code != NE BAD PARAM

&& fail.code != NE ALLOC FAIL)

NAG_FREE (gp.sub_int_beg_pts);
NAG FREE (gp.sub_int end pts);
NAG FREE (gp.sub_int result);

NAG FREE (gp.sub_int error);

printf ("%g\n", result);

12.2.3.3 Multi-dimension Integral Function
For integrals of dimension higher than 2, you can call the NAG integrator function d01wcc to perform the

integration.

Our user defined call back function will be passed to the NAG d01wcc function.

double NAG CALL f callback(int n, double* z, Nag User *comm)

double tmp pwr;

tmp pwr = z[1]+1.0+z[3];

return z[0]1*4.0%z[2]*z[2] *exp(z[0]*2.0*z[2])/ (tmp_pwr*tmp pwr) ;

245

Origin C Programming Guide

Main function:

void nag dO0lwcc ex()

246

// Input variables

int ndim = NDIM; // the integral dimension

double al4], bl4];

for(int i1i=0; ii < 4; ++ii) // integration interval

|
o
o
~.

al[ii] =

b[ii] = 1.0;

int minpts 0;

int maxpts = MAXPTS; // maximum number of function evaluation

double eps = 0.0001; // set the precision

// Output variable
double finval, acc;
Nag User comm;

NagError fail;

dO0lwce (ndim, f callback, a, b, &minpts, maxpts, eps, &finval, &acc,

&comm, &fail);

if (fail.code != NE NOERROR)

printf ("%s\n", fail.message);

Analysis and Applications

if (fail.code == NE NOERROR || fail.code == NE QUAD MAX INTEGRAND EVAL)

{
printf ("Requested accuracy =%12.2e\n", eps);
printf ("Estimated value =%12.4f\n", finval);
printf ("Estimated accuracy =%12.2e\n", acc);

}

}
12.2.4 Differentiation

The ocmath_derivative function is used to do simple derivative calculations without smoothing. The function is

declared in ocmath.h as shown below.

int ocmath derivative (
const double* pXData, double* pYData, uint nSize, DWORD dwCntrl = 0);

The function ignores all missing values and computes the derivative by taking the average of the two slopes
between the point and each of its neighboring data points. If the dwCntrl argument uses the default value of 0,

the function fills in the average when data changes direction.

if (OE_NOERROR == ocmath derivative (vx, vy, vx.GetSize()))

out str("successfully");

If dwCntrl is set to DERV_PEAK_AS_ZERO, the function fills in zero if data changes direction.

if (OE_NOERROR == ocmath derivative(vx, vy, vx.GetSize(), DERV_PEAK AS ZERO))

out str("successfully");

12.3 Statistics

Often we want to do statistics on the selected data in a worksheet, i.e. one column, one row, or an entire

worksheet. The Working with Data: Numeric Data: DataRange chapter shows how to construct a data range

object by column/row index, then get the raw data into a vector.

247

https://www.originlab.com/doc/OriginC/ref/ocmath_derivative
https://www.originlab.com/doc/OriginC/guide/Numeric-Data

Origin C Programming Guide

12.3.1 Descriptive Statistics on Columns and Rows

The ocmath basic_summary stats function is used to compute basic descriptive statistics, such as total

number, mean, standard deviation, and skewness, for raw data. For more details, refer to Origin C help. The
following Origin C code calculates and outputs the number of points, the mean, and the standard error of mean

on the data in the vector object named vData.

int Ny

double Mean, SE;

ocmath basic summary stats(vData.GetSize(), vData, &N, &Mean, NULL, &SE);
printf ("N=%d\nMean=%g\nSE=%g\n", N, Mean, SE);

12.3.2 Frequency Count

The ocmath frequency count function is used to calculate the frequency count, according to the options in the

FreqCountOptions structure.

// Source data to do frequency count

vector vData = {0.11, 0.39, 0.43, 0.54, 0.68, 0.71, 0.86};

// Set options, including bin size, from, to and border settings.
int nBinSize = 5;

FreqCountOptions fcoOptions;

fcoOptions.FromMin = 0;

fcoOptions.ToMax = 1;

fcoOptions.StepSize = nBinSize;
fcoOptions.IncludeLTMin = 0;
fcoOptions.IncludeGEMax = 0;

vector vBinCenters (nBinSize);

vector vAbsoluteCounts (nBinSize);

248

https://www.originlab.com/doc/OriginC/ref/ocmath_basic_summary_stats
https://www.originlab.com/doc/OriginC/ref/ocmath_frequency_count

Analysis and Applications

vector vCumulativeCounts (nBinSize);

int nOption = FC NUMINTERVALS; // to extend last bin if not a full bin

int nRet = ocmath frequency count (
vData, vData.GetSize(), &fcoOptions,
vBinCenters, nBinSize, vAbsoluteCounts, nBinSize,

vCumulativeCounts, nBinSize, nOption);

if (STATS NO ERROR == nRet)
out str ("Done");

In addition, there are two functions to calculate frequency count for discrete/categorical data. One is

ocu_discrete frequencies for text data, and the other is ocmath_discrete frequencies for numeric data. Also,

there are two functions to calculate frequency count on 2 dimensions: ocmath_2d_binning_stats and

ocmath_2d_binning.

12.3.3 Correlation Coefficient

The ocmath _corr_coeff function is used to calculate the Pearson rank, Spearman rank and Kendall rank

correlation coefficients.

matrix mData = {{10,12,13,11}, {13,10,11,12}, {9,12,10,11}};

int nRows = mData.GetNumRows () ;

int nCols = mData.GetNumCols () ;

matrix mPeaCorr (nCols, nCols);

matrix mPeaSig(nCols, nCols);

matrix mSpeCorr (nCols, nCols);

matrix mSpeSig(nCols, nCols);

249

https://www.originlab.com/doc/OriginC/ref/ocu_discrete_frequencies
https://www.originlab.com/doc/OriginC/ref/ocmath_discrete_frequencies
https://www.originlab.com/doc/OriginC/ref/ocmath_2d_binning_stats
https://www.originlab.com/doc/OriginC/ref/ocmath_2d_binning
https://www.originlab.com/doc/OriginC/ref/ocmath_corr_coeff

Origin C Programming Guide

matrix mKenCorr (nCols, nCols);

matrix mKenSig(nCols, nCols);

if (STATS NO_ERROR == ocmath corr coeff (nRows, nCols, mData, mPeaCorr, mPeaSig,

mSpeCorr, mSpeSig, mKenCorr, mKenSig))

out str("Done");

12.3.4 Normality Test

Use the *ocmath _shapiro wilk test function to perform a Shapiro-Wilk Normality Test. Use the

*ocmath lilliefors test function to perform a Lilliefors Normality Test. Use the

*ocmath kolmogorov smirnov_test function to perform a Kolmogorov-Smirnov Normality Test.

vector vTestData = {(0.11, 0.39, 0.43, 0.54, 0.68, 0.71, 0.86};

NormTestResults SWRes;
if (STATS NO ERROR == ocmath shapiro wilk test (vTestData.GetSize (), vTestData,

&SWRes, 1))

printf ("DOF=%d, TestStat=%g, Prob=%g\n", SWRes.DOF, SWRes.TestStat,
SWRes.Prob) ;

12.4 Curve Fitting

124.1 Curve Fitting

This section covers the following topics:

Linear Fitting

250

https://www.originlab.com/doc/OriginC/ref/ocmath_shapiro_wilk_test
https://www.originlab.com/doc/OriginC/ref/ocmath_lilliefors_test
https://www.originlab.com/doc/OriginC/ref/ocmath_kolmogorov_smirnov_test
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting

Analysis and Applications

Polynomial Fitting

Multiple Regression

Non-linear Fitting

Find XY

12.4.2 Linear Fitting

To perform a linear fitting routine in Origin C, you can use the ocmath _linear fit function. With this function, you

can do linear fitting with weight, and then you can get the fitting results, including parameter values, statistical

information, etc.

The following procedure will show how to perform linear fitting in Origin C by using this function, and the results

will output to the specified windows and worksheet.

12.4.2.1 Perform Linear Fitting

Before starting linear fitting, please import the desired data, here need one independent and one dependent.
Now, begin the Origin C routine. Three steps are needed.

New a c file and add an empty function as the below. Copy the codes from the following steps into this function.

#include <GetNBox.h> // used for GETN_ macros

void linearfit()

}

Get the data from the worksheet for linear fit. Both independent and dependent are using vector variables.

// Get XY data from worksheet window
Worksheet wks = Project.Activelayer();
if (!'wks)
return; // need to activate a worksheet with data

WorksheetPage wp = wks.GetPage () ;

251

https://www.originlab.com/doc/OriginC/guide/Polynomial-Fitting
https://www.originlab.com/doc/OriginC/guide/Multiple-Regression
https://www.originlab.com/doc/OriginC/guide/Non-linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Find-XY
https://www.originlab.com/doc/OriginC/ref/ocmath_linear_fit

Origin C Programming Guide

DataRange dr;
dr.Add ("x", wks, 0, 0, -1, 0); // x column

dr.Add("Y", wks, 0, 1, -1, 1); // y column

vector vX;

dr.GetData (&vX, 0); // get data of x column to vector

vector vY;

dr.GetData(&vY, 1); // get data of y column to vector

Show GetN dialog to control fit options and call ocmath_linear_fit function to do linear fit with these options.

// Prepare GUI tree to show fit options in GetN dialog
GETN_TREE (trGUTI)
GETN BEGIN BRANCH(Fit, L("Fit Options"))
GETN_ID_BRANCH(IDST_LR_OPTIONS) GETN_OPTION_BRANCH(GETNBRANCH_OPEN)
GETN_ CHECK (FixIntercept, L("Fix Intercept"), 0)
GETN ID(IDE LR FIX INTCPT)
GETN_NUM (FixInterceptAt, L("Fix Intercept at"), O0)
GETN ID(IDE LR FIX INTCPT AT)
GETN_ CHECK (FixSlope, L("Fix Slope"), 0)
GETN_ID(IDE LR FIX SLOPE)
GETN NUM(FixSlopeAt, L("Fix Slope at"), 1)
GETN ID(IDE LR FIX SLOPE_AT)

GETN_CHECK (UseReducedChiSq, STR FITTING CHECKBOX USE_RED CHI_ SQR,

GETN ID(IDE_FIT REDUCED CHISQR)

252

Analysis and Applications

GETN_END BRANCH (Fit)

if (!'GetNBox (trGUI))

return; // clicked Cancel button

LROptions stLROptions;

stLROptions = trGUI.Fit; // assign value from GUI tree to struct

// Do linear fit with the above input dataset and fit option settings
int nSize = vX.GetSize(); // data size

FitParameter psFitParameter[2]; // two parameters

RegStats stRegStats; // regression statistics

RegANOVA stRegANOVA; // anova statistics

int nRet = ocmath linear fit (vX, vY, nSize, psFitParameter, NULL,
0, &stLROptions, &stRegStats, &stRegANOVA) ;

if (nRet != STATS NO_ERROR)

out str("Error");

return;

12.4.2.2 Result to Output Window

Once the computation is finished, the fitting results can be output to the specified windows. Here the values of

parameters will output to the Script Window and the statistical information will output to the Result Log window as

atree.

void put to output window(const FitParameter* psFitParameter,

253

https://www.originlab.com/doc/OriginC/guide/Script-Window
https://www.originlab.com/doc/OriginC/guide/Results-Log

Origin C Programming Guide

const RegStats& stRegStats, const RegANOVA& stRegANOVA)

// Output analysis result to Script window, Result Log and Worksheet

// print the values of fitting parameters to the Script Window

vector<string> vsParams = {"Intercept", "Slope"};
for (int iPara = 0; iPara < vsParams.GetSize (); iPara++)
{
printf ("%s = %g\n", vsParams|[iPara], psFitParameter[iPara].Value);

// Put the statistical results to Result Log

Tree trResults;

TreeNode trResult = trResults.AddNode ("LinearFit");
TreeNode trStats = trResult.AddNode ("Stats");

trStats += stRegStats; // add regression statistics to tree node

TreeNode trANOVA = trResult.AddNode ("ANOVA") ;

trANOVA += stRegANOVA; // add anova statistics to tree node

string strResult;

tree to str(trResult, strResult); // convert tree to string

Project.OutStringToResultsLog(strResult); // output to Result Log

12.4.2.3 Result to Worksheet

You can output the fitting result to the specified Worksheet as well. And the results can be organized in normal

column format or tree view format in Worksheet window.

254

https://www.originlab.com/doc/OriginC/guide/Report-Sheet

Analysis and Applications

The following two ways both used Datasheet::SetReportTree method to put result in Worksheet by tree
variable. The difference is the option bit WP_SHEET_HIERARCHY when create worksheet, see the 2nd variable
used AddLayer method below.

12.4.2.3.1 Output to Normal Worksheet

void output to wks(WorksheetPage wp, const FitParameter* psFitParameter)

// prepare report tree

int nID = 100; // Each node must have node ID and node ID must be unique
Tree tr;

tr.Report.ID = nID++;

TreeNode trReport = tr.Report;

trReport.SetAttribute (TREE Table, GETNBRANCH TRANSPOSE);

// column 1
trReport.P1.ID = nID++;
trReport.Pl.SetAttribute (STR LABEL ATTRIB, "Parameter"); // column label

trReport.Pl.SetAttribute (STR COL DESIGNATION ATTRIB,
OKDATAOBJ DESIGNATION X);

// column 2
trReport.P2.ID = nID++;
trReport.P2.SetAttribute (STR_LABEL ATTRIB, "Value"); // column label

trReport.P2.SetAttribute (STR _COL DESIGNATION ATTRIB,
OKDATAOBJ DESIGNATION Y);

// column 3

trReport.P3.ID = nID++;

255

https://www.originlab.com/doc/OriginC/ref/Datasheet-SetReportTree

Origin C Programming Guide

trReport.P3.SetAttribute (STR LABEL ATTRIB, "Prob>|t|"); // column label

trReport.P3.SetAttribute (STR COL DESIGNATION ATTRIB,
OKDATAOBJ DESIGNATION Y);

// prepare the vectors to show in the table

vector<string> vsParamNames = {"Intercept", "Slope"}; // parameter name
vector vValues, vProbs; // parameter value and prob
for (int nParam = 0; nParam < vsParamNames.GetSize(); nParam++)

vValues.Add (psFitParameter [nParam] .Value) ;

vProbs.Add (psFitParameter [nParam] .Prob) ;

// assign the vectors to tree node

trReport.Pl.strVals = vsParamNames;

trReport.P2.dVals = vValues;

trReport.P3.dVals = vProbs;

// report tree to worksheet

int ilLayer = wp.AddLayer ("Linear Fit Params");

Worksheet wksResult = wp.Layers (ilayer) ;

if (!wksResult.IsValid() || wksResult.SetReportTree (trReport) < 0)

printf ("Fail to set report tree. \n");

return;

wksResult.AutoSize () ;

256

Analysis and Applications

12.4.2.3.2 Output to Tree Format Worksheet

void output to tree view wks (WorksheetPage& wp, const RegStats& stRegStats)

257

Tree tr;

int nID = 100; // Each node must have node ID and node ID must be unique

uint nTableFormat = GETNBRANCH OPEN
| GETNBRANCH HIDE COL HEADINGS
| GETNBRANCH HIDE ROW HEADINGS
| GETNBRANCH FIT COL WIDTH

| GETNBRANCH FIT ROW HEIGHT;

// prepare root table node

tr.Report.ID = nID++; // add Report treenode and assign node id
TreeNode trReport = tr.Report;

// need set table attribute for table node
trReport.SetAttribute(TREE_Table, nTableFormat) ;

// the title of root table

trReport.SetAttribute(STR_LABEL_ATTRIB, "Linear Fit Stats"):;

// prepare stats table node

trReport.Table.ID = nID++; // add Table treenode and assign node id
TreeNode trTable = trReport.Table;

// need set table attribute for table node
trTable.SetAttribute (TREE Table, nTableFormat |GETNBRANCH TRANSPOSE) ;

// the title of stats table

Origin C Programming Guide

258

trTable.SetAttribute (STR_LABEL ATTRIB, "Regression Statistics");

// prepare result node
trTable.Stats.ID = nID++; // add Stats treenode and assign node id
TreeNode trStats = trTable.Stats;

trStats += stRegStats; // support adding result from sturct to treenode

// set label, those text will show in row header in table
trStats.N.SetAttribute (STR _LABEL ATTRIB, "Number of Points");
trStats.DOF.SetAttribute(STR_LABEL_ATTRIB, "Degrees of Freedom") ;
trStats.SSR.SetAttribute (STR LABEL ATTRIB, "Residual Sum of Squares");

trStats.AdjRSqg.SetAttribute (STR LABEL ATTRIB, "Adj. R-Square");

// to hide other nodes
trStats.ReducedChiSqg.Show = false;
trStats.Correlation.Show = false;

trStats.Rvalue.Show = false;

trStats.RSgCOD.Show = false;
trStats.RMSESD.Show = false;

trStats.NormResiduals.Show = false;

// the bits to control the newly created worksheet as hierarchy format
DWORD dwOptions = WP SHEET HIERARCHY | CREATE NO DEFAULT TEMPLATE;

int ilLayer = wp.AddLayer ("Linear Fit Stats'", dwOptions);

Worksheet wksResult = wp.Layers (ilayer) ;

if (!wksResult.IsValid() || wksResult.SetReportTree (trReport) < 0)

Analysis and Applications

printf ("Fail to set report tree.\n");

return;

wksResult.AutoSize () ;

12.4.3 Polynomial Fitting

To perform a polynomial fitting routine in Origin C, you can use the ocmath polynomial fit function. With this

function, you can do polynomial fitting with weight, and then you can get the fitting results, including parameter

values, statistical information, etc.

The following procedure will show how to perform polynomial fitting in Origin C by using this function.

12.4.3.1 Perform Polynomial Fitting

Before doing polynomial fitting, please import the desired data, here need one independent and one dependent.
The procedure of performing polynomial fitting needs three steps.

1. Get the data from the worksheet for polynomial fit. Both independent and dependent are using vector

variables.

Worksheet wks = Project.Activelayer();
if (!wks)

return; // invalid worksheet

DataRange dr;
dr.Add ("x", wks, 0, 0, -1, 0); // x column

dr.Add("Yy", wks, 0, 1, -1, 1); // y column

vector vX, vY;
dr.GetData (&vX, 0); // get data of x column to vector

dr.GetData (&vY, 1); // get data of y column to vector

259

https://www.originlab.com/doc/OriginC/ref/ocmath_polynomial_fit

Origin C Programming Guide

2. Define the structure variables and other data types as parameters for passing to the function

initialize some fitting settings.

// here just define the structure for output results
int nSize = vX.GetSize();

const int nOrder = 2; // order

int nSizeFitParams = nOrder+1;

FitParameter psFitParameter[3]; // number of parameter = nOrder+1

RegStats psRegStats; // regression statistics

RegANOVA psRegANOVA; // anova statistics

3. Pass the desired arguments and perform polynomial fitting on the data.

// polynomial fitting, using the default options, 2 order

. It also can

int nRet = ocmath polynomial fit(nSize, vX, vY, NULL, nOrder, NULL, psFitParameter,

nSizeFitParams, &psRegStats, &psRegANOVA) ;

// check error

if (nRet!=STATS NO_ERROR)

out str("Error");

return;

12.4.3.2 Output the Results

After finishing the calculation, the results may need to output to somewhere for presentation, such as Script

Window, Result Log, Worksheet, etc.

260

Analysis and Applications

Please refer to the Result to Output Window and Result to Worksheet section in the chapter Analysis and

Applications: Curve Fitting: Linear Fitting for more details about how to output the results.

12.4.4 Multiple Regression

Origin uses the ocmath multiple linear regression function to perform multiple linear regression. This

function allows to specify the weight of data and linear regression options. After running this function
successfully, output details will include fitting parameters, regression statistics, ANOVA statistics, covariance and

correlation matrix of estimate, and etc.

In the following sections, we will learn how to perform multiple linear regression by using this function.

12.4.4.1 Perform Multiple Linear Regression

To perform multiple linear regression, please import the desired data, here will use three independents and one

dependent.

1. Load data for multiple linear regression. All the independent data should be stored in a matrix, and dependent

data in a vector.

// 1. get data for multiple linear regression
Worksheet wks = Project.Activelayer();
if(!'wks)

return; // please make sure a worksheet with data is active

DataRange dr;

dr.Add ("X", wks, 0, 0, -1, 2); // first three columns

dr.Add("Y", wks, 0, 3, -1, 3); // the fourth column

matrix mX;

dr.GetData (mX, 0, 0); // get data of first three columns to matrix

vector vY;

dr.GetData (&vY, 1); // get data of the fourth column

261

https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/ref/ocmath_multiple_linear_regression

Origin C Programming Guide

2. Declare and initialize the parameters that will be passed to the function.

// 2. prepare input and output variables
UINT nOSizeN = mX.GetNumRows(); // number of observations

UINT nVSizeM = mX.GetNumCols(); // total number of independent variables

LROptions stLROptions; // use to set linear regression options

stLROptions.UseReducedChiSqg = 1;

FitParameter stFitParameters[4]; // should be nVSizeM+1

UINT nFitSize = nVSizeM+1; // size of FitParameter

RegStats stRegStats; // use to get regression statistics
RegANOVA stRegANOV; // use to get anova statistics

3. Pass the prepared parameters to the function and perform multiple linear regression.

// 3. perform multiple linear regression, here we are not going to get
// the covariance and correlation matrix of estimate, and no weight is used.
int nRet = ocmath multiple linear regression (mX, nOSizeN, nVSizeM, vY, NULL,

0, &stLROptions, stFitParameters, nFitSize, &stRegStats,
&stRegANQV) ;

if (nRet != STATS NO ERROR)

out str("Error");

return;

262

Analysis and Applications

12.4.4.2 Output the Results

After finishing the calculation, the results may need to output to somewhere for presentation, such as Script

Window, Result Log, Worksheet, etc.

Please refer to the Result to Output Window and Result to Worksheet section in the chapter Analysis and

Applications: Curve Fitting: Linear Fitting for more details about how to output the results.

12.4.5 Non-linear Fitting

NLFit is the new fitter starting with Origin version 8. This new fitter handles the fitting process with a copy of the
data while performing iterations. This results in faster operation compared to older versions where the fitter

directly accessed data repeatedly from the worksheet.
There are two classes available to perform nonlinear fitting:
NLFit

This is the Origin C class that wraps the low level API from the new fitting engine. This class has no knowledge
of Origin and works with copies of data in buffers. In order to use this class, you will be responsible in preparing
all necessary buffers (pointers). This separation prepares for the future implementation of performing fitting as a

background process.
NLFitSession

This is a higher level Origin C class with a friendly interface that wraps the NLFit class to Origin objects. This
class is the kernel in the new NLFit Dialog. We recommend that you use this class in your Origin C code, as the
process to interface to Origin is rather complicated and the NLFitSession classtakes care of this complexity for

you.

12.4.5.1 Nonlinear Fitting

Before you use the NLFitSession class, you need to include a specific header file:

finclude <..\originlab\NLFitSession.h>

You also need to include and compile the OriginC\Originlab\nlsf_utils.c file to your current workspace. Run the

Labtalk command below in the Command window, or from your script file, to programmatically add the file:

Run.LoadOC (Originlab\nlsf utils.c, 16)

Define an NLFitSession object, and set the fitting function as Gauss:

263

https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting
https://www.originlab.com/doc/OriginC/guide/Linear-Fitting

Origin C Programming Guide

// Set Function

NLFitSession nlfSession;

if (!'nlfSession.SetFunction ("Gauss"))

{
out str("Fail to set function!");
return;

// Get parameter names and number:
vector<string> vsParamNames;
int nNumParamsInFunction = nlfSession.GetParamNamesInFunction (vsParamNames) ;

Set two XY datasets with DATA_MODE_GLOBAL mode, to perform global fitting with sharing of parameters:

int nNumData = 2;
// Set the first dataset

if (!'mlfSession.SetData(vYl, vX1, NULL, 0, nNumData))

out _str("Fail to set data for the first dataset!");

return;

// Set the second dataset

if (!nlfSession.SetData(vY¥Y2, vX2, NULL, 1, nNumData, DATA MODE GLOBAL))

out str("Fail to set data for the second dataset!");

return;

264

Analysis and Applications

Run parameter initialization code to initialize parameter values:

// Parameter initialization

if (!'mlfSession.ParamsInitValues())

{
out str("Fail to init parameters values!");
return;

Alternately, you can directly set parameter values one by one:

vector vParams (nNumParamsInFunction*nNumData) ;

// set parameter value for the first dataset

vParams[0] = 5.5; // yO
vParams[1l] = 26; // A
vParams[2] = 8; // xc
vParams[3] = 976; // w

// set parameter value for the second dataset

vParams[4] = 2.3; // yO

vParams[5] = 26; // A

vParams [6] 10.3; // xc

vParams[7] = 102; // w

int nRet = nlfSession.SetParamValues (vParams) ;

if(nRet != 0) // 0 means no error

return;

265

Origin C Programming Guide

Share xc parameter between the two datasets:

int nSharedParamIndex = 1; // 1, the index of xc in Gauss function

nlfSession.SetParamShare (nSharedParamIndex) ;

Perform the fit and output status message:

// Do fit
int nFitOutcome;

nlfSession.Fit (&nFitOutcome) ;

string strOutcome = nlfSession.GetFitOutCome (nFitOutcome) ;

out str("Outcome of the fitting session

Get fit statistic result:

int nDataIndex = 0;
RegStats fitStats;
NLSFFitInfo fitInfo;

nlfSession.GetFitResultsStats (&fitStats,

printf ("# Iterations=%d, Reduced Chisqgr=%g\n",

fitStats.ReducedChiSq) ;

Get final fit parameter values:

&fitInfo,

vector vFittedParamValues, vErrors;

nlfSession.GetFitResultsParams (vFittedParamValues,

// The parameter xc is shared in two input data.

266

+ strOutcome) ;

false,

nDataIndex) ;

fitInfo.Iterations,

vErrors);

Analysis and Applications

// So the value of xc is same for all data sets, and it only appears one time
// in the fitted parameter values - vParamValues.

// vsParamNames contains the parameter names in Gauss function - y0, xc, w, A.
// The following to add parameter names for the second dataset without xc.
vsParamNames.Add ("y0") ;

vsParamNames.Add ("w") ;

vsParamNames.Add ("A") ;

for(int nParam = 0; nParam < vFittedParamValues.GetSize(); nParam++)

printf ("$s = %f\n", vsParamNames|[nParam], vFittedParamValues[nParam]) ;

Calculate fit curve Y values using the final fit parameters:

vector vFitY1l (vX1l.GetSize()), VvFitY2 (vX2.GetSize());
// Get fitted Y for the first dataset
nlfSession.GetYFromX (vX1l, vFitYl, vX1.GetSize(), 0);
// Get fitted Y for the second dataset

nlfSession.GetYFromX (vX2, vFitY2, vX1l.GetSize(), 1);

12.4.5.2 Accessing FDF File
Fitting function settings stored in an FDF file can be loaded into a tree variable. You will need to include the

OriginC\system\FDF Tree.h file:

#include <FDFTree.h>

Then use the nisf_FDF_to_tree function:

string strFile = GetOpenBox ("*.FDE");

267

Origin C Programming Guide

Tree tr;
if (nlsf FDF to tree(strFile, &tr))
{

out tree(tr);

12.4.6 Find XY

The following procedure will show how to use the specified parameter values to get the value of the dependent

variable from the independent variable or get the value of the independent variable from the dependent variable.

12.4.6.1 Linear
The formula of getting Y from X:

y =a + x * b;

The formula of getting X from Y:

x = (y - a) / b;

12.4.6.2 Non-linear
For non-linear function, we use NumericFunction class to get y from x and use ocmath_find_xs function to get x

fromy.

Prior to running the following example, the nlisf_utils.c file need to be loaded and compiled. This can be done

from script with the command run.LoadOC(Originlab\nisf_utils.c) or just add this file to your workspace.

12.4.6.2.1 GetY from X

#include <ONLSF.h>

#include <..\Originlab\nlsf utils.h>
void findy from x()

{

// Please use the proper function from the related category in

268

Analysis and Applications

// Fitting Function Organizer dialog. Press F9 to open this dialog.
// The Poly function below under Polynomial category.

string strFuncFileName = "Poly";

Tree trFF;

if(!'nlsf load fdf tree(trFF, strFuncFileName))

out str("Fail to load function file to tree");

return;

NumericFunction func;

if (!func.SetTree (trFF))

out str ("NumericFunction object init failed");

return;

int nNumParamsInFunc = trFF.GeneralInformation.NumberOfParameters.nVal;
vector vParams (nNumParamsInFunc);

vParams = NANUM;

vParams[0] = 1;
vParams[1l] = 2;
vParams [2] = 3;

vector vX = {1, 1.5, 2};

vector vY;

269

Origin C Programming Guide

vY = func.Evaluate (vX, vParams);

12.4.6.2.2 GetX fromY

The following function shows how to get two X values from the specified Y value. Before running, please import

Samples\Curve Fitting\Gaussian.dat to Worksheet and keep the Worksheet active.

#include <...\originlab\nlsf utils.h>
#include <FDFTree.h>

void findx from y ()

double y = 20; // assign 20 as Y value to find X value

Worksheet wks = Project.Activelayer();

if (!wks)

return;

//get data to fitting

DataRange dr;

dr.Add (wks, 0, "X");

dr.Add (wks, 1, "Y");

DWORD dwPlotID;

vector vDataX, vDataY;

if (dr.GetData (DRR_GET DEPENDENT | DRR NO FACTORS, 0, &dwPlotID, NULL,

&vDataY, &vDataX) < 0)

270

Analysis and Applications

printf("failed to get data");

return;

uint nFindXNum = 2; //set how many x should be found
vector vFindX;

vFindX.SetSize (nFindXNum) ;

string strFile = GetOriginPath() + "OriginC\\OriginLab\\nlsf utils.c";

PFN_STR_INT DOUBLE DOUBLE DOUBLEP pFunc =
Project.FindFunction ("compute y by x", strFile, true);

string strFuncFileName = "Gauss";

vector vParams (4);

vParams [0] 5.58333; // yoO
vParams[l] = 26; // xc

vParams([2] = 8.66585; // w

vParams [3] 976.41667; // A

int nRet = ocmath find xs(y, (uint) (vDataY.GetSize()), vDataX,
vDataY, nFindXNum, vFindX, strFuncFileName, vParams.GetSize(),

vParams, pFunc);

if (OE_NOERROR == nRet)

printf("Y = %g\tXl = %g\tX2 = %g\n", y, vFindX[0], vFindX[1]):;

12.5 Signal Processing

271

Origin C Programming Guide

Origin C provides a collection of global functions and NAG functions for signal processing, ranging from
smoothing noisy data to Fourier Transform (FFT), Short-time FFT(STFT), Convolution and Correlation, FFT

Filtering, and Wavelet analysis.
The Origin C functions are under the Origin C help -> Origin C Reference -> Global Functions -> Signal

Processing category.

12.5.1 Smoothing

The ocmath _smooth function support 3 methods: median filter, Savitzky-Golay smoothing and adjacent

averaging smoothing.

vector vSmooth; // output

vSmooth.SetSize (vSource.GetSize ()) ;

//do Savitzky-Golay smoothing, Left=Right=7, quadratic

int nLeftpts = nRightpts = 3;

int nPolydeg 28
int nRet = ocmath smooth(vSource.GetSize (), vSource, vSmooth, nLeftpts, SMOOTH SG,
EDGEPAD NONE, nRightpts, nPolydeq):;

12.5.2 FFT

Before using fft_* functions, you need to include fft_utils.h.

#include <fft utils.h>

12.5.2.1 FFT
fft_real performs a discrete Fourier transform(FFT_FORWARD) or inverse Fourier

transform(FFT_BACKWARD).

fft real (vSig.GetSize(), vSig, FFT _FORWARD); // return 0 for no error

12.5.2.2 Frequency Spectrum

272

https://www.originlab.com/doc/OriginC/ref/ocmath_smooth
https://www.originlab.com/doc/OriginC/ref/fft_real

Analysis and Applications

fft one side spectrum is used to compute the one side spectrum of FFT Result.

fft one side spectrum(vSig.GetSize(), vSig); // return 0 for no error

12.5.2.3 IFFT

fft real (vSig.GetSize(), vSig, FFT BACKWARD) ; // return 0 for no error

12.5.2.4 STFT

The stft real function is used to perform a Short-Time-Fourier-Transform on 1d signal real data. The
stft complex function is used to perform a Short-Time-Fourier-Transform on 1d signal complex data. The

following is an example for real data.

int nWinSize = 4;
vector win (nWinSize) ;

get window data (RECTANGLE WIN, nWinSize, win);

matrix stft;
double stime, sfreq;
vector sig = {0, 0, O, 1, 1, 0, 0O, 0};

stft real(sig, win, 0.1, 1, 4, stft, stime, sfreq);

for (int ii = 0; ii < stft.GetNumRows(); ii++)

for (int jj = 0; jj < stft.GetNumCols(); Jj++)

printf ("$f\t", stft[iill[3j1);

printf ("\n");

12.5.3 FFT Filtering

273

https://www.originlab.com/doc/OriginC/ref/fft_one_side_spectrum
https://www.originlab.com/doc/OriginC/ref/stft_real
https://www.originlab.com/doc/OriginC/ref/stft_complex

Origin C Programming Guide

Origin C supports multiple filter types for performing FFT Filtering, including: low pass, high pass, band pass,

band block, threshold, and low pass parabolic. For example:

double dFc = 6.5;

int iRet = fft lowpass(vecSignal, dFc, &vecTime);

12.5.4 Wavelet Analysis

In Origin C, you can call a NAG function to do Wavelet analysis. To see all wavelet functions, go to the Origin C
Help -> Origin C Reference -> Global Function -> NAG Functions -> Accessing NAG Functions Category and

Help -> Wavelet category. It is necessary to include the related header.

#include <..\OriginLab\wavelet utils.h>

The following is an example of a real type, one-dimensional, continuous wavelet transform.

int n = vX.GetSize();
int ns = vScales.GetSize();

matrix mCoefs(ns, n);

NagError fail;

nag cwt real (Nag Morlet, 5, n, vX, ns, vScales, mCoefs, &fail);

12.6 Peaks and Baseline

12.6.1 Getting input XY from Graph or Worksheet

For the input XY data the following sections mentioned, we can get from Graph or Worksheet. Please click here

to get the help of getting data from window.

12.6.2 Creating a Baseline

The ocmath create baseline by masking peaks function can create a baseline according to only positive

peaks, only negative peaks, or both direction peaks.

274

https://www.originlab.com/doc/OriginC/guide/Numeric-Data
https://www.originlab.com/doc/OriginC/ref/ocmath_create_baseline_by_masking_peaks

Analysis and Applications

The following example shows how to create a baseline for the positive peaks and the negative peaks in input XY

data(vx, vy).

// Allocate memory for baseline XY vectors

vector vxBaseline (vx.GetSize()), vyBaseline (vx.GetSize());

// find baseline XY data
int nRet = ocmath create baseline by masking peaks(vx.GetSize(), vx, vy,

vxBaseline.GetSize (), vxBaseline, vyBaseline, BOTH DIRECTION) ;

// Ascending sort baseline XY data by X data.

if (OE_NOERROR == nRet)

vector<uint> vn;
vxBaseline.Sort (SORT ASCENDING, true, vn);

vyBaseline.Reorder (vn) ;

12.6.3 Removing a Baseline

If the x coordinate of a baseline is the same as that of the peak curve, you can directly subtract, otherwise you
need do interpolation before removing the baseline. The following code shows how to do interpolation and then
remove a baseline. Assume the current worksheet has 4 columns in which to put peak XY data and baseline XY

data.

Worksheet wks = Project.Activelayer();

Column colPeakX (wks, 0), colPeakY (wks, 1);

Column colBaselLineX(wks, 2), colBaselLineY (wks, 3);

275

Origin C Programming Guide

// Get peak XY data.
// Get Y data by reference since want to subtract baseline on it below.
vector vPeakX = colPeakX.GetDataObject ()

vectoré& vPeakY = colPeakY.GetDataObject () ;

// Get base line data

vector vBaselineX = colBaselineX.GetDataObject () ;

vector vBaselineY = colBaselineY.GetDataObject () ;
if (vPeakX.GetSize () != vPeakY.GetSize ()

|| vPeakX.GetSize () == 0

|| vBaselineX.GetSize () == 0
)

return;

// do interpolation on baseline data to keep x coordinate same as peak data.
vector vyBaseTemp (vPeakX.GetSize());
if (OE_NOERROR != ocmath interpolate (vPeakX, vyBaseTemp, vPeakX.GetSize(),

vBaselineX, vBaselineY, vBaselineX.GetSize(), INTERP TYPE LINEAR))

return;

// subtract base line

vPeakY -= vyBaseTemp;

12.6.4 Finding Peaks

The ocmath_find_peaks_* function is used to find peaks by multiple methods.

276

Analysis and Applications

The following example shows how to find a local maximum point in a local scope selected by nLocalPts. For a

current point marked by nindex, the scope is [nIndex-nLocalPts, nindex+nLocalPts].

// Allocate memory for output vectors
UINT nDataSize = vxData.GetSize();
vector vxPeaks (nDataSize), vyPeaks (nDataSize);

vector<int> vnIndices (nDataSize);

// nDataSize, on input, the size of vxData, vyData;

// on output, return number of peaks

int nLocalPts = 10;

int nRet = ocmath find peaks by local maximum(&nDataSize, vxData, vyData,
vxPeaks, vyPeaks, vnIndices,

POSITIVE DIRECTION | NEGATIVE DIRECTION, nLocalPts);

if (OE_NOERROR == nRet)

printf ("Peak Num=%d\n", nDataSize);

vxPeaks.SetSize (nDataSize) ;

vyPeaks.SetSize (nDataSize);

Origin C supports two functions: ocmath test peaks by height and ocmath test peaks by number, to

verify peaks by specified height and peak number, respectively.

The following is an example showing how to verify peaks by minimum peak height.

// Get minimum and maximum from source Y data

double dMin, dMax;

277

https://www.originlab.com/doc/OriginC/ref/ocmath_test_peaks_by_height
https://www.originlab.com/doc/OriginC/ref/ocmath_test_peaks_by_number

Origin C Programming Guide

vyData.GetMinMax (dMin, dMax) ;

// Get the bigger value from the highest point or the lowest point.
// And multiply 20% to get the peak minimum height.
double dTotalHeight = max(abs (dMax), abs(dMin));

double dPeakMinHeight = dTotalHeight * 20 / 100;
// Verify peaks by specified minimum height
nRet = ocmath test peaks by height (&nDataSize, vxPeaks, vyPeaks, vnIndices,

dPeakMinHeight) ;

printf ("Peak Num = %d\n", nDataSize);

for (int 1i=0; ii<nDataSize; ii++)

printf ("Peak %d: (%f,%f)\n", ii+l1, vxPeaks[ii], vyPeaks[ii]);

12.6.5 Integrating and Fitting Peaks

12.6.5.1 Integrate Peak

The ocmath _integrate function is used to integrate to find the area under a curve.

The following example shows how to perform integration on the sub curve of one peak.

int i1 = 51, i2 = 134; // From/to index to set the sub range of one peak
IntegrationResult IntResult; // Output, integration result

vector vIntegral (i2+1); // Output, integral data

// Integrate and output result

if (OE_NOERROR == ocmath integrate(vx, vy, 1il, i2, &IntResult, vIntegral,

278

https://www.originlab.com/doc/OriginC/ref/ocmath_integrate

Analysis and Applications

MATHEMATICAL AREA, NULL, false, SEARCH FROM PEAK))

printf ("Peak 1: Peak Index = %d, Area = %g, FWHM = %g, Center = %g,
Height = %g\n", IntResult.iPeak, IntResult.Area, IntResult.dxPeak,

IntResult.xPeak, IntResult.yPeak);

12.6.5.2 Fitting Peak

The Origin C NLFitSession class supports a method to fit peaks with a different fitting function.

12.7 Using NAG Functions

12.7.1 Header Files

To call any NAG function, you need to include the header file or files where the NAG function is declared.

A single header file, which includes all the commonly used NAG header files, is provided below. Usually, you can

just include this header file in your code.

#include <OC_nag.h> // includes all common NAG header files

If only a single NAG function or just a few are used, you can also just include its (their) own individual NAG
header file(s). For example, if the NAG function f02abc is called in the code, then two related NAG header files

need to be included.

#include <NAG\nag.h> // NAG struct and type definitions

#include <NAG\nagf02.h> // contains the £f02 function declarations

12.7.2 Error Structure

All NAG functions accept one argument, which is a pointer of NagError structure. This structure is used to test

whether the NAG function is executing successfully or not.

The example below shows whether the NAG function f02abc works successfully.

279

https://www.originlab.com/doc/OriginC/ref/NLFitSession

Origin C Programming Guide

NagError err; // Declare an error structure

f02abc(n, mx, n, r, v, n, &err); // Call NAG f02abc function

if (err.code != NE NOERROR) // If an error occurred
printf (err.message) ; // Output error message

If you don't need to know whether the call is successful or not, the error structure declaration is not needed. And
the NAGERR_DEFAULT macro can be passed instead. This macro is a NULL pointer. To ensure compatibility

with future versions of NAG functions, it will be better to use this macro if you can work without error structure.

f02abc(n, mx, n, r, v, n, NAGERR DEFAULT);

12.7.3 Callback Functions

In the NAG Library, most of the routines involve callback functions. Before defining a callback function, you need

to know the return type and argument types of the callback function that NAG will expect when calling it.

Take the NAG function d017ajc for example. In the header file nagd01.h, we can see that the first argument is
NAG_DO01AJC_FUN f. This argument is a callback function. Then in nag_types.h, we find that
NAG_DO01AJC_FUN is a type of NAG_DO01_FUN, which is defined as:

typedef double (NAG CALL * NAG_DOl_FUN)(double);

Then we can define the callback function as follows:

double NAG CALL myFunc (double x)

double result;
// Do processing on 'x'

return result;

When calling the NAG function d07ajc, myFunc (defined above) can be passed as the first argument.

12.7.3.1 Calling c05adc Example

280

Analysis and Applications

This example will show how to call the NAG function cO5adc, the fourth argument of which is the callback

function argument. This callback function of type NAG_CO05ADC_FUN is defined in nag_types.h.

typedef double (NAG CALL * NAG CO5ADC FUN) (double) ;

From the definition, we know that both the return type and the only argument type are double. So we define the

callback function as follows:

double NAG CALL myCO5ADCfunc (double x)

return exp(-x)-x;

The following code shows how to call the c05adc function by passing the myC05ADCfunc callback function.

double a = 0.0, b = 1.0, x, ftol = 0.0, xtol = 1le-05;

NagError err;

cO5adc(a, b, &x, myCO5ADCfunc, xtol, ftol, &err);

12.7.4 NAG Get Data From Origin

Many NAG functions take a pointer to an array of numeric data. Both Origin worksheets and matrixsheets allow
getting a pointer to their data. This pointer can be passed to NAG functions. In Origin C, data is commonly
passed using Dataset or DataRange objects. The sections below will show how to pass data from a worksheet

by using Dataset and DataRange. The DataRange way is recommended.

12.7.4.1 Dataset
A Dataset object can be passed to a NAG function as long as the Dataset is of the data type expected by the
NAG function. The data type of an Origin worksheet column is Text & Numeric by default. For most, but not all,
NAG functions, this data type is not allowed to be passed, because NAG functions expect floating or integer

pointers.

If you make sure that the Dataset is of the type expected by the NAG function, the following code can be used to

pass a Dataset object to a NAG function.

281

Origin C Programming Guide

// Get access to the active worksheet.

Worksheet wks = Project.Activelayer();

// Construct Datasets to get access to the wks data.
Dataset dsX, dsY;
dsX.Attach (wks, 0);

dsY.Attach (wks, 1);

// Call NAG's nag 1d spline interpolant (eOlbac) function.
NagError err;
Nag Spline spline;

eOlbac (m, dsX, dsY, &spline, &err);

12.7.4.2 DataRange
The DataRange class provides the GetData method for getting data from a worksheet into a vector, even if the
worksheet columns are of the Text & Numeric data type. The GetData method can also ignore the rows with

missing values easily, which is very important when passing data to NAG functions.

Using DataRange to pass data from Origin to NAG functions is much safer, and is recommended. The following

example demonstrates how to do that.

void call NAG example ()

int i, numPoints = 5;

// Create a new worksheet page.

WorksheetPage pg;

pg.Create ("origin");

282

Analysis and Applications

// Get access to the active worksheet and add two more columns.
Worksheet wks = Project.Activelayer();

// Add X2 column

i = wks.AddCol();

Column col (wks, 1i);

col.SetType (OKDATAOBJ DESIGNATION X) ;

// Add Y2 column

wks.AddCol () ;

// Create some starting XY values in first two columns
Dataset dsX, dsY¥Y;

dsX.Attach (wks, 0);

dsY.Attach (wks, 1);

for (i = 0; 1 < numPoints; i++)

int r = rnd(0) * 10;

if (r < 1)
r =1;
if (i > 0)

r += dsX[i - 1];

dsX.Add (r) ;

dsY.Add (rnd (0)) ;

// Create data range object.

DataRange dr;

dr.Add (wks, 0, "X");

283

Origin C Programming Guide

dr.Add (wks, 1, "Y");

// Copy data from wks to vector using data range.
// This copy will ignore rows with missing values.
vector vX1, vYl;

dr.GetData (DRR _GET DEPENDENT, 0, NULL, NULL, &vY1l, &vX1);

// Call NAG to calculate coefficients.
NagError err;
Nag Spline spline;

eOlbac (vX1l.GetSize (), vX1l, vYl, é&spline, &err);

// Get the spline's XY values
vector vX2, vY¥Y2;
double fit, xarg;

for (1 = 0; 1 < vX1l.GetSize(); 1i++)

vX2.Add (vX1[i]);
vY2.Add (vY1[i]);

if (1 < vX1l.GetSize() - 1)

xarg = (vX1[i] + vX1[1i + 1]) * 0.5;
e02bbc (xarg, &fit, &spline, &err);
vX2.Add (xarg) ;

vY2.Add (fit);

284

Analysis and Applications

// Free memory allocated by NAG
NAG FREE (spline.lamda) ;

NAG FREE (spline.c);

// Copy spline values to worksheet

dsX.Attach (wks, 2);

dsX = vX2;

dsY.Attach (wks, 3);

dsY = vY¥2;

12.7.5 How to Call NAG e04 Functions

The following example will show how to call the NAG function, nag_opt_simplex_easy, safely. And the results

will output to a file.

#include <OC nag.h>

#define NULLFN NULL

void text eO4cbc()

double objf;

double x[2];

Integer maxcal, n;

NagError fail;

285

Origin C Programming Guide

maxcal,

286

printf ("\nelO4cbc example: \n");

maxcal = 100;

X
—
—
I
|
o
©
~

tolf = sgrt(nag machine precision);

tolx

sqgrt (tolf) ;

try

// call the NAG function, eO4cbc = nag opt simplex easy

nag opt simplex easy(n, x, &objf, tolf, tolx, funct, NULLFN,

NAGCOMM NULL, &fail);
}
catch (int err)
{
printf ("\nerror = %d\n", err); // if there is an exception
}
printf ("fail->code = %d\n", fail.code); // error code
printf ("fail->message = %s\n", fail.message); // error message

printf ("The final function value is %12.4f\n", objf);
printf ("at the point");

for (int ii = 1; ii <= n; ++ii)

printf (" %12.4f", x[ii-11]);

Analysis and Applications

printf ("\n");

// call back function for nag opt simplex easy

void NAG CALL funct (Integer n, double* xc, double* objf, Nag Comm* comm)

objf = exp(xc[0])(xc[0]*4.0* (xc[0]+xc[1l])+xc[1l]*2.0*(xc[1]+1.0)+1.0);

287

13 Output Objects

13.1 Output Objects

This section covers the following topics:

Results Log
Script Window

Notes Window

Report Sheet

13.2 Results Log

The Results Log is an output window that automatically stamps each block of output with the date and time and
the name of the window associated with the results. The user interface allows users to configure which results

are displayed and to float the window or dock it to Origin's main window.

The following example shows the simplest way to output to the Results Log from Origin C using the
OutStringToResultsLog method of the Project class. While this is the simplest way to output to the Results Log, it
can also be considered the most limited. Each call to the OutStringToResultsLog method is considered an

individual log and will be stamped with the current date and time and the name of the associated window.

string str = "Columnl\tColumn2\tColumn3\n3.05\t17.22\t35.48";

Project.OutStringToResultsLog (str) ;

13.3 Script Window

The Script Window is the default output window for Origin C. Whenever you output strings or numeric values
they will appear in the Script Window. You can change which window such output appears in by setting
LabTalk's Type.Redirection property. This property allows you to redirect your application's output to the Script
window, Command window, Results Log, or even a Note window. See LabTalk's Type.Redirection property for

more details.

The following example will save the current Redirection setting, set it to redirect output to the Script window

output, then the Command window, and then restore the saved setting.

289

https://www.originlab.com/doc/OriginC/guide/Results-Log
https://www.originlab.com/doc/OriginC/guide/Script-Window
https://www.originlab.com/doc/OriginC/guide/Notes-Window
https://www.originlab.com/doc/OriginC/guide/Report-Sheet

Origin C Programming Guide

string strTypeRedir = "type.redirection";
double dCurTypeRedir;

LT get var(strTypeRedir , &dCurTypeRedir); // get current

LT set var(strTypeRedir , 5); // 5 for Script window

out str("Hello Script Window");

LT set var(strTypeRedir , 128); // 128 for Command window

out str("Hello Command Window") ;

LT set var(strTypeRedir , dCurTypeRedir); // restore current

13.4 Notes Window

The first example shows how to work with the text of a Note window using the Text property. The Text property

is a string class type which allows you to use all the string capabilities of strings.

Note note;

note.Create(); // Create the target Note window

if (note)

{
note.Text = "Hello Note window.";
note.Text += "\nAnother line of text."

The next example will use Type.Redirection and Type.Notes$ to redirect Origin C output to a Note window.

Note note;

note.Create(); // Create the target Note window

290

Output Objects

LT set str("type.notes$", note.GetName());

LT set var("type.redirection", 2); // 2 for Note window

out str("Hello Notes Window") ;

13.5 Report Sheet

The Datasheet class has the GetReportTree and SetReportTree methods for getting and setting a report into a

worksheet or matrixsheet.

if(wks.SetReportTree (tr.MyReport) < 0)

out str("Failed to set report sheet into worksheet.");

if (wks.GetReportTree (tr.MyReport))
out tree (tr.MyReport) ;
else

out str("Failed to get report tree from worksheet.");

291

https://www.originlab.com/doc/OriginC/ref/Datasheet-GetReportTree
https://www.originlab.com/doc/OriginC/ref/Datasheet-SetReportTree

14 Accessing Database

14.1 Accessing Database

This section covers the following topics:

Importing from a Database

Exporting into a Database

Accessing SQLite Database

14.2 Importing from a Database

Origin C includes the ability to import data from a database into a worksheet. The following example shows how
to do this by importing an Access database file, included in the Origin Samples folder. An ADODB.Reocrdset

object can refer to MSDN. To find out how to construct your connection string, refer to DbEdit X-Function

Object ocora;

try

ocora = CreateObject ("ADODB.Recordset") ;

catch (int nError)

out str("Failed to create ADODB.Recordset");

return FALSE;

// Import stars.mdb from the Origin Samples folder

293

https://www.originlab.com/doc/OriginC/guide/Importing-from-a-Database
https://www.originlab.com/doc/OriginC/guide/Exporting-into-a-Database
https://www.originlab.com/doc/OriginC/guide/Accessing-SQLite-Database
https://www.originlab.com/doc/X-Function/ref/dbEdit

Origin C Programming Guide

string strDatabaseFile = GetAppPath(l) +

"Samples\\Import and Export\\stars.mdb";

// Prepare the database connection string
string strConn;
strConn.Format ("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=%s;

User ID=admin; Password=;", strDatabaseFile);

// Prepare the SQL string

string strQuery = "Select Stars.Index, Stars.Name, Stars.LightYears,

Stars.Magnitude From Stars";

ocora.CursorLocation = adUseClient;

try

ocora.open (strQuery, strConn, 1, 3);

catch (int nError)

out_str("Failed to open Oracle database");

return FALSE;

Worksheet wks;

wks.Create () ;

294

Accessing Database

//put data into the worksheet.
BOOL bRet = wks.PutRecordset (ocora) ;
out_int ("bRet = ", DbRet);

return bRet;

14.3 Exporting into a Database

Origin C has the ability to export data from a worksheet to a specified database table. The following steps show

how to export fitting summary data into a database.
Set up a database named "Analysis" in MySQL, and assume it is running on the machine "Lintilla".

Create a table named "FittingSummary" with 9 fields, set the data type of the first two fields as varchar(40) and

the rest as double.
Open OriginExe\Samples\Curve Fitting\autofit.ogw, and fill the columns on the "Data" layer with data.

After recalculating, activate the "Summary" layer, and run the following code to export the result to a database.

//user should modify connect and query string according to their database settings.
//such as value of Server, Database, UID, PWD etc.

#define STR DB _CONN "Driver={MySQL ODBC 3.51
Driver}; \

Server=Lintilla;Port=3306;0ption=4;Database=Analysis;UID=test;PWD=test;"

#define STR_QUERY "Select * from FittingSummary"

bool write wks to db()

Worksheet wks = Project.Activelayer();

if (wks)

return false;

//connect to database "Analysis" on "Lintilla"

295

Origin C Programming Guide

string strConn = STR DB CONN;

string strQuery = STR QUERY;

Object oConn;
oConn = CreateObject ("ADODB.Connection") ;
if (!'oConn)
return error_report("Fail to create ADODB.Connection object!");

oConn.Open (strConn) ;

Object oRecordset;
oRecordset = CreateObject ("ADODB.Recordset") ;
if (!'oRecordset)

return error report("Fail to create ADODB.Recordset object!");

//open recordset

oRecordset.CursorLocation = 3; //adUseClient, please refer to MSDN for
details

oRecordset.Open (strQuery, oConn, 1, 3); //adOpenKeyset, adLockOptimistic

int iRowBegin = 0, nRows = 8; //8 rows

int iColBegin = 0, nCols = 9; //9 columns

//LAYWKSETRECORDSET APPEND for appending new recordset;

//LAYWKSETRECORDSET REPLACE for replacing existing recordsets.

int nOption = LAYWKSETRECORDSET APPEND; //append.

int nRet = wks.WriteRecordset (oRecordset, nOption,

296

Accessing Database

iRowBegin, nRows, iColBegin, nCols);

return (0 == nRet);

14.4 Accessing SQLite Database

SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine, and it has become the most widely deployed SQL database in the world. Due to the excellent

features, SQLite is now widely used in different applications and systems.

SQLite3 is the latest version released. Origin provides DLLs for accessing 32-bit and 64-bit SQLite database

from Origin C. It is necessary to include a header file that contains the prototypes of SQLite3 APlIs:

#include <oc_Sglite.h>
A simple example of how to use these functions is available at the end of the header file.

Origin C also provides a wrapped class, OSQLite, that makes accessing SQLite much easier. To use this Origin

C class, the header file containing this class must be included, like:

//DataSetl.1.db is a database file, which contains a table named Originlab

//The table is created with the following statement

//CREATE TABLE OriginLab (ID INTEGER NOT NULL, NUMBER INTEGER NOT NULL, SALARY INTE
//GER NOT NULL, Data BLOB NOT NULL) ;

#include <..\Originlab\oSQLite.h> //required header file

#define STR_DATABASE FILE "E:\\DataSetl.1l.db"

#define STR_QUERY STRING "select * from Originlab limit 80"

void test OSQLite ()

0SQLite sglObj (STR_DATABASE FILE) ;

LPCSTR 1pSQL = STR QUERY STRING;

297

Origin C Programming Guide

sgqlObj.Select (1pSQL) ;

Worksheet wks;

wks.Create ("Origin") ;

sqlObj . Import (wks) ;

//after modify the data, may use the following code to export data

//sgqlObj.Export ("OriginLab", wks);

Origin C supports put database query result to vector:

#include <..\Originlab\oSQLite.h>
#define STR DATABASE FILE "E:\\DataSetl.1l.db"
#define STR_QUERY STRING "select * from Originlab limit 80"

void test OSQLite ex2()

OSQLite Squbj(STR_DATABASE_FILE);
LPCSTR 1pSQL = STR QUERY STRING;
sgqlObj.Select (1pSQL) ;
vector<string> vsData;
vector<double> vdData;

sqlObj.GetFieldDataByName (&vsData, &vdData, "ID");

298

15 Accessing LabTalk

15.1 Accessing LabTalk

This section covers the following topics:

Getting and Setting Values for LabTalk Variables

Running LabTalk Script

Embedding LabTalk Script in Origin C Code

15.2 Getting and Setting Values for LabTalk Variables

Origin C has the ability to get and set LabTalk numeric and string values and run LabTalk scripts.

15.2.1 Getting and Setting LabTalk Numeric Values

The Origin C LT _get var and LT _set var global functions are used for getting and setting LabTalk numeric

values. Numeric values include variables, system variables and object properties. Class member functions

OriginObject::GetProp and OriginObject::SetProp can get and set object properties.

double dOriginVer;
LT get var("@vV", &dOriginVer);
printf ("Running Origin version %$f\n", dOriginVer) ;

This is how to set the minimum font size used in the Data Display window.

LT set var("System.DataDisplay.MinFontSize", 12);

There are times when you will want to temporarily set a LabTalk variable, do some work, and then restore the
LabTalk variable to its original value. There are mainly two ways to do this. The first way is the long way to do it

using LT_get varand LT_set var.

double dProgressBar;

299

https://www.originlab.com/doc/OriginC/guide/Getting-and-Setting-Values-for-LabTalk-Variables
https://www.originlab.com/doc/OriginC/guide/Running-LabTalk-Script
https://www.originlab.com/doc/OriginC/guide/Embedding-LabTalk-Script-in-Origin-C-Code
https://www.originlab.com/doc/OriginC/ref/LT_get_var
https://www.originlab.com/doc/OriginC/ref/LT_set_var
https://www.originlab.com/doc/OriginC/ref/OriginObject-GetProp
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetProp

Origin C Programming Guide

LT get var ("@NPO", &dProgressBar); // get starting value

LT set var("@NPO", 0); // set new value

//

// do some work

//

LT set var ("@QNPO", dProgressBar); // restore starting value

The next way is the simple way using the L TVarTempChange class. To use the class you simply pass the
variable name and the temporary value. The constructor saves the starting value into a data member and sets

the variable to the temporary value. The destructor will restore the variable to its starting value.

LTVarTempChange progressBar ("@NPO", O0);
//
// do some work

//

This is how to set and get line object color.

//This example assumes the active graph has a line object

void SetProp Ex1 (int nColor = 0, string strName = "line")
{

GraphLayer gl = Project.Activelayer();

GraphObject grobj;

grobj = gl.GraphObjects (strName) ;

double vv;

if (grobj)

300

Accessing LabTalk

int nn = grobj.SetProp("color", nColor);
out int ("SetProp return: ", nn);

out _int("new color: ", grobj.GetProp("color"));

else

out str("no such obj");

15.2.2 Getting and Setting LabTalk String Values

The Origin C LT _get _str and LT_set_str global functions are used for getting and setting LabTalk string values.

String values include variables, string substitution variables and object properties. Class member functions

OriginObject::GetProp and OriginObject::SetProp can get and set object properties.

char szCustomDateFmt [200];
LT get str("System.Date.CustomFormatl$", szCustomDateFmt, 200);
printf ("Custom Date Format 1: %s\n", szCustomDateFmt) ;

This is how to set the font used in the Data Display window.

LT set str("System.DataDisplay.Font$", "Courier");

This is how to rename the active sheet of the active book.

LT set str("wks.name$", "MySheet");

15.3 Running LabTalk Script

The Origin C LT_execute global function allows you to run LabTalk script stored in a string. The Format string

method can be useful in passing Origin C variables into the LabTalk script:

string strScript;

301

https://www.originlab.com/doc/OriginC/ref/LT_get_str
https://www.originlab.com/doc/OriginC/ref/LT_set_str
https://www.originlab.com/doc/OriginC/ref/OriginObject-GetProp
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetProp
https://www.originlab.com/doc/OriginC/ref/LT_execute

Origin C Programming Guide

string strBook = "Bookl";

int iColStart = 2, iColEnd = 5;

strScript.Format ("win -a %s;plotxy %u:%u;", strBook, iColStart, iColEnd);
LT execute(strScript);

The next example calls the LT_execute method of the Layer class instead of the global LT_execute function.
When calling the global LT_execute function, the script runs and will operate on the active layer when no layer is
specified by the script code. When calling the LT_execute method of the Layer class, the script runs and will

operate on the layer instance instead of the active layer.

WorksheetPage wksPg ("Bookl");

Worksheet wks = wksPg.Layers (0);

WorksheetPage wksPgActive;

wksPgActive.Create ("Origin"); // This page is now active

LT execute ("wks.colWidth=16"); // Set column widths of active layer
wks.LT execute("wks.colWidth=8"); // Set column widths of Bookl

You can also use OriginObject::SetProp function to change the LabTalk object properties. You can find more in

the See Also section.

wks.SetProp ("colWidth", 8);

15.4 Embedding LabTalk Script in Origin C Code

LT_execute allows you to execute the LabTalk script contained in a string, but there are times when you will
want to execute a large block of script that you may not want to put into a string, for readability. For those times
you can use the _LT_Obj block. The _LT_Obj block allows you to embed a large block of LabTalk script code
right into the flow of your Origin C code to access LabTalk objects. For LabTalk objects, please refer to LabTalk

Help: LabTalk Programming: Language Reference: Object Reference

302

https://www.originlab.com/doc/OriginC/ref/OriginObject-SetProp
https://www.originlab.com/doc/OriginC/ref/OriginObject-SetProp
https://www.originlab.com/doc/LabTalk/ref/Object-Reference
https://www.originlab.com/doc/LabTalk/ref/Object-Reference

Accessing LabTalk

out str("Choose an image file...");

_LT Obj // Use LabTalk's FDlog to show a file dialog

// Origin C code

string strDefaultPath = GetOriginPath(); // to get Origin EXE path

// LabTalk script to access FDLog object
FDLog.Path$ = strDefaultPath;
FDlog.UseGroup ("image") ;

FDlog.Open() ;

char szFileName [MAX PATH];
LT get str("%A", szFileName, MAX PATH);

printf ("File Name: $%$s\n", szFileName) ;

303

16 Accessing X-Function

Origin has many built-in X-Functions for handling a variety of tasks. X-Functions can be called from both
LabTalk and Origin C. This Section will show you how to call X-Functions from Origin C by using Origin C's

XFBase class. This mechanism also can be used in calling one X-Function in another X-Function.

The XFBase class is declared in the XFBase.h header file located in the Origin C System folder. The XFBase.h
header file is not included in the Origin.h header file so it has to be included separately in any Origin C file for the

use of XFBase class.

#include <XFBase.h>

16.1 Calling the impFile X-Function From Origin C

The procedure to use X-Functions in Origin C is as following:

Declare an object that is to be constructed from a specified X-Function
Assign arguments using the SetArg options from the X-Function object
Execute the X-Function using the Evaluate method of the X-Function object

The following Origin C code defines a general function for importing files into Origin. The function has two
arguments: data file name and import filter file name. Additional arguments of the impFile X-Function will use

their default values.

bool call impFile XF(LPCSTR lpcszDataFile, LPCSTR lpcszFilterFile)
{
string strDataFile = lpcszDataFile;

string strFilterFile = lpcszFilterFile;

// Create an instance of XFBase using the X-Function name.
XFBase xf ("impFile");
if (!xf)

return false;

305

https://www.originlab.com/doc/X-Function
https://www.originlab.com/doc/X-Function/ref/impFile

Origin C Programming Guide

// Set the 'fname' argument.
if (!xf.SetArg("fname", strDataFile))

return false;

// Set the 'filtername' argument.
if (!xf.SetArg("filtername", strFilterFile))

return false;

// Call XFBase's 'Evaluate' method to execute the X-Function

if (!xf.Evaluate())

return false;

return true;

The following Origin C code shows how to call the call_impFile_XF function defined above and use it to import an

image file.

// Import the Car bitmap located in Origin's Samples folder.
string strImageFile = GetAppPath (TRUE) +

"Samples\\Image Processing and Analysis\\Car.bmp";

// Import the bitmap using the Image import filter.

string strFilterFile = GetAppPath(TRUE) + "Filters\\Image.oif";

// Call the function that will use the impFile X-Function.

call impFile XF(strImageFile, strFilterFile);

306

Accessing X-Function

Note:

For more example on accessing X-Function, see Help: Programming > Origin C > Examples >

Accessing X-Functions > Accessing X-Function

For more information on X-Function, see Help: X-Functions

307

https://www.originlab.com/doc/OriginC/examples/Accessing-X-Functions
https://www.originlab.com/doc/OriginC/examples/Accessing-X-Functions
https://www.originlab.com/doc/X-Function

17 Calling Python Functions from Origin C

Python functions can be called from Origin C using the syntax

Python. function name (argl, arg2...)

By default the .py file should be placed in the same folder as the C/CPP or XF file. The name of the file should
be origin.py.

Example - Python Function to perform Bayesian regression:

numpy np
pandas pd
originpro op
sklearn linear model

bayesian (vX, vY):

blr = linear model.BayesianRidge (tol=1le-6, fit intercept=True,
compute score=False, alpha init=1, lambda init=le-3)

blr.fit (np.vander (vX, 10), vY)
mean = blr.predict (np.vander (vX, 10))
mean

The function can then be called from OC code:

void bayesian reg/()

// Have a worksheet active, with three columns

// Columns 1 and 2 have the X and Y data for fitting

// Column 3 will have the fit curve result

309

Origin C Programming Guide

Worksheet wks=Project.Activelayer();
Dataset dsx, dsy, dsypred;
dsx.Attach (wks, 0);

dsy.Attach (wks, 1);

dsypred.Attach (wks, 2);

dsypred = Python.bayesian (dsx, dsy);

Multiple variables can be returned from Python function through arguments. & sign before the argument name

indicates it's a returned variable.

Python. function name (argl, arg2..., & retl, & ret2...)

Example - Python Function to perform Bayesian regression to return both fitted values and fitted errors:

import numpy as np
import pandas as pd
import originpro as op

from sklearn import linear model

def bayesian (vX, vY, v¥mean, vY¥Ystd):

blr = linear model.BayesianRidge (tol=le-6, fit intercept=True,
compute score=False, alpha init=1, lambda init=le-3)

blr.fit (np.vander (vX, 10), vY)

mean, std = blr.predict (np.vander(vX, 10), return std=True)
vY¥mean[:] = mean # pass mean values to variable vYmean
vY¥std[:] = std # pass error values to variable vY¥Ystd

The function can then be called from OC code:

310

Calling Python Functions from Origin C

void bayesian reg()

// Have a worksheet active, with four columns

// Columns 1 and 2 have the X and Y data for fitting
// Column 3 and column 4 will have the fit curve result, and fitted error.
Worksheet wks=Project.Activelayer();

Dataset dsx, dsy, dsypred, dsystd;

dsx.Attach (wks, 0);

dsy.Attach (wks, 1);

dsypred.Attach (wks, 2);

dsystd.Attach (wks, 3);

vector vYmean, vY¥std;

Python.bayesian (dsx, dsy, &v¥mean, &vY¥std);

dsypred = vYmean;

dsystd = vY¥Ystd;

To change the file location, you can set the LabTalk Python object property: Python.OCWD$ to the full path of
the desired folder (the working directory).

To change the file name, you can set the LabTalk Python object property: Python.OCWFS$ to the name of the

desired Python file in the working directory.

311

18 User Interface

18.1 User Interface

This chapter demonstrates ways in which Origin C functions allow user interaction.

This section covers the following topics:
Dialog
Wait Cursors

Picking Points from a Graph

Adding Controls to a Graph

18.2 Dialog

18.2.1 Dialog

A graphic user interface(GUI) is one important part of your customized application in Origin. Creating GUI is
associated with generating dialog in the Origin environment. This section demonstrates several ways to bring up

dialog in Origin:

The simplest dialog can be generated using the Built-in dialog boxes function in Origin C (OC). the method

supports several basic functionalities such as showing messages, opening files, saving files, etc.

If you need more controls of the dialog elements and also have some experience with OC, GetN Macros and
GetNBox function in OC would be the right choice. More or less like C++, this method grants the access to each
element in dialog to which you can add your own application script. GetN dialog provides an easier way to

access and output data in Origin's worksheet.

A more automatic way to build dialog is probably using X-function builder. With this method, Origin generates
dialog automatically for you and your task is merely defining the inputs and filling out spaces where your

application logic is required. X-Function dialog can support Recalculate feature.

Python is embedded in Origin since Origin 2015. By calling Python in Origin, interactive dialog can also be

generated with Python modules such as tkinter. It is very easy to learn how to build a Python dialog.

An even more sophisticated way would be to use Microsoft Visual C++ generated resource DLL for building
floating tools, dialog boxes, and wizards in Origin. All elements in Origin, e.g. windows, worksheets, graphs can

be accessed and controlled by this method. Using Visual C++ DLL dialog, you can build a very complex GUI.

313

https://www.originlab.com/doc/OriginC/guide/Dialog
https://www.originlab.com/doc/OriginC/guide/Wait-Cursors
https://www.originlab.com/doc/OriginC/guide/Picking-Points-from-a-Graph
https://www.originlab.com/doc/OriginC/guide/Adding-Controls-to-a-Graph
http://www.originlab.com/doc/python/Run-Python-in-Origin

Origin C Programming Guide

Lastly, starting from Origin 2017, we add support for dialogs using HTML and JavaScript which adds more
flexibility to making dialog that interacts with Origin. There are hundreds of third party libraries to call for HTML
dialog. Using HTML dialog, you can build a very nice and complex GUI.

This section covers the following topics:

Built-in Dialog Boxes

GetN Dialog

X-Function

Dialog Builder

Origin C HTML Dialog with JavaScript Support

18.2.2 Built-in Dialog Boxes

18.2.2.1 Input Box
Input boxes are used to solicit textual information from program users. The global function InputBox is used to

open an input box.

// enter string
string strName = InputBox ("Please enter your name", "");

printf ("Name is %s.\n", strName);

// enter numeric
double dvVal = InputBox (0, "Please enter a value");

printf ("Value is %g.\n", dval);

18.2.2.2 Message Box

314

https://www.originlab.com/doc/OriginC/guide/Built-in-Dialog-Boxes
https://www.originlab.com/doc/OriginC/guide/GetN-Dialog
https://www.originlab.com/doc/OriginC/guide/X-Function
https://www.originlab.com/doc/OriginC/guide/Dialog-Builder
https://www.originlab.com/doc/OriginC/guide/HTML-Dialog

User Interface

Message boxes are used to convey information, or to prompt a user with a limited number of choices. The
information presented is considered important enough to require the user's attention before they are allowed to

continue.

The first example shows a simple OK message box to inform the user that their file has downloaded

successfully.

string strTitle = "File Download";
string strMsg = "Your file downloaded successfully.";
MessageBox (GetWindow (), strMsg, strTitle, MB OK) ;

The next example shows an OK-Cancel message box with an exclamation icon to warn the user that they will not

be able to undo an action. This gives the user a choice to proceed or to cancel their action.

string strTitle = "Delete Data";

string strMsg = "You will not be able to undo this change.";

int nMB = MB OKCANCEL|MB ICONEXCLAMATION;

if(IDOK == MessageBox (GetWindow (), strMsg, strTitle, nMB))
out str("Data has been deleted");

The next example shows a Yes-No message box with a question mark icon. This is being used to ask the user if

they want to continue with their action.

string strTitle = "Close Windows";

string strMsg = "Are you sure you want to close all windows?";

int nMB = MB YESNO|MB ICONQUESTION;

if(IDYES == MessageBox (GetWindow (), strMsg, strTitle, nMB))
out str("All windows have been closed.");

The next example shows a private reminder message dialog. An Ini file is used to initialize the dialog. Each

section in the ini file is used for a single message.

315

Origin C Programming Guide

/* Example Dialog.ini file in UFF.
[MyMessage]

;Title = My Reminder

Msg = This is my message.

;Btns = 4 for Yes No buttons

Btns = 4

*/

void PrivateReminderMessage exl ()

string iniFileName = GetOriginPath (ORIGIN PATH USER) + "Dialog.ini";
int nRet = PrivateReminderMessage ("MyMessage'", iniFileName) ;

printf ("User chose %d\n", nRet);

18.2.2.3 Progress Box

A progress box is a small dialog box that indicates the software is busy processing data. This dialog box contains
a progress bar for showing the fraction of the completed processing. The progress dialog box is usually used in

iterative loops.

int iMax = 10, iMin = 0;
progressBox prgbBox ("This is a ProgressBox example:");

prgbBox.SetRange (iMin, iMax) ;

for (int ii=iMin; ii<=iMax; ii++)

if (prgbBox.Set (ii))

printf ("Hi, it is now at %d.\n", ii);

else

316

User Interface

out str("User abort!"); // Click Cancel button to abort

break;

LT execute("sec -p 0.5");

18.2.2.4 File Dialogs
Origin C provides functions for all the common file and path dialogs. This includes dialogs that prompt the user to
open a single file, open multiple files, save a file, and choose a folder. The following sections show you how to

use these dialogs in your own applications.

18.2.2.4.1 File Open Dialog

StringArray saFiletypes(3);

saFiletypes[0]="[Project (*.OPJ)] *.OPJ";
saFiletypes[1]="[01ld version (*.0ORG)] *.ORG";
saFiletypes[2]="[Worksheets (*.0GW)] *.OGW";

string strPath = GetOpenBox(saFiletypes, GetAppPath(false));

out str(strPath);

18.2.2.4.2 Multiple Files Open Dialog

StringArray saFilePaths;

StringArray saFileTypes (3);

saFileTypes[0]="[Project (*.OPJ)] *.OPJ";
saFileTypes[1]="[01ld version (*.0ORG)] *.ORG";
saFileTypes[2]="[Worksheets (*.0GW)] *.OGW";

317

Origin C Programming Guide

// Press Ctrl or Shirt key to choose multiple files

int iNumSelFiles = GetMultiOpenBox (saFilePaths, saFileTypes, GetAppPath (false));

18.2.2.4.3 File SaveAs Dialog

string strDefaultFilename = "Origin";

FDLogUseGroup nFDLogUseGroup = FDLOG ASCII; // ASCII file group

string strPath = GetSaveAsBox (nFDLogUseGroup, GetAppPath (false),strDefaultFilename) ;

out str(strbPath);

18.2.2.4.4 Path Browser Dialog

string strPath = BrowseGetPath (GetAppPath() + "OriginC\\", "This is an example");

out str(strPath);

18.2.3 GetN Dialog

18.2.3.1 Simple Dialog

There is an easy way to create a simple dialog using GetN macros and GetNBox function.

The dialog looks below:

Input data [[Book1]Shest11A

Operator @ Add
(71 Subtract

Operand [Constant

Constant 10

Dutput data [[EBook1]Shest1IC

318

https://www.originlab.com/doc/OriginC/ref/GetN-OriginC
https://www.originlab.com/doc/OriginC/ref/GetNBox

User Interface

Run the following function to open the upper dialog:

#include <GetNbox.h>

void simple dialog ()

319

GETN_BOX (trRoot) // define a Tree variable named "trRoot"

// data range control

GETN_ INTERACTIVE (Input, "Input data", "[Bookl]Sheetl!A")

// radio button

GETN_RADIO INDEX EX(Operator, "Operator", 0, "Add|Subtract")

// list box

GETN LIST(type, "Operand", 0, "Constant|Reference Data")

// string edit box

GETN_STR(Constant, "Constant", "10")

// choose a data range for reference data

GETN_ INTERACTIVE (Reference, "Reference Data", "[Bookl]Sheetl!B")

// choose a column for output data

GETN_INTERACTIVE (Output, "Output data", "[Bookl]Sheetl!C")

// bring up dialog

GetNBox (trRoot) ;

Origin C Programming Guide

18.2.3.2 Controls
The following table lists the commonly used controls. For more controls and style setup, please refer to Origin C

Reference: Macros: GetN.

Picture Name
GETN_RADIO INDEX
IEI
GETN_RADIO INDEX EX
GETN_CHECK
GETN_LISTBOX
hwia
three GETN_MULTISEL LISTBOX
Buttan...
GETN_BUTTON_GROUP
CAlUserst [GETN_BUTTON
GETN_COMBO(for numeric)
L v GETN_LIST(for string, return the index of selection)
GETN_STRLIST(for string, return the selected text)
GETN_STR_GROUP(multiple selections)
Combo - GETN_COMBO BUTTON
1-10 GETN_RANGE
E dit b GETN_STR(for string)

320

https://www.originlab.com/doc/OriginC/ref/GetN-OriginC
https://www.originlab.com/doc/OriginC/ref/GetN-OriginC
https://www.originlab.com/doc/OriginC/ref/GETN_RADIO_INDEX
https://www.originlab.com/doc/OriginC/ref/GETN_RADIO_INDEX_EX
https://www.originlab.com/doc/OriginC/ref/GETN_CHECK
https://www.originlab.com/doc/OriginC/ref/GETN_LISTBOX
https://www.originlab.com/doc/OriginC/ref/GETN_MULTISEL_LISTBOX
https://www.originlab.com/doc/OriginC/ref/GETN_BUTTON_GROUP
https://www.originlab.com/doc/OriginC/ref/GETN_BUTTON
https://www.originlab.com/doc/OriginC/ref/GETN_COMBO
https://www.originlab.com/doc/OriginC/ref/GETN_LIST
https://www.originlab.com/doc/OriginC/ref/GETN_STRLIST
https://www.originlab.com/doc/OriginC/ref/GETN_STR_GROUP
https://www.originlab.com/doc/OriginC/ref/GETN_COMBO_BUTTON
https://www.originlab.com/doc/OriginC/ref/GETN_RANGE
https://www.originlab.com/doc/OriginC/ref/GETN_STR

User Interface

GETN_NUM(for numeric)

GETN_MULTILINE TEXT (multiple lines text)

0 GETN_SPINNOR DOUBLE

GETN_SLIDER

GETN_SLIDEREDIT(editable)

B SETN SYlEOL

GETN_SEPARATOR LINE

DT-";-"'IE-"EG'IS;': GETN_DATE
09:41:03.94 GETN_TIME
PassWord | GETN_PASSWORD

GETN_XYRANGE

Input Data | El») GETN XYRANGE COMPLEX
DataRange |)] GETN_XYZRANGE

GETN_INTERACTIVE

18.2.3.3 Event Handler

In the above dialog box, you can add an event function like below function node_event to dynamicly show/hide a

control, or reconstruct a combo list and so on.

Change the line in the above example function from

321

https://www.originlab.com/doc/OriginC/ref/GETN_NUM
https://www.originlab.com/doc/OriginC/ref/GETN_MULTILINE_TEXT
https://www.originlab.com/doc/OriginC/ref/GETN_SPINNOR_DOUBLE
https://www.originlab.com/doc/OriginC/ref/GETN_SLIDER
https://www.originlab.com/doc/OriginC/ref/GETN_SLIDEREDIT
https://www.originlab.com/doc/OriginC/ref/GETN_COLOR
https://www.originlab.com/doc/OriginC/ref/GETN_SYMBOL
https://www.originlab.com/doc/OriginC/ref/GETN_SEPARATOR_LINE
https://www.originlab.com/doc/OriginC/ref/GETN_DATE
https://www.originlab.com/doc/OriginC/ref/GETN_TIME
https://www.originlab.com/doc/OriginC/ref/GETN_PASSWORD
https://www.originlab.com/doc/OriginC/ref/GETN_XYRANGE
https://www.originlab.com/doc/OriginC/ref/GETN_XYRANGE_COMPLEX
https://www.originlab.com/doc/OriginC/ref/GETN_XYZRANGE
https://www.originlab.com/doc/OriginC/ref/GETN_INTERACTIVE

Origin C Programming Guide

GetNBox (trRoot) ;

to

GetNBox (trRoot, node event);

Add an event fucntion as below:

int node event (TreeNode& trRoot, int nRow, int nEvent, DWORD& dwEnables,
LPCSTR lpcszNodeName, WndContainer& getNContainer, stringé& strAux,

string& strErrMsg)

if(0 == lstrcmp(lpcszNodeName, "type") || GETNE ON VALUE CHANGE == nEvent
|| GETNE ON INIT == nEvent)
{
trRoot.Constant.Show = (0 == trRoot.type.nVal); // show Constant
trRoot.Reference.Show = (1 == trRoot.type.nVal); // show reference

return 0;

18.2.3.4 Apply Button

The default GetN Dialog has OK and Cancel buttons; the Apply button is optional. When the Apply button is

displayed, and the user clicks this button, you may want to call the related event function to do something.

The following is an example showing how to display the Apply button on a GetN dialog, and call the event

function _apply_event when the Apply button is clicked.

#include <GetNbox.h>

void GETN Apply exl1 ()

322

User Interface

GETN_TREE (tr)
GETN COLOR (LineColor, "Color", 3)
// the option to set color list to contain custom panel

GETN_COLOR CHOICE OPTIONS (COLORLIST CUSTOM | COLORLIST SINGLE)

bool bShowApply = true;
if (GetNBox (tr, NULL, "Example", NULL, GetWindow (), bShowApply,

_apply event))

out_str("Click OK");

// The interface of apply button event function need to according to
// PAPPLY FUNC typedef.

bool apply event (TreeNodeé& tr)

int nIndex = tr.LineColor.nVal;

UINT cr = color index to rgb(nIndex);

printf ("Red = %d, Green = %d, Blue = %d\n", GetRValue (cr),
GetGValue (cr), GetBValue(cr)):;

return true;

|, By default, the Apply button in a GetN dialog will become inactive after first click and won't
be active again unless a change is made to the GetN dialog. If you want to keep the Apply

button always active, set system variable @EAB = 0.

323

Origin C Programming Guide

18.2.4 X-Function

18.2.4.1.1 Dialog generated by X-Function

This example shows how to automate the dialog generating procedure by creating X-Function with X-Function

builder. You can open X-Function Builder by choosing X-Function Builder on the Tools menu or by pressing F10:

B p-Furectizn Bulder - Urdsed [TmE&E]
file Tach
o Fl @ E

L
‘Wasablex Fight-cick ko add‘del]

Ber Labal Inpatifluiger Bake Tops Bats Cordral |Oplion String

=1 Irgat v webar w Cmscmadd

18.2.4.1.2 Creating X-Function

The steps below will walk you through the creation of an X-Function that will perform the task of copying data

from one column to another column:

With the X-Function builder opened, name the X-Function "CopyCol" and add a second variable by right-clicking
on the Variables list and choosing "Add variable". Change the variable names, labels, and other values to match

the settings in the dialog below.

[57 x-Function Builses - Untited” =1 =0 =
File Tools
wnEFH @ E

¥Funchion CiopyCal
‘ariables: jaght-clhck o add.del]

Wums | Labal Inguiflutpzt Bats Typs Data Cantral

izol Trgut Caluen Input v wactar v dagtivel

exal Dukpui Calmes Ouiput w waghar w fnew?

2. After you make the necessary changes to the variables, save the X-Function by clicking the Save OXF file

button E . When the Save As dialog appears click the Save button.

324

User Interface

3. Now we need to write the Origin C code that will do the work for our X-Function. Click on the Code Builder

tE 1
button S . This will open the X-Function in Code Builder where we can write our Origin C code. In the main

function, add the following Origin C code:

ocol = icol;
4. Click the Compile button and then click the Return to Dialog button to go back to X-Function Builder. Click the
Save OXF file button.
18.2.4.1.3 Launch the X-function dialog
We can test our X-Function now:

Create a new a worksheet with two columns. Fill column A with row numbers and select the whole column by

clicking on its heading.

In the Script or Command Window enter "CopyCol -d", without the quotes, and press Enter.

When the dialog appears, keep the default values and click the OK button.

After the X-Function executes, the worksheet will contain a third column which will contain a copy of the data

from column A.

18.2.5 Python Dialog

18.2.5.1 Dialog created by Python
This example (\samples\Python\Run SendData toWks py.opj) demonstrates using the tkinter module in Python

to generate an interactive graphic interface, so that users can specify the data type, the target worksheet and
row # before importing data. To view the Python code, you can open the Code Builder (View:Code Builder or

ALT+4) and browse to the Project folder in Workspace panel to access the attached Python file.

l

7% Send Data o || = || ER
Target Worksheet: [Bookl]Sheetl!
Mumber of Rows: 20

X Column Format: Mumeric -
¥ Column Format: Mumeric -
Send ” Close

325

Origin C Programming Guide

18.2.6 Dialog Builder

18.2.6.1 Dialog Builder
Dialog Builder refers to the Origin C support to use Microsoft Visual C++ generated resource DLL for building
floating tools, dialog boxes, and wizards in Origin. All resource elements, including Windows common controls
and Origin's worksheet and graph controls can be accessed and controlled from Origin C. This capability used to
require a Dialog Builder license, but since Origin 8.5, this restriction has been removed and all Origin installations

include this support.

This guide contains a tutorial that shows how to use Microsoft Visual C++ to create a resource-only DLL
containing a dialog and then how to use Origin C to display the dialog. Additional sections describe in more detail

how to create a resource-only DLL and access it's resources from Origin C.

Note: Beginning with Origin 2017, Origin C dialogs can be built using HTML and JavaScript. For most

users, this will be a better approach than building tools using the older Origin Developer Kit. Building
dialogs with the Developer Kit requires the user to create a resource DLL using Visual Studio. This has
proven to be a barrier for many, both for development and for distribution. The HTML/JS approach

eliminates such complications.

Dialog Builder Samples

Dialog Builder sample files, including resource DLLs, can be found in this zip file, under the

\Dialog Builder\ subfolder.

This section covers the following topics:

Simple Hello World Dialog

Wizard Dialog

Graph Preview Dialog

Splitter Dialog

18.2.6.2 Simple Hello World Dialog

18.2.6.2.1 Create Resource DLL in VC
18.2.6.2.1.1Create by Origin Dialog AppWizard

Start Visual C++ 6.0, select File->New to open the New dialog. On the Projects tab, choose Origin Dialog

AppWizard, set Project name to "ODialog", choose a Location and click OK.

326

https://www.originlab.com/doc/OriginC/Intro-HTML-JS-Dialog
http://blog.originlab.com/wp-content/uploads/2017/01/DialogBuilderExamples.zip
https://www.originlab.com/doc/OriginC/guide/Simple-Hello-World-Dialog
https://www.originlab.com/doc/OriginC/guide/Wizard-Dialog
https://www.originlab.com/doc/OriginC/guide/Graph-Preview-Dialog
https://www.originlab.com/doc/OriginC/guide/Splitter-Dialog

User Interface

Choose a simple dialog, and click Next.

Keep Origin C selected and click Finish, then click OK. The resource file with one simple dialog and the related

source file and header file will be generated.
Click menu Build->Set Active Configuration to choose Debug or Release.
Choose menu Build->Builder ODialog.dIl to create DLL.

Go to the file location specified above. Copy the DLL file to outside the Debug or Release folder, to keep the path
of the DLL file the same as that of the ODialog.cpp file.

Open the ODialog.cpp file in Origin C Code Builder, compile, and run the DoMyDialog function to open the
dialog.

18.2.6.2.1.2Create by Win32 Dynamic-Link Library
This section describes how to create a Resource-only DLL in Visual C++ 6.0.

Start Visual C++ 6.0, select File->New to open the New dialog. On the Projects tab, choose Win32 Dynamic-Link
Library as the project template, set the Project name as ODialog, choose a Location and click OK. In the dialog

that appears, select a simple DLL project and click Finish.

Select Project->Settings to open the Project Settings dialog. On the Resources tab, set the Resource file name,
like ODialog.res, and select the Language according to your software settings as English (United States), and
click OK.

Select Insert->Resource to insert resources into the project. For a Dialog and controls on it, set dialog ID to
IDD_OC_DIALOG.

Choose File->Save As to save the Resource Script file as ODialog.rc. Choose Project->Add To Project->Files,

then choose the ODialog.rc file to add it to the project.

If the Language is not English, please do this step. In the Workspace view Resource tab, open the list tree, right

click on IDD_OC_DIALOG, choose Properties, and then in the dialog choose Neutral for Language.

Build the whole project with Debug or Release configuration. The resulting DLL file is generated under the Debug

or Release subfolder.

18.2.6.2.1.3Create Resource-only DLL in Visual Studio 2008

This article describes in detail the general process of creating a Resource-only DLL in Visual Studio 2008. The

following steps show how to build a Resource-only DLL with VS2008 that is accessible in Origin using Origin C.
Start Microsoft Visual Studio 2008.

Select File->New->Project to create a new project.

327

Origin C Programming Guide

In the New Project dialog, choose Visual C++ as the programming language and Win32 Project as the template,

type in the project name as "Welcome", select its location, like in the following picture, and click OK.

New Project

Project types: Templates: {MET Framework 3.5 b | |§|
[=)- Wisual C++ TElEmpty Project ~
ATL U MFC Actives Control
CLR B MFC DLL
General QHMFC Smart Device Activey Contral
MFe _ E'ﬁMFC Smart Device Application
amart Device ol MFC Smart Device DLL
Test =] Win3z Praject
Windz .) .
EEWmSE Smart Device Projeck
Other Languages))
| ﬁWIHdDWS Forms Conkrol Library
Other Project Types ==l)
Test Prajects ;EEWlndDws Service B
My Templates w
& project for creating a 'Win32 application, console application, DLL, or skatic library |
Mame: | Welcome| |
Location: | i \Documents and SettingsioriginlabiMy Documentsivisual Stuc s | [Browse, .,]
Solution Mame: | Welcome | Create directory For solukion
[O l [Zancel]

328

User Interface

In the Win32 Application Wizard dialog, set Application type as DLL and click Finish.

Win32 Application Wizard - Welcome

vy Application Settings
2 P
[
Overview Application type: Add common header files For:
Application Settings O Windows application Clam
) Console application CImFc
® DL

() Static library

Additional options;
|:| Ernpty projeck
[] Expart symbols

Finish] [Cancel

Switch to the Resource View of the project, right click on the project name to add resources, choose a resource

type and click New.

Add Resource [5_<|
B Accelerator
;
o
2
E Meru £

abe String Table
#4 Toolbar
Yersion

329

Origin C Programming Guide

Remember to set the Language property of the resource according to the environment in which your software will

be installed; say English(United States) if your software is in English.

Properties [

Dialog Mode IDIgRes -

(Mame)

Condition

(] IDD_DIALCG WELCOME

Language English {United States)
(Mame)

Add more controls as required, configure the project as Debug or Release, and save the project. Then select
Build>Build Solution or Rebuild Solution to build the project. You can now find a folder named "Debug" or

"Release" generated under the solution folder, which contains the DLL. Files generated in this solution are as

follows:
% Welcome |Z| |E| E|
File Edit Wiew Favoribes Tools Help l'f

T

Address |lﬁ| CiiDocuments and SettingsyCriginlabify Documentsiyisual Studio 2003 Pro | Go

eBack - _,J lﬁ J,.._\J Search ‘H__L' Folders

Folders X Marne Size Tvpe
=) Visual Studio z008 & LDebug File Folder
|50 Backup Files T [ChReleass File Falder
£3) Code Snippets & dirmain. cpp 1KE C++ Source
= |53 Projects] ReadMe. bxt 2KB Text Document
|5 ¥SMacrosao ﬂ resource.h 1KB C/C++ Header
= 155 welcome Eﬂstdafx.cpp 1KBE C++ Source
£ Debug] skdaf. b {KB CJC++ Header
I Release 1] kargetver.h 2KE T4+ Header
welcome [\Welcome. aps 33KE APSFile
&) Debug & welcome . cpp 1KE C++ Source
@ Release '-.-'-.-'el-:cume.rc 3KE PResource Scripk
hi'l Setkings .EHWeIcDme.vcprnj 6 kE W4+ Project
|53 Templates ﬂWechme.vcprnj.OR. o 2KB Wisual Studio Projec, ..
F 0 M raranker .
< || ¥ < | 5
— — -

18.2.6.2.2 Use Resource DLL in Origin C

330

User Interface

This section describes how to use the Resource-only DLL created in the section above.

Copy the DLL file to outside the Debug or Release folder, to keep the path of the DLL file the same as that of the

resource.h file.
Start Origin and open Code Builder.

Create a new Origin C file named testODialog.c under the path of the DLL file. Add it to the current Workspace,

and write testing code like the following. Run the OpenDlg function to open the dialog.

#include <Dialog.h>

#include <..\Originlab\Resource.h> //ODialog resource header

class MyDialog : public Dialog

public:
// Construct dialog with dialog ID and DLL name.
// "ODialog" is the DLL file name.
// Not specify path, means the DLL file under the same path of this
// Origin C file.
// If the DLL located at other place, should provide the full path
// of the DLL file.

MyDialog() : Dialog(IDD_OC DIALOG, "ODialog")

void OpenDlg ()

331

Origin C Programming Guide

MyDialog odlg;

odlg.DoModal () ;

18.2.6.3 Wizard Dialog

This section describes how to open a wizard dialog in Origin C. The examples in this section will use an existing

wizard dialog resource DLL that gets installed with Origin C's Developer Kit. The DLL can be found in this zip file,
under \Dialog Builder\Wizard sub-folder.

To open a wizard dialog we need to first define some user-defined classes. We will need a class derived from the

Dialog class, another derived from the WizardSheet class, and a class for each page derived from the

PropertyPage class.

The WizardSheet::AddPathControl method is used to provide a wizard map which helps the user navigate

through steps or pages of a wizard. The map also allows the user to skip to any page in the wizard by clicking on

the map.

The first class we define is derived from the PropertyPage class. This first class will contain all the information

shared by all the pages in the wizard.

class WizPage : public PropertyPage

protected:
WizardSheet* m Sheet;
}i

Now that we have defined our class based on PropertyPage we can define a class for handling each page in the

wizard. These next classes will be derived from our page class defined above.

class WizPagel : public WizPage

class WizPage2 : public WizPage

332

http://blog.originlab.com/wp-content/uploads/2017/01/DialogBuilderExamples.zip
https://www.originlab.com/doc/OriginC/ref/Dialog-class
https://www.originlab.com/doc/OriginC/ref/WizardSheet
https://www.originlab.com/doc/OriginC/ref/PropertyPage
https://www.originlab.com/doc/OriginC/ref/WizardSheet-AddPathControl

User Interface

class WizPage3 : public WizPage

}i

The next class to be defined is the place holder class. This class is derived from the WizardSheet class which in
turn is derived from the PropertySheet class. This class will hold the instances of all our pages as data

members.

class WizSheet : public WizardSheet

public:
// Data members of PropertySheet are WizPage objects
WizPagel m WizPagel;
WizPage2 m WizPage2;
WizPage3 m WizPage3;
}i

With the definitions of all the pages and sheet classes completed we can now define our dialog class.

class WizPageDialog : public Dialog

public:

// Constructor for main Dialog

WizPageDialog(int ID) : Dialog(ID, "Wizard.DLL")

333

Origin C Programming Guide

// Data member of main Dialog is PropertySheet (place holder)
WizSheet m Sheet;
}i

18.2.6.4 Graph Preview Dialog

This section shows how to create custom dialog with a graph preview.

18.2.6.4.1 Prepare Dialog Resource

We first need a dialog resource containing a static control, in which the preview graph will nest. Here we will use

a built-in resource, IDD_SAMPLE_SPLITTER_DLG, in OriginC\Originlab\ODIg8.dll.
18.2.6.4.2 Prepare Source File

In Code Builder, click New button D , type file name, and set Location as the same path of the above dialog

resource dll oDIg8.dll - Origin install path OriginC\Originlab subfolder.
18.2.6.4.3 Including Needed Headers
//These headers contain declarations of dialog and controls

#include <..\Originlab\DialogEx.h>

#include <..\Originlab\GraphPageControl.h>

18.2.6.4.4 Adding User Defined Preview Class

//forbid some action on preview graph

#define PREVIEW NOCLICK BITS (NOCLICK_DATA_PLOT | NOCLICK LAYER | NOCLICK_LAYERICON)
#define PREVIEW TEMPLATE "Origin" //preview graph template

class MyPreviewCtrl

334

User Interface

public:
MyPreviewCtrl () {}

~MyPreviewCtrl ()

//destroy temporary books when dialog closed.
if (m_wksPreview.IsValid())

m wksPreview.Destroy () ;

void Init (int nCtrlID, WndContainer& wndParent)

//create preview graph control

Control ctrl = wndParent.GetDlgItem(nCtrlID);
GraphControl gCtrl;

gCtrl.CreateControl (ctrl.GetSafeHwnd()) ;

gCtrl.Visible = true;

GraphPageControl gpCtrl;

gpCtrl.Create (gCtrl, PREVIEW NOCLICK BITS, PREVIEW TEMPLATE) ;
GraphPage gpPreview;

gpPreview = gpCtrl.GetPage();

gpPreview.Rename ("MyPreview") ;

m_glPreview = gpPreview.Layers(0); //first layer

if (!m wksPreview)

//temporary worksheet to hold preview data.

335

Origin C Programming Guide

m wksPreview.Create("Origin", CREATE TEMP);

m wksPreview.SetSize (-1, 2); //two columns

//long name will be displayed as axis title
Column colX (m wksPreview, O0);
colX.SetLongName ("Preview X");
Column colY (m wksPreview, 1);

colY.SetLongName ("Preview Y");

//prepare datarange
DataRange drPrev;
drPrev.Add (m wksPreview, 0, "X");

drPrev.Add (m wksPreview, 1, "Y");

//plot preview curve, although it has no points now.
int nPlot = m glPreview.AddPlot (drPrev, IDM PLOT LINE);
DataPlot dp = m glPreview.DataPlots (nPlot);

if (dp) //set preview curve color

dp.SetColor (SYSCOLOR RED) ;

//update preview curve with external data.

void Update (const vector& vX, const vector& vY)

if (m_wksPreview.IsValid())

336

User Interface

Dataset dsX(m wksPreview, O0);
Dataset dsY(m wksPreview, 1);
if (!dsX.IsValid() || !dsY.IsValid())

return; //no columns for preview

//update source data will also update preview graph.
dsX = vX;

dsY = vY;

//rescale graph for better view.

m glPreview.Rescale();

private:
//preview graph on dialog

GraphLayer m glPreview;

//temporary worksheet to put preview data.
Worksheet m wksPreview;
}i

18.2.6.4.5 Adding Dialog Class

class MyGraphPreviewDlg : public MultiPaneDlg

public:
//dialog resource ID and the DLL containing it.

MyGraphPreviewDlg () : MultiPaneDlg (IDD SAMPLE SPLITTER DLG,

337

Origin C Programming Guide

GetAppPath (TRUE) + "OriginC\\Originlab\\OD1lg8")

~MyGraphPreviewDlg ()

int DoModalEx (HWND hParent = NULL)

InitMsgMap () ;

//show dialog until user closes it.

return DoModal (hParent, DLG NO DEFAULT REPOSITION) ;

protected:
EVENTS BEGIN
ON_INIT(OnInitDialog)
ON BN CLICKED (IDC LOAD, OnDraw)

EVENTS_ END

//message handler of dialog events

BOOL OnInitDialog();
BOOL OnDraw (Control ctrl);
private:

338

User Interface

//member stands for the preview control

MyPreviewCtrl m Preview;

BOOL MyGraphPreviewDlg::0OnInitDialog ()

m Preview.Init (IDC_FB BOX, *this);
Button btn = GetItem(IDC LOAD) ;
if(btn)

btn.Text = "Draw";

return true;

BOOL MyGraphPreviewDlg::OnDraw (Control ctrl)

18.2.6.4.6

vector vecX, vecY;

vecX.Data (1.0, 10.0, 0.5);
vecY.SetSize (vecX.GetSize());
for(int ii = 0; ii < vecX.GetSize():;

vecY[ii] = rnd();

m Preview.Update (vecX, vecY);

return true;

Open the Dialog

void open preview dlg()

339

++11)

Origin C Programming Guide

MyGraphPreviewDlg dlg;
dlg.DoModalEx (GetWindow ()) ;

return;

Execute the function above, and click the Draw button. You will notice the preview be updated.

18.2.6.5 Splitter Dialog

This example shows how to create a splitter dialog, which provides a better display of tree view or grid view.

B Sample for Splitter

System Information Output

|ser Settings User Hame Origin

Company Hame Originlab

Serial Humber Of3z4-9089-F222222

Regizter Code EOG-OMO-FO3

Product Yerzsion FProfessional

18.2.6.5.1 Prepare Dialog Resource

To create this dialog, you first must prepare a dialog resource with a Static control and two Button controls. Here
we just use the existing resource IDD_SAMPLE_SPLITTER_DLG in the built-in OriginC\Originlab\ODIg8.dll file

to simplify this example.

18.2.6.5.2 Prepare Source File

In Code Builder, click New button D , type file name, and set Location as the same path of the above dialog

resource dll oDIg8.dll - Origin install path OriginC\Originlab subfolder.

18.2.6.5.3 Including Header Files

The following header files will be used in the example. Copy the following to the above created source file.

340

User Interface

finclude <..\Originlab\DialogEx.h>

#include <..\Originlab\SplitterControl.h>

#include <..\Originlab\DynaSplitter.h>
18.2.6.5.4 Adding User Defined Splitter Class

We can derive a class from TreeDynaSplitter. Most dialog initialization and other event functions' code are done

in a base class and make our splitter class a light class.

class MySplitter : public TreeDynaSplitter

public:
MySplitter () {}
~MySplitter () {}
//init the splitter control
int Init (int nCtrlID, WndContainer& wndParent, LPCSTR lpcszDlgName =
NULL)
{
TreeDynaSplitter::Init (nCtrlID, wndParent, 0, lpcszDlgName) ;
return O;
}
//output current settings
void Output ()
{
out tree(m trSettings);
}
protected:

// Declare message map table and message handler

DECLARE MESSAGE MAP

341

Origin C Programming Guide

BOOL OnInitSplitter();

BOOL InitSettings();

void OnRowChange (Control ctrl);
private:

BOOL constructSettings () ;

BOOL initSystemInfo (TreeNode& trSys);//show system information

BOOL initUserInfo (TreeNode& trUser);//to collect user settings.
private:

GridTreeControl m List; //grid control on left panel
Tree m trSettings;//splitter tree on right panel

bool m bIsInit;//indicate whether it is from init event

//map the control messages and events.

BEGIN MESSAGE MAP DERIV (MySplitter, TreeDynaSplitter)

ON_ INIT (OnInitSplitter) //init splitter settings

//save splitter size & position when destroy

//this is done in base class.

ON_DESTROY (OnDestroy)

ON_SIZE(OnCtrlResize)

//when control is ready, need to resize the splitter and its position

ON_USER MSG (WM _USER RESIZE CONTROLS, OnInitPaneSizs)

342

User Interface

//when user select different row on left panel
ONiGRIDiROW7COL7CHANGE(GetMainPaneID(), OnRowChange)

END MESSAGE MAP DERIV

BOOL MySplitter::0OnInitSplitter ()

TreeDynaSplitter::OnInitSplitter (&m List);
constructSettings(); //construct tree settings
InitSettings(); //tree settings to splitter GUI
SetReady () ;

return TRUE;

//when user selects a different row, update right panel

void MySplitter::0nRowChange (Control ctrl)

if (!m bReady)
return;
//show sub nodes under current branch
TreeNode trCurrent = ShowListContent (-1, true, m bIsInit);

if (trCurrent)

//load settings from registry
string strTag = trCurrent.tagName;

LoadBranchSetting (GetDlgName (), strTag);

m bIsInit = false;

343

Origin C Programming Guide

return;

//init splitter settings

BOOL MySplitter::InitSettings()

m bIsInit = true;

///set not ready, avoid flash and painting problem on GUI
m bReady = false;

//set the splitter tree for display

ShowList (m_trSettings, ATRN STOP_ LEVEL);

m bReady = true; //reset ready state.

SelectRow (0); //select first row.

return TRUE;

BOOL MySplitter::constructSettings ()

TreeNode trSys = m_trSettings.AddNode ("System");
trSys.SetAttribute (STR_LABEL ATTRIB, "System Information");

initSystemInfo (trSys);

TreeNode trUser = m trSettings.AddNode ("User");
trUser.SetAttribute(STRﬁLABELiATTRIB, "User Settings");
initUserInfo (trUser);

return TRUE;

344

User Interface

//display your Origin's basic information.
//you can also display OS related information here.

BOOL MySplitter::initSystemInfo (TreeNode& trSys)

if ('trSys)

return FALSE;

char szUser[LIC USERINFO NAME COMPANY MAXLEN] ;

char szCompany[LIC USERINFO NAME COMPANY MAXLEN];

char szSerial[LIC OTHER INFO MAXLEN];

char szRegCode[LIC_OTHER_INFO_MAXLEN];

DWORD dwProd = GetLicenselInfo(szUser, szCompany, szSerial, szRegCode);
string strProduct;

switch(dwProd & O0xO0000O0FF)

case ORGPRODUCTTYPE EVALUATION:
strProduct = "Evaluation";
break;

case ORGPRODUCTTYPE STUDENT:
strProduct = "Student";
break;

case ORGPRODUCTTYPE REGULAR:
strProduct = "Regular";
break;

case ORGPRODUCTTYPE PRO:

strProduct = "Professional";

345

Origin C Programming Guide

break;
default:
strProduct = "Unknown";

break;

GETN_USE (trSys)

GETN_STR (UserName, "User Name", szUser)

GETN READ ONLY EX(2)

GETN_STR (Company, "Company Name", szCompany)
GETN READ ONLY EX(2)

GETN_ STR(SeriNum, "Serial Number", szSerial)
GETN READ ONLY EX(2)

GETN_STR (RegCode, "Register Code", szRegCode)
GETN READ ONLY EX(2)

GETN_STR(Product, "Product Version", strProduct)
GETN_READ ONLY EX(2)

return TRUE;

//controls to collect user information and settings.

BOOL MySplitter::initUserInfo (TreeNode& trUser)

if (!'trUser)

return FALSE;

GETN USE (trUser)

346

User Interface

GETN_ STRLIST (Language, "Language", "English", "|English|German")
GETN_STR(UserID, "User ID", "")
GETN_PASSWORD (Password, "Password", "")

GETN_ STR(Email, "Email", "user@originlab.com")

return TRUE;

18.2.6.5.5 Adding User Defined Splitter Dialog Class

The splitter dialog contains a splitter control object, so the dialog can initialize the splitter control and post

messages to it on the proper events.

//dialog name, which will also be used to save settings in registry
#define STR DLG NAME "My Splitter Dialog"

class MySplitterDlg : public MultiPaneDlg

public:

//resource ID and which DLL contains this dialog resource

MySplitterDlg() : MultiPaneDlg(IDD_SAMPLE SPLITTER DLG, "OD1g8")

~MySplitterDlg ()

//open dialog until user close it.

int DoModalEx (HWND hParent = NULL)

//set up message map

347

Origin C Programming Guide

InitMsgMap () ;

return DoModal (hParent, DLG NO DEFAULT REPOSITION) ;

//init controls and other settings before dialog open
BOOL OnInitDialog();
//when dialog initialization finish
BOOL OnReady () ;
//when user click 'Output' button
BOOL OnOutput (Control ctrl);
protected:
DECLARE MESSAGE MAP
private:

MySplitter m Splitter;

//map dialog message

BEGIN MESSAGE MAP (MySplitterDlg)
ON_INIT(OnInitDialog)
ON_READY (OnReady)
ON BN CLICKED (IDC LOAD, OnOutput)

END MESSAGE MAP

BOOL MySplitterDlg::0OnInitDialog ()

//rename buttons title to meaningful text

GetDlgItem(IDC LOAD) .Text = "Output";

348

User Interface

GetDlgItem (IDCANCEL) .Text = "Close";
m Splitter.Init (IDC_FB BOX, *this, STR DLG NAME) ;

return TRUE;

BOOL MySplitterDlg: :0OnReady ()

//update dialog

UpdateDlgShow () ;

SetInitReady () ;

//set splittercontrol ready as to init the position and size
m Splitter.OnReady () ;

return TRUE;

BOOL MySplitterDlg: :0OnOutput (Control ctrl)

//dump current user settings.

m_Splitter.Output();

return TRUE;

18.2.6.5.6 Open Dialog

After the steps above, save all the code and build it, then execute the following function to open the splitter

dialog.

void test MySplitterDlg()

349

Origin C Programming Guide

MySplitterDlg dlg;

dlg.DoModalEx (GetWindow ()) ;

18.2.7 Origin C HTML Dialog with JavaScript Support

18.2.7.1 Origin C HTML Dialog with JavaScript Support
HTML-Dialog

Origin C now supports using HTML to build dialog boxes in Origin without using a resource DLL. This not only
removes the need to use Visual Studio to build a resource DLL but to allow making use of the vast array of
utilities available in the public domain for web page constructions. In order to access and control the elements in
the HTML dialog, JavaScript integration has been added in Origin 2017, which provides methods for Origin C
calling JavaScript and JavaScript calling Origin C. In addition, an Origin graph control can overlap the HTML

control so that both of them can be placed arbitrarily and well organized in the dialog.

This guide contains a tutorial that shows how to create an HTML page and then how to use Origin C to display
the HTML page as a control in the dialog. Additional sections describe in more detail how to create an HTML

dialog with a graph control and how does Origin C calling JavaScript works and vice versa.
Examples

Sample files of this tutorial, including the *.cpp file, the *.html file, the related *.css files and * s file, are available

for download

If you'd like to learn more about HTML dialog, please see this page for a nice collection of often useful examples.

This section covers the following topics:

Simple Hello World Dialog

Create a Calculator

HTML Dialog with a Graph

Floating Dialog to download file in another thread

HTML Dialog to use Chrome

Chrome HTML Dialog communicates to JavaScript

350

http://blog.originlab.com/wp-content/uploads/2016/11/HTMLDlgExamples.zip
https://www.originlab.com/doc/OriginC/Intro-HTML-JS-Dialog
https://www.originlab.com/doc/OriginC/guide/first-HTML-dialog
https://www.originlab.com/doc/OriginC/guide/second-HTML-dialog
https://www.originlab.com/doc/OriginC/guide/third-HTML-dialog
https://www.originlab.com/doc/OriginC/guide/fourth-HTML-dialog
https://www.originlab.com/doc/OriginC/guide/fifth-HTML-dialog
https://www.originlab.com/doc/OriginC/guide/sixth-HTML-dialog

User Interface

Ly In Origin, the newHTML X-Function is provided to create a simple HTML dialog easily and

Q quickly. The HTML file and CPP file created by this X-Function are like the templates, you
can redesign your HTML dialog based on these two files. Once you go through all tutorials
and have the basics about HTML dialog, you can use the newHTML X-Function to construct
starter HTML dialog. In Code Builder interface, you can easily select menu Tools:New

HTML Dialog... to launch this X-Function.

18.2.7.2 Simple Hello World Dialog
first-HTML-dialog

18.2.7.2.1 Summary
This tutorial will show how to:
Create an HTML page.
Display the HTML page in the dialog box by OriginC.
Build an event handler to respond to events of dialog.

Minimum Origin Version Required: Origin 2017

18.2.7.2.2 Sample Files
index.html: This is the HTML code for the html page.
HelloWorldDlg.cpp: This is the OriginC code to call out the HTML page and show it in the dialog.

HelloWorldDIg1.cpp: This is the OriginC code that includes more advanced features.

Note: You can download the sample files here.

18.2.7.2.3 Creating an HTML Page

When you create an HTML dialog, the first step is creating an HTML page.

Start Origin and open Code Builder by clicking button & .

351

https://www.originlab.com/doc/X-Function/ref/newHTML
http://blog.originlab.com/wp-content/uploads/2016/11/HTMLDlgExamples.zip

Origin C Programming Guide

Create a new HTML file named index.html and save it to a new folder named Hello World.

Inside the< head > and < body > elements, add the other HTML elements such as < title >, <h1>,<p>to

construct an HTML page.

<!DOCTYPE html>
<html>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>
<head>
<title>
A Small Hello
</title>
</head>
<body>
<hl>Hello World</hl>
<p>This is very minimal "hello world" HTML document.</p>
</body>

</html>

Note: When editing is complete, you can check the content of this page by opening it with any web

browser.

18.2.7.2.4 Creating an HTML dialog
In this section, you will make the generated HTML page display in the dialog.
In Code Builder, create a new cpp file named HelloWorldDlIg.cpp under the path of the HTML file.

Include three needed header files at first. Note that HTMLDIg.h is new in Origin 2017 which connects Origin and
the HTML dialog together.

352

User Interface

#include <Origin.h>
finclude <..\OriginLab\DialogEx.h>

#include <..\OriginLab\HTMLDlg.h>
Derive a user defined HTML dialog class from the class HTMLD1g, and point to the HTML page inside the

method GetInitURL ().

class HelloWorldDlg: public HTMLDlg

public:

string GetInitURL() //get the path of html file

string strFile = FILE_; //the path of the current file

GetFilePath (strFile) + "index.html";

b2

To open the HTML dialog, save all the code and build it, then execute the following function.

void hello ()

HelloWorldDlg dlg;
dlg.DoModalEx (GetWindow ()) ;

}
An HTML dialog with "Hello World" will pop up:

353

Origin C Programming Guide

Hello World

Thiz is verr minimal “hells world” HIML document.

x|

18.2.7.2.5 Advanced Feature

If you want to learn more, try to improve the program by modifying the dialog and adding event handlers.

Note: The complete code of the following features is available in HelloWorldDIg1.cpp.

18.2.7.2.5.1 Preventing dialog resizing

To do this, use ModifyStyle to disable WS_THICKFRAME in the method onInitDialog inside your dialog

class:

BOOL OnInitDialog ()

ModifyStyle (WS _THICKFRAME, O0);//prevent resizing

HTMLDlg: :OnInitDialog() ;

18.2.7.2.5.2Setting dialog size

You need to call a parent class method GetD1lgInitSize from you dialog class, and specify the width and

height of the dialog in it:

BOOL GetDlgInitSize (int& width, int& height) //get dialog size

354

User Interface

width = 500;
height = 200;

true;

18.2.7.2.5.3 Adding event handler

Similar to Dialog Builder, a message map is used to specify which events will be handled and which function will

be called to handle them.

As an example, an event handler methods are added inside the user defined class HelloWorldDIg to pop up a

message when the dialog is closed.

Map the dialog message by the following message map inside the class HelloWorldDlg.

//Message Map
public:
EVENTS BEGIN DERIV (HTMLD1g)
ON_DESTROY (OnDestroy)

EVENTS_END DERIV
Add an event handler method inside the class HelloWor1ldDlg to pop up a message box when the dialog is

closed.

BOOL OnDestroy ()

MessageBox (GetSafeHwnd (), L("Thank you and have a good day!")
, _L("Message"));

true;

18.2.7.3 Create a Calculator

second-HTML-dialog

355

https://www.originlab.com/doc/OriginC/guide/Dialog-Builder

Origin C Programming Guide

18.2.7.3.1 Summary

In this tutorial, you build a calculator in which you can perform arithmetic operations (addition, subtraction,
multiplication, and division).

You can learn how to:

Trigger events to occur by using the controls inside HTML page.
Build event handler functions to respond to events by JavaScript.
Call OriginC function in JavaScript.

Perform basic arithmetic operations in OriginC.

When you finish, your calculator will look like the following picture:

" | Simple Calculator |

|]
5| = bl

7| 8]
4]5] 6]
B
0]

Calculate | Clear |

Minimum Origin Version Required: Origin 2017

18.2.7.3.2 Sample Files
SimpleCalc.html: This is the HTML code for the html page.

Calculator.cpp: This is the OriginC code to call out the HTML dialog and perform arithmetic operations.

Note: You can download the sample file here.

18.2.7.3.3 Creating an HTML Page for Calculator

As the first step in developing this calculator, you create an HTML page and add equation display box, number

input buttons, operator buttons, Calculate button and Clear button to this page.

356

https://blog.originlab.com/wp-content/uploads/2016/11/HTMLDlgExamples.zip

User Interface

Start Origin and open Code Builder, create a new HTML file named SimpleCalc.html and save it to a new folder

named Simple Calculator.

Within the SimpleCalc.html, construct a simple user interface for calculator by the following code:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=Edge"/>
</head>
<body>

<!--equation display textbox-->

<div id="Equation" style="border:solid;height:20px;"></div>

</br>

<!--four arithmetic operations buttons-->

<div id="Ops">

<input type="button" id="btnPlus" value="+"/>

<input type="button" id="btnMinus" value="-"/>

<input type="button" id="btnMultiply" value="X"/>

<input type="button" id="btnDiv" value="/"/>

</div>

</br>

357

Origin C Programming Guide

<!--number input buttons from 0 to 9-->
<div id="Num789">
<input type="button" id="btn7" value="7"/>
<input type="button" id="btn8" value="8"/>
<input type="button" id="btn9" value="9"/>
</div>
<div id="Num456">
<input type="button" id="btn4" value="4"/>
<input type="button" id="btn5" value="5"/>
<input type="button" id="btn6" value="6"/>
</div>
<div id="Numl23">
<input type="button" id="btnl" value="1"/>
<input type="button" id="btn2" value="2"/>
<input type="button" id="btn3" value="3"/>
</div>
<div id="NumO0">
<input type="button" id="btnO" value="0"/>
</div>

</br>

<!--calculation button and clear button -->

<div>
<input type="button" id="btnCalculate" value="Calculate"/>
<input type="button" id="btnClear" value="Clear"/>

</div>

358

User Interface

</body>

</html>

Note: When editing is complete, you can check this page by opening it with any web browser.

18.2.7.3.4 Adding Onclick Event Handlers for Buttons
The calculator works as follows:
When a user clicks number input buttons, the program shows the input number in the textbox.
Then the user clicks an operator button, the program appends the operator to the number inputted before.
Next the user click to input another number that is also appended in textbox.
At last, the user click Calculate button to evaluate the equation and result in the textbox.
The text in textbox can be erase by clicking Clear button at any time.

In order to get your program to work that way, you need to add an onclick event handler to capture a click
event from the users’ mouse on the button in the HTML page. This action usually results in a call to a JavaScript

function which helps to perform the calculation.

Calculate

Taking the Calculate button as an example:

Inside the element < script >, add the function Invoke Cal (). Note that this function will be used to respond to

the click button event by onclick event handler mentioned in Step 2.

<script>
function Invoke Cal() {}

</script>
Add an onclick handler event inside the calculation button tag, so that the function Invoke Cal () will be

invoked if the user clicks this button.

<input type="button" id="btnCalculate" value="Calculate"
onclick="Invoke Cal()"/>

359

Origin C Programming Guide

Similar to the previous steps, you can add the onclick event handler inside every button to capture click event
and add its corresponding JavaScript functions inside <script>.
18.2.7.3.5 Calling OriginC Function in JavaScript

In this example, arithmetic operations are performed in OriginC in order to show you how to call OriginC in

JavaScript.

In JavaScript, you will use the function window.external .ExtCall to call into OriginC:

window.external.ExtCall (“*OriginC Function Name”, Parameterl, Parameter2..)

Note:
Currently, no more than 5 parameters can be passed into ExtCall, including the OriginC function name.

The parameters that can be passed as input arguments of OriginC should only be primitive types, including

bool, integer, double and string.

Now, you can modify the functions inside <script> as follows after you figure out how to call OriginC in

JavaScript, and the complete code is available in the HTML sample file.

<script>
var PlusOp = "+";
var MinusOp = "-";

var MultiplyOp = "*";

var DivOp = "/";

function Invoke AddOp (strOp) {
var OriginStr = document.getElementById('Equation') .innerHTML;
//Calling OriginC function AddOp to show the operator symbol in textbox
var NewStr = window.external.ExtCall ("AddOp", OriginStr, strOp);

document.getElementById ('Equation') .innerHTML = NewStr;

360

http://blog.originlab.com/wp-content/uploads/2016/11/HTMLDlgExamples.zip

User Interface

function Invoke AddNum (NewNum) {
var OriginStr = document.getElementById('Equation') .innerHTML;
//Calling OriginC function AddNum to show the number input in textbox
var NewStr = window.external.ExtCall ("AddNum", OriginStr, NewNum) ;

document.getElementById ('Equation') .innerHTML = NewStr;

function Invoke Cal() {
var Str = document.getElementById('Equation') .innerHTML;
//Calling OriginC function Calculate to get the result of equation
var Result = window.external.ExtCall ("Calculate", Str);

document.getElementById ('Equation') .innerHTML = Result;

function Invoke Clear() {
//Calling OriginC function Clear to erase the text in textbox

document.getElementById ('Equation') .innerHTML =
window.external.ExtCall ("Clear") ;

</script>
18.2.7.3.6 Creating an HTML Dialog
In this section, you edit and execute OriginC code to launch the calculator dialogue in Origin.

In Code Builder, create a new cpp file named Calculator.cpp under the path of SimpleCalc.html

Include the needed headers.

361

Origin C Programming Guide

#include <Origin.h>
finclude <..\OriginLab\DialogEx.h>

#include <..\OriginLab\HTMLDlg.h>

Derive a user defined HTML dialog class from the class HTMLD1g

class OriginCalculatorDlg: public HTMLDlg

public:

string GetInitURL ()

GetFilePath(FILE) + "SimpleCalc.html";

string GetDialogTitle ()

"Simple Calculator";

b2

Add a main function calc which launches the calculator dialog.

void calc ()

OriginCalculatorDlg dlg;
dlg.DoModalEx (GetWindow ()) ;

}
Save all the code and build it, then execute the calc () function to open the dialog.

18.2.7.3.7 Adding JavaScript Callable Prototypes in OriginC

362

User Interface

In this section, you add methods in your dialog class OriginCalculatorDlg, which are called in JavaScript to

perform the basic arithmetic operations.

Add DECLARE_DISPATCH_MAP in your dialog class, which help JavaScript to locate the functions

public:

DECLARE DISPATCH MAP

Add the methods to perform arithmetic operations, show and clear the equation in textbox.

//when clicking any operator

string OriginCalculatorDlg::AddOp(string str, string strOp)

str + " " + strOp + " ";

//when clicking any digits

string OriginCalculatorDlg::AddNum(string str, int NewNum)

str + ftoa (NewNum) ;

//use LabTalk expression to evaluate

double OriginCalculatorDlg::Calculate(string str)

double dd;

LT evaluate (str ,&dd);

dd;

363

Origin C Programming Guide

string OriginCalculatorDlg::Clear (void)

wn .
’

}

Declare the methods in your dialog class.

public:
string AddOp (string str, string strOp) ;
string AddNum (string str, int NewNum) ;
double Calculate(string str);

string Clear() ;

Map the methods of your OriginC dialog class to the HTML dialog

BEGIN DISPATCH MAP (OriginCalculatorDlg, HTMLD1g)
DISP_FUNCTION (OriginCalculatorDlg, AddOp, VTS STR, VTS STR VTS STR)
DISP_FUNCTION (OriginCalculatorDlg, AddNum, VTS STR, VTS STR VTS I4)
DISP_FUNCTION (OriginCalculatorDlg, Calculate, VTS R8, VTS STR)
DISP FUNCTION (OriginCalculatorDlg, Clear, VIS STR, VTS VOID)

END DISPATCH MAP

Note: The syntax of DISP_FUNCTION should be:

DISP_FUNCTION (User-defined Dialog Class, Function Name, Type of
Ouput, Type of Input Type of Input..)

in which VTS_BOOL = bool, VTS_I4 = integer, VTS_R8 = double, VTS_STR = string and
VTS_VOID = void.

Save the code and rebuilt it, then excute the calc() function again, you can do simple calculation on this

calculator now.

364

User Interface

18.2.7.4 HTML Dialog with a Graph

third-HTML-dialog

18.2.7.4.1 Summary
In this tutorial, you build a dailog works as follows:

There are three panels in the dialog, including a textbox in the left panel, a graph in the central panel and a blank

right panel.
When a user moves the vertical line on the graph manually, the program shows the x-value in the textbox.

Conversely, when the user enters an x-value in the textbox and hit the ENTER key, the program moves the

vertical line to the specified position.
You can learn how to:

How to contain a graph in HTML dialog.
How to resize the dialog as you pleased.

How to call Origin C in JavaScript. (You can also learn this from the tutorial Create a Calculator.)

How to call JavaScript in Origin C.

When you finish this tutorial, your dialog will look like the following picture except the different number:

X-Value

You can place other controb
an thiv sde

Minimum Origin Version Required: Origin 2017

365

https://www.originlab.com/doc/OriginC/guide/second-HTML-dialog

Origin C Programming Guide

18.2.7.4.2 Sample Files

Composite Spectrum.opj: This is the OPJ that contains a graph to be shown in the dialog

Index.html: This is the HTML code for the html page.

DIigWithGraph.cpp: This is the Origin C code to call out the HTML dialog and achieve the communication

between Origin C and JavaScript.

Background_image1.png: This is the first picture for the background of dialog .

Background_imageZ2.jpg: This is the second picture for the background of dialog.

Note: You can download the sample file here

18.2.7.4.3 Preparation

New an Origin Project named Composite Spectrum.opj, and save it to the folder HTML Dialog with A Graph.

Select Data: Import from File: Single ASCII from Origin menu to import the data \Samples\Curve

Fitting\Composite Spectrum.dat.

Highlight Column B to Column D and select Plot: Multi-Y: Stacked Lines by Y from menu to create a stacked

line plot.

Double click on Graph1 to open Plot Details dialog, and then improve the format of Graph 1 as you pleased.

-

Click Line Tool button

to add a vertical line (press SHIFT key and draw) to the graph.

Right click on the vertical line and select Properties... in the context menu to bring up a dialog.

Go to Line tab and Arrow tab to modify the format of the vertical line, and then go to Dimensions tab to only

allow it to move horizontally.

| Object Properties - Line

Color (M Red - ¥| Same Fiead Size
Width 4 - Begn

Shape Jp— =
Trpe —n - width 10 -
Algrment | vertical =

Length 10 -
stretching [wholeLayer v

Transparency

Transparency]
#:
Set as Default Set aa Defaut
| Aoty ta... Apply to. ..

o | Object Properties - Line

:-rrow Dimensions Prc| Line Dimensions | Programming

End
Shape —of -
width 10 -

366

& | Object Properties - Line

Line | Asrow Fregramming

Lruts: scae -
Begin End
X 0 X 0
Y 50 Y 500
Disable:
Horizontal Movement | Resizng
| ¥ertical Movement + | Rotating
] Skewing
| Appiy to... |

http://blog.originlab.com/wp-content/uploads/2016/11/HTMLDlgExamples.zip

User Interface

Go to Programming tab, name your line object Line.

Select Moved from the drop-down list of Script Run After, then type the following LabTalk script in the textbox.

line move (this.X);

5 Object Propeties - Line (|

Ling | Arrow | Dimensians | Pragramming

Mame Une Attach o [Layer and Sentes. =
7] visible 7] selectable 7| Real-Time 7| Echitable
Siript Run After | Mowed v:

[1ine_movelthis. ¥

™ o) (o=

—_—t L

Note: In this step, you set to trigger the function 1ine move () when a user moves the vertical

line. This function 1ine move () will be created later in OriginC.

Open Code Builder, and then expand Project folder in Workspace window, double click ProjectEvents.OGS to

open the file, and then add scripts inside the [AfterOpenDoc] section:

if (run.LoadOC ("$X\D1lgWithGraph.cpp", 16) == 0)

@G=0;//graph background fill all so no gray band on either side

HTMLandGraphDlgEx; //this is the function which launches the dialog

else

type "Failed to load the dialog!";

return 0;

367

Origin C Programming Guide

Note: The scripts help to launch the dialog after this Origin project is opened. If you want to learn

more about ProjectEvents Script, please go to this page.

Save the ProjectEvents.OGS in Code Builder and save the project in Origin.

18.2.7.4.4 Creating an HTML Page for Dialog
When you create an HTML dialog, the first step is to design and create an HTML page for the dialog.
Prepare two pictures for the background in the folder HTML Dialog with A Graph.
Open Code Builder, create a new HTML file and save as index.html to the folder HTML Dialog with A Graph.

Copy the following code and paste it within the index.html:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<style>
body {

background-image:url ("background imagel.png")

input [type="text"] {

font-size: 1l4dpx;

input [type="text"] :focus {

outline: none;

368

https://www.originlab.com/doc/LabTalk/guide/ProjectEvents-Script

User Interface

369

.style-2 input[type="text"] {

padding: 3px;

border: solid 5px #c9c9c9;

transition: border 0.3s;

.style-2 input[type="text"]:focus,

.style-2 input[type="text"].focus {

border: solid 5px #969696;

#container {

border: 3px solid #ffffff;

position: absolute;

left: 0;

right: 0;

bottom: 0;

top: O;

#leftcontainer {

border-right: 3px solid #ffffff;

width: 250px;

height: 100%;

float: left;

#rightcontainer ({

border-left: 3px solid #ffffff;

Origin C Programming Guide

width: 250px;
height: 100%;
float: right;

text-align: center;

</style>

</head>

<body>
<div id="container">
<div id="leftcontainer">
<h2>X-Value</h2>
<ul class="input-list style-2 clearfix">

<input type="text" name="XValue" id="X"
placeholder="X" onkeydown = "">

<p>*Move the vertical line in graph,
and get the x-value and y-values.</p>

<p>*Enter x-value in textbox and hit
ENTER key, then the vetical line will move to the specified
position.</p>

</div>

<div id="rightcontainer">
<h3> </h3>
<h3> </h3>

<h3>You can place other controls on
this side.</h3>

370

User Interface

</div>
</div>
</body>

</html>

Once you finish this step, you can see the following page by opening the index.html with a web browser:

Yious eam piace ather comtron
o iy shde.

18.2.7.4.5 Adding JavaScript Code for Dialog

In this step, you add JavaScript code.

Copy the following JavaScript code and paste it inside the element <script> of your html file.

<script>

var vbg = 1;//counter to alternate html backgroud

function lineMove (xVal)

var XValue

document.getElementById ("X") ;

XValue.value = xVal;
//show html background change and graph not affected

switch (vbg)

case 1:

371

Origin C Programming Guide
document.body.style.backgroundImage =
"URL ('background image2.jpg')";
vbg = 2;
break;
case 2:

document .body.style.backgroundImage =
"URL ('background imagel.png')";

vbg = 1;

break;

function enterXval ()

var XValue = document.getElementById ("X") ;

window.external.ExtCall ("OnEnterXvalToUpdateGraph", XValue.value);

function getGraphRect ()

var leftDiv = document.getElementById("leftcontainer");
var leftpos = leftDiv.getBoundingClientRect () .right;
var toppos = leftDiv.getBoundingClientRect () .top;

var bottompos = leftDiv.getBoundingClientRect () .bottom;

var rightDiv = document.getElementById("rightcontainer");

var rightpos = rightDiv.getBoundingClientRect ().left;

372

User Interface

return JSON.stringify ({

left: leftpos + 20,

top: toppos + 20,

right: rightpos - 20,

bottom: bottompos - 20})

</script>

Note: This code adds functionality to the HTML page you created above:
lineMove () :Update the x-value in textbox when a user moves the vertical line
enterXval (): Respond to the event of a user hitting the ENTER key in textbox

getGraphRect () : Return a rectangular box in which the graph is shown

In order to capture the hitting ENTER event, add an onkeydown event handler inside the textbox tag of HTML

code, so that the function enterxval () will be invoked when the user hits the ENTER key.

<input type="text" name="XValue" id="X" placeholder="X" onkeydown =
"javascript:if (event.keyCode == 13) enterXval();">

-, In the function 1ineMove (), a switch statement is recommended to add. As the comment
Q said, you can see the graph overlaps the HTML page and is not affected even you change
the background.

In the function enterxval (), window.external .ExtCall is used to call Origin C. You

can learn more about window.external.ExtCall from here.

18.2.7.4.6 Creating an HTML Dialog with Graph
Now you are ready to edit the Origin C code to create an HTML dialog with a graph.

In Code Builder, create a new cpp file named DigWithGraph.cpp under the folder HTML Dialog with A Graph.

373

https://www.originlab.com/doc/OriginC/guide/second-HTML-dialog

Origin C Programming Guide

Include the needed headers.

#include <Origin.h>
#include <../OriginLab/DialogEx.h>
#include <../OriginLab/HTMLDlg.h>

#include <../OriginLab/GraphPageControl.h>
Define the GRAPH_CONTROL_ID.

#define GRAPH CONTROL ID 1
Derive a user defined HTML dialog class HTMLandGraphDlg from the class HTMLD1g, and point to the HTML

page inside the method GetInitURL ().

class HTMLandGraphDlg: public HTMLDlg

protected:

string GetInitURL() //get the path of html file

string strFile = FILE ; //the name of current file

GetFilePath (strFile) + "index.html";

string GetDialogTitle () { "Vertical Cursor Example";} //set
the title of dialog

}i
Add event handler methods inside the class HTMLandGraphD1lg to respond to the event, which is triggered

when a user opens, resizes or closes the dialog.

private:

GraphControl m _gcCntrl;

374

User Interface

protected:

BOOL OnInitDialog() //when the dialog is shown the first time, need to
init the dialog

LT execute(";doc -m 0");//hide Origin main window
HTMLDlg: :OnInitDialog(); //Derive a dialog from HTMLDlg class

ModifyStyle (0, WS MAXIMIZEBOX);//the generic HTML dialog resource
did not have maximize button

RECT rr;

m gcCntrl.CreateControl (GetSafeHwnd (), &rr, GRAPH CONTROL ID,
WS CHILD|WS VISIBLE|WS BORDER) ;

//set options to disable clicking on various components on a graph,
you can find more in OC_const.h

DWORD dwNoClicks = NOCLICK AXES | NOCLICK DATA PLOT |
NOCLICK LAYER | NOCLICK TICKLABEL | NOCLICK LAYERICON;

GraphPage m_gp = Project.GraphPages ("Graphl"); //this graph in the
OPJ can be customized manually

//attach Graphl in OPJ to GraphControl in dialog
BOOL bb = m gcCntrl.AttachPage (m gp, dwNoClicks);

return true;

BOOL OnDestroy ()

//for the developer, this allow the OPJ to be modified,

//and you can remove this part for the end users and just do
LT execute(";doc -ss;exit;")

bool bExitOrigin = MessageBox (GetSafeHwnd(), _L("Are you sure you
want to exit Origin?") , L("Vertical Cursor Example"), MB YESNO) == IDYES;

if (bExitOrigin)

375

Origin C Programming Guide

LT execute(";doc -ss;exit;"); //exit Origin
LT execute(";doc -m 1"); //show Origin main window
true;
}
//virtual

// when the dialog is ready, need to init the size and position of
dialog

BOOL GetDlgInitSize (int& width, inté& height)

width = 1024;
height = 450;

true;

// when you resize the dialog, need to reinit the size and position of
each control in dialog

BOOL OnDlgResize (int nType, int cx, int cy)

(!IsInitReady ())
false;

// MoveControlsHelper temp(this); // you can uncomment this line,
if the dialog flickers when you resize it

HTMLDlg: :OnDlgResize (nType, cx, cy); //place html control in dialog

(!IsHTMLDocumentCompleted()) //check the state of HTML control

false;

376

User Interface

RECT rectGraph;

//GetGraphRECT is a private function calling JavaScript to get a
rectangular box to involve the graph control.

//You will get to how to call JavaScript in Origin C in the next
section.

(!GetGraphRECT (rectGraph))
false;
//overlap the GraphControl on the top of HTML control

m gcCntrl.SetWindowPos (HWND TOP, rectGraph.left,
rectGraph.top, RECT WIDTH (rectGraph),RECT HEIGHT (rectGraph), 0);

true;

Note: The graph will be attached in a new-created graph control when the method

OnInitDialog () is triggered.

Map the dialog message inside the class HTMLandGraphD1g to specify which events will be handled and which

function will be called to handle.

EVENTS BEGIN DERIV (HTMLD1lg)
ON_INIT(OnInitDialog)
ON_DESTROY (OnDestroy)

ON_SIZE (OnDlgResize)
ON_RESTORESIZE (OnRestoreSize)

EVENTS END DERIV

18.2.7.4.7 Calling JavaScript in Origin C
In this section, you need OriginC calling JavaScript to complete these two items:

The graph control should be moved to a right position along with the central panel when the user resizes the

dialog, so you should call JavaScript to return a rectangular box in time.

377

Origin C Programming Guide

The x-value in textbox should be updated when the user moves the vertical line, thus you should also call

JavaScript to update the number.

In these section, you will use a member function GetScript () of the DHtmlControl class to get a script

engine interface.

Add the function GetGraphRect () inside the class HTMLandGraphD1g to call the JavaScript function

getGraphRECT () you wrote in the fifth section:

private:

BOOL GetGraphRECT (RECT& gcCntrlRect) //this is the function to call
JavaScript and get the position of GraphControl

(!m dhtml)
false;

Object jsscript = m _dhtml.GetScript();

(!'jsscript) //check the validity of returned COM object is always
recommended

false;

string str = Jjsscript.getGraphRECT () ;

JSON.FromString (gecCntrlRect, str); //convert a string to a
Structure

true;

}
Add the function OnMoveVlineToUpdateHtml () inside your Origin C class to call the function 1ineMove () in

JavaScript:

public:

378

https://www.originlab.com/doc/OriginC/ref/DhtmlControl-GetScript

User Interface

void OnMoveVlineToUpdateHtml (double dval)

Object jsscript = m dhtml.GetScript();

(!'jsscript)

string strXValue = ftoa(dval, "*5*");//limit to 5 significant
digits and remove trailing zeros

jsscript.lineMove (strXValue) ;

18.2.7.4.8 Adding JavaScript Callable Prototypes in Origin C

In this section, you add a method OnEnterXvalToUpdateGraph () inside your dialog class

HTMLandGraphD1lg, which is called in JavaScript function enterXval () in order to move the vertical line when

the user enter an x-value and hit the ENTER key.

Add the method and DECLARE_DISPATCH_MAP inside your dialog class.

public:

DECLARE DISPATCH MAP

void OnEnterXvalToUpdateGraph (string strXvalue)

GraphPage gp = m_gcCntrl.GetPage () ;

(tgp)

Graphlayer gl = gp.Layers(0);

('gl)

double xVal = atof (strXValue) ;

379

http://www.opengroup.org/onlinepubs/009695399/functions/atof.html

Origin C Programming Guide

(NANUM == xVal)//user has not entered pure numeric

GraphObject vline;

vline = gl.GraphObjects ("Line"); //access the vertical line in the
graph

(!vline)
vline.X = xVal;

}
Map the method of your OriginC dialog class to this HTML dialog.

BEGIN DISPATCH MAP (HTMLandGraphDlg, HTMLDlg)

DISP FUNCTION (HTMLandGraphDlg, OnEnterXvalToUpdateGraph, VTS VOID,
VTS STR)

END DISPATCH MAP

Note: More details of DISP_FUNCTION can be found here.

18.2.7.4.9 Adding Labtalk Callable Prototypes in Origin C

You've almost created a nice dialog, but it needs an additional item to finish it.
You must remember that you have written a script to call a function 1ine move () in LabTalk when you set your
vertical line properties in Properties dialog.

Now you should add this function in OriginC to be triggered when the vertical line is moved:

static HTMLandGraphDlg* s pDlg = NULL;// we need this such that dialog class can be
used from LabTalk

//this is the OC function to be called from LabTalk

void line move (double dval) //when the line moves, get the X-value and pass the
value to JavaScript

380

https://www.originlab.com/doc/OriginC/guide/second-HTML-dialog

User Interface

(s pDlg) //trigger only if move the line in this dialog

s_pDlg->OnMoveVlineToUpdateHtml (dval) ;

Note: In order for LabTalk to call the method within this dialog class, we need to declare a static

HTMLandGraphD1lg object.

18.2.7.4.10 Launching The Dialog
You are ready to launch the dialog.

Add a main function:

void HTMLandGraphDlgEx ()

HTMLandGraphDlg dlg;
s_pDblg = &dlg;
dlg.DoModalEx (GetWindow ()) ;

s pbDlg = NULL;

Note: You should name the function the same with you wrote in ProjectEvents.OGS.

Save all the code and build it.

Now, you double click the OPJ directly to lauch the dialog.

18.3 Wait Cursors

The waitCursor class changes the mouse pointer to the hour glass, or busy indicator. It is a visual cue to
indicate that Origin is running a piece of code that may require an amount of time sufficiently large that it will be
prevented from responding to other requests. The mouse pointer changes to the busy indicator when an instance

of a waitCursor object is created, and changes back to the arrow when the instance is destroyed.

381

Origin C Programming Guide

The following example is a function that pretends to do something time consuming. At the beginning, we declare
and create a waitCursor instance. During the creation, the mouse pointer will be changed to the busy indicator.
When the function exits, the waitCursor instance is automatically destroyed, causing the mouse pointer to be

changed back to the arrow.

void myTimeConsumingFunction ()

waitCursor wc; // declare and show the wait cursor

for(int i = 0; 1 < 10000; i++)

if(0 == (1 % 100))

printf("i == %d\n", i);

The next example is similar to the above example, but adds the ability to exit the function before it finishes its
time consuming task. The exiting early ability is accomplished by calling the wait cursor's CheckEsc method. This

method returns true if the user has pressed the Esc key, otherwise it returns false.

void myEscapableTimeConsumingFunction ()

waitCursor wc; // declare and show the wait cursor

for(int i = 0; 1 < 10000; i++)

if(0 == (1 % 100))
printf("i == %d\n", i);
if (wc.CheckEsc())

break; // end loop early

382

User Interface

18.4 Picking Points from a Graph

The Origin C GetGraphPoints class is used to pick points from the curve on the Graph window. This class has

virtual methods to allow the user to derive from it to overload methods.

The following example shows how to use the GetGraphPoints class to pick two points from a Graph.

GetGraphPoints mypts;

// Set as true , the cursor moves along the DataPlot and picks points from
// the curve.

// Set as false, the cursor does not move along the DataPlot, and picks

// points from the screen.

mypts.SetFollowData (true, dp.GetIndex());

// To pick point from the specified Graph by GraphLayer object (gl)
int nPts = 2; // the number of the points to pick

mypts.GetPoints (nPts, gl);

// Get the x/y data and indices from the picked points

vector vx, Vvy;

vector<int> vnPtsIndices, vnPlotIndices;

if(mypts.GetData (vx, vy, vnPtsIndices, vnPlotIndices) == nPts)
{
for(int ii = 0; ii < vx.GetSize(); ii++)
{
printf ("point %d: index = %d, x = %g, y = %g, on plot %d\n",

383

https://www.originlab.com/doc/OriginC/ref/GetGraphPoints

Origin C Programming Guide

ii+1, vnPtsIndices([ii], vx[ii], wvyl[ii],
vnPlotIndices[1i]+1);

18.5 Adding Controls to a Graph

If you want to attach a dialog to a page, similar to a workbook's organizer or the top of a polar graph, then the

SetSplitters method of the PageBase class can be used to accomplish this.

To add a dialog bar to a page, IpcszString needs to include the dialog class name and the position (Left, Right,

Top or Bottom) of the page window. Set IpcszString as NULL to remove the existing dialog bar.
The following example shows how to add and remove user-created dialog on a Graph window.

The class of the user-defined dialog:

#include <..\Originlab\DialogEx.h>
// OC_REGISTERED key word must allow the PageBase::SetSplitters method
// to find this class.

class OC_REGISTERED MyGraphPolarBar : public Dialog

public:
// IDD POLAR CONTROL is dialog resource ID
// 0dlg8 is the name of dialog resource DLL file, if not specified path,
//default path is \OriginC\Originlab.
MyGraphPolarBar ()

:Dialog (IDD POLAR CONTROL, "Odlg8")

BOOL CreateWindow (int nID, HWND hWnd)

384

https://www.originlab.com/doc/OriginC/ref/PageBase

User Interface

int nRet = Dialog::Create (hWnd, DLG AS CHILD);

HWND hWndThis = GetSafeHwnd() ;

SetWindowLong (hWndThis, GWL ID, nID);

return nRet;

}i

Add or remove dialog on a Graph window.

void Page SplittersControl (BOOL bShow = TRUE, int nPos = 2)

Page pg = Project.Pages ("Graphl");

if (bShow)
{
int nPercent = 30;
string strDlgClass = "MyGraphPolarBar"; // the above dialog class

string strConfig;

switch (nPos)

case 0: // Bottom

strConfig.Format ("r{%s}r[%s]", (string)nPercent+"%",
strDlgClass) ;

break;

case 1: // Right

strConfig.Format ("c{%s}c[%s]", (string)nPercent+"%",
strDlgClass) ;

385

Origin C Programming Guide

break;
case 2: // Top
strConfig.Format ("r[%s] {%d}r", strDlgClass, nPercent);
break;
case 3: // Left
strConfig.Format ("c[%s] {%d}c", strDlgClass, nPercent);

break;

pg.SetSplitters (strConfiqg) ;

else

pg.SetSplitters (NULL) ; // remove dialog bar from page

386

19 X-Functions

19.1 X-Functions

X-Function technology provides a framework for building Origin tools. In fact, most of Origin's revamped and
greatly-expanded lineup of analysis and data processing tools have been implemented using this new

technology.

19.2 Creating an X-Function

19.2.1 Creating an X-Function

Creating an X-Function is a two-step process: first, the X-Function and its parameters are defined in X-Function

Builder; second, the X-Function's Origin C code is written and compiled in Code Builder.

This section covers the following topics:

Creating a Simple X-Function

X-Function Builder

Programming in Code Builder

Creating Graph Preview GetN Dialog

Creating Image GetN Dialog

Creating Custom Dialog

Creating Wizard Dialog

Creating a Gadget Tool with X-Function

19.2.2 Creating a Simple X-Function

X-Functions are created with X-Function Builder. You can open X-Function Builder by choosing X-Function

Builder on the Tools menu or by pressing F10.

The X-Function Builder dialog is shown below.

387

https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/

Origin C Programming Guide

M X-Function Builder - Untitled
Eile Tools

#-Function | |

Yariables: [night-click o addddel]

Mame Label |Input/Output | Data Type Data Control | Opti|

| [Fipik * vweclor * <unazzigned:

19.2.2.1 Creating X-Function
The steps below will walk you through the creation of an X-Function that will perform the task of copying data

from one column to another column.
Start creating an X-Function by pressing F10 to open X-Function Builder.

Name the X-Function "CopyCol" and add a second variable by right-clicking on the Variables list and choosing

"Add variable". Change the variable names, labels, and other values to match the settings in the dialog below.

M X-Function Builder - Miscellaneous: CopyCol (User) [=][8][%]
File Tools

#-Function |ED|:I_I,IE|:|I |
Y ariables: [right-click to add/del]

M ame: |La|:ue| |In|:|uta"EIutput |Data Tupe |Data |E|:|ntr|:|I ||
ical Input Column Input * wecltor * <activer
acol Output Column Olutput * vwector * <{hewr

After you make the necessary changes to the variables, save the X-Function by clicking the Save OXF file button

. When the Save As dialog appears click the Save button.

Click the X-Function Tree View button |E|to switch to tree view. Make sure the Labtalk check box is checked

and the Auto GetN Dialog is set to Simple GetNBox, as below. Select the Labtalk check box to make it so the X-

388

X-Functions

Function can be used in the Command Window. The Auto GetN Dialog provides the choice to use an X-Function

without dialog or with dialog, as there are multiple different types.

Hame

Dezcnption

Author
Auto Compile Dependent Files
H Usage Context
Eaﬂtalk
Wiorkzheet Selection]
Graphic Object Events]
Theme
= Menus Maone w
Add Az Tool]
Clazz Operation]
Auto Geth Dialog IEmﬂeGeWEDH v |

Now we need to write the Origin C code that will do the work for our X-Function. Click on the Code Builder button

i
bt . This will open the X-Function in Code Builder where we can write our Origin C code. In the main function,

add the following Origin C code:

ocol = icol;
Click the Compile button and then click the Return to Dialog button to go back to X-Function Builder. Click the
Save OXF file button.

19.2.2.2 Using X-Functions
Now that we have successfully created our X-Function, we can test it.

Create a new a worksheet with two columns. Fill column A with row numbers and select the whole column by

clicking on its heading.

In the Script or Command Window enter "CopyCol -d", without the quotes, and press Enter.

When the dialog appears, keep the default values and click the OK button.

After the X-Function executes, the worksheet will contain a third column which will contain a copy of the data

from column A.

19.2.3 X-Function Builder

Open X-Function Builder by choosing X-Function Builder on the Tools menu or by pressing F10.

389

Origin C Programming Guide

19.2.3.1

X-Function Name

Input the X-Function name in the X-Function edit box.

v

Do not give your X-Function the same name as an existing LabTalk macro, OGS file,

LabTalk command, or LabTalk callable Origin C function.

If two or more of these have the same name, the priority order of calling is: LabTalk macros
> LabTalk OGS > X-Function > LabTalk callable Origin C functions > LabTalk commands.

19.2.3.2 X-Function Variables
Specify the name of the variable. When the X-Function is executed by script, you have
Name to assign values to variables using their names. Therefore, we recommend that you
use shorter names and begin them with different characters.
Specify a label for the variable. Special characters and white space are allowed.
Label Displays on the X-Function dialog as control label. If not specified, variable name will
be used.
Input/Output Specify whether the variable is used for input, output or both.
Specify the variable data type.
Data Type More details can be referred to below in the Variable Data Type and Default Value
section.
. Specify the default value for the variable. More details can be referred to below in the
ata
Variable Data Type and Default Value section.
Specify the control for the variable in the dialog box (combo box, slider, etc.).
Control
More details can be referred to below in the Control Types section.
Option Specify an option string for the variable. You can apply advanced settings with option
String strings, such as grouping several variables together, enabling recalculation, etc. More

390

https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/

X-Functions

details can be referred to below in the Option String section.

Specify the Theme ID for the variable. If not assigned, the Theme ID of the variable
will refer to the index of the variable. The Theme ID is used in the theme file for the X-

Theme ID Function dialog.

More details can be referred to below in the Theme ID section.

19.2.3.3 Variable Data Type and Default Value

X-Functions provide dozens of data types, as below.

Basic Data Type

Types are double, string, int.

The default value can be 0 for numeric or kept empty for string type.

Origin Composite Data Type

Types are vector, vector<string>, vector<complex>, and matrix.

For example, a vector can attach to a worksheet column as input or output.
The default value can be <active>, <new>, or <unassigned>.

For more details, please refer to the Origin C help Composite Data Types book.

Origin Object Type
The types are Column, Range, GraphLayer and other Origin Object types.
The default value can be <active>, <new>, <input>, or <unassigned>.

Origin C provides the function BOOL okxf_resolve_string_get_origin_object(LPCSTR Ipcsz, OriginObject* pObj)

to get an Origin Object from a GetN tree string value.

For more details, please refer to the Origin C help Internal Origin Objects book.

TreeNode Type
Types are TreeNode, ReportData, and ReportTree. TreeNode is input, ReportData and ReportTree are output.
Origin Graphical Object Control

Types are ButtonlInfo, Linelnfo, Textlnfo and so on.

391

https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
https://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class

Origin C Programming Guide

To see the usage, open a built-in X-Function from OriginEXE\X-Functions\Data Manipulation\curve

translate.OXF in X-Function Builder as an example.
Report Type
Types are ReportData, and ReportTree.

See X-Function ReportTree Example in the X-Function Examples chapter.

19.2.3.4 Control Types
After specifying the different control strings in the variables grid Control column in the X-Function Builder, we can

easily create different types of user interface controls in the X-Function dialog.

Data
Usage Control String
Type
Numeric
double
Edit Box
Text Edit
string
Box
Check Box int 0]1
string1|string2|string3
Combo Box int
CaseA:string1|CaseB:string2|CaseC:string3
Keep empty in the Control column in the Variables grid, but add the
codes below to the xfname_before _execute function to set the var
variable control as an editable combo box.
Editable
string
Combo Box
if(nGetNDialog > 0)
trGetN.var.SetAttribute (STR_COMBO ATTRIB,
"laal|bb|cc") ;
Radio Box int Radio:string1|string2|string3

392

https://www.originlab.com/doc/
https://www.originlab.com/doc/

X-Functions

Slider int/double slider:start|end|nstep
Color List int ColorList
...Graph for one graph
...Graphs for multiple graphs
Graph
string . . . : -
Browser Origin supports interface settings for the Graph Browser in an OriginC

function, using the control string GraphBrowserFilter. See X-Function

Graph Browser Dialog Example for details.

Text Edit

Box with ...File for single file

File string

Browser ...Files for multiple files

Button

Text Edit
Box with
Path string ...Path
Browser

Button

Text Edit
Box with
Save As string ...Save
Browser

Button

19.2.3.5 Option String
We can set the special string in the Option String column to specify the action of a variable. For example, setting
the recalculate default mode, setting the number of decimal digits for a numeric control, or setting the default

name of an output object.

19.2.3.6 Theme ID

393

https://www.originlab.com/doc/
https://www.originlab.com/doc/

Origin C Programming Guide

The Theme ID is used in the X-Function dialog theme file, and the default value is 0. If you keep the Theme ID of
all the variables at O(default), the Theme ID in the theme file will be converted according to the index of the

variable, beginning from 1.

When you want to insert a variable into an existing X-Function (to append a variable as the last, there's no need

do this), in order to remain compatible with the existing theme file, you need to:
Before inserting the variable, change the Theme ID from 0 to the index of the variable.
Insert the variable.

Set the Theme ID for the inserted variable as the maximum to avoid repeats.

19.2.3.7 Tree View

Click the Tree View button |E|to switch to tree view. The settings in Tree View are mainly used to create X-
Function dialogs, add X-Functions to the Origin menu, and add documentation. See the next chapter,

Customizing an X-Function, for details.

v EBHE & E
-

Mame | |
Deszcription | |
Author | |
Auto Compile Dependent Files
Uzage Context
Generate LabT alk Tree upon execution
Add Checkbox to Auto GetH Dialog about Resultzs Log Output []
Output to Aesultz Log upon execution |N|:|ne V|
GetM Dialog Custom Buttons | |
Command Line Uzage
Bl Variables

A b
£ | >

19.2.4 Programming in Code Builder

394

X-Functions

e
Click on the Code Builder button bt to open the X-Function in Code Builder, where we can write our Origin C

code.
19.2.4.1 Editor Window

Compile
There are two buttons near the top of the editor window: a Compile button[—pJ and a Return to

Dialog button . The Compile button is used to compile your X-Function's Origin C code. The

Return to Dialog button will close the editor window and return you to the X-Function Builder dialog.

In the editor you will notice some of the Origin C code has a gray background. These parts of the code are read-
only and cannot be changed. The X-Function framework generated these parts of the code and they are in a

required syntax.

19.2.4.2 Include Header Files

You can include additional header files in your X-Function's Origin C code. While not required, it is recommended

that you include your additional header files near the top of the file, after the following line:

//put additional include files here

This recommendation is to help keep the file organized and to be consistent with other X-Functions.

19.2.4.2.1 Search Paths

When you include files using the < and > brackets, then those files are included from the Origin C System folder
located in the Origin installation folder. You can still provide a relative path to move above the System folder.

These brackets behave the same when compiling .c and .cpp files in Origin C.

// Include fft utils.h located in the "OriginC\System" folder.

#include <fft utils.h>

// Include abffiles.h located in the "OriginC\OriginLab" folder
#include <..\OriginLab\abffiles.h> // relative path

When you include files using double quotes, then those files are included from the "OriginC\X-Functions" folder
in your "User Files" folder. This behavior is different than when you compile a .c or .cpp file in Origin C. This

different behavior is necessary because X-Functions are installed in a location maintained by Origin.

395

Origin C Programming Guide

// Include myOtherHeader.h located in the "OriginC\X-Functions"
// folder of the "User Files" folder.
#include "myOtherHeader.h"

If you specify an absolute path between double quotes, then that file will be included regardless of where the file

is located.

19.2.4.2.2 Auto Compile Dependent Files

In X-Function Builder's Tree View there is an option named Auto Compile Dependent Files. When this option is
turned on it will cause the compiler to check for a .c or .cpp file sharing a name with an included .h file. If a .c or

.cpp file is found then it will be loaded and compiled too.

// Include graph utils.h located in the "OriginC\Originlab" folder
// If Auto Compile Dependent Files is turned on
// then graph utils.c, located in the same folder, will be loaded and compiled

#include <..\Originlab\graph utils.h>

19.2.4.3 Define Internal Functions
In order to provide more clarity and readability, to make your code easier for future understanding and
maintenance, it is recommended that you break a long function into functionally independent and well-structured
short functions, which is also proposed in some other programming languages. In an X-Function, you can add

these short functions in as internal functions with the keyword static after the following line.

//put your own support static functions here

For example, in many X-Functions with lots of interaction from the GUI, many codes will be needed in

xfname_event1(), and then you can add a static function, similiar to Origin's interp1 X-Function.

static void update method show (TreeNode& trGetN)

As you can see, it is also recommended that you use an underscore to separate the components in a function

name.

396

X-Functions

19.2.4.4 Main Function

The main function is where you put all the code that performs the primary tasks of your X-Function.

Your X-Function's main function will have the same name you gave your X-Function in X-Function Builder. For

example, if you named your X-Function myXFunc then the main function will also be named myXFunc.

The arguments passed to the main function are the variables listed in the X-Function Builder dialog. All the
variables set as Input are passed in as constant references while the variables set as Output or Input/Output are

passed in as writable references.

19.2.4.5 Event Handling Functions
Your X-Function's source code contains functions used for handling various events. The name of each event
handler function is prefixed with the X-Function's name followed by an underscore character followed by the
event name. For example; if your X-Function's name is myXFunc then the before_execute event handler

function will be named myXFunc_before_execute.
The following is a list of events:

before_execute

event1

event1_ex

make_tree

By default all the event handler functions are empty. You only need to add code to an event handler function

when you want to change the default behavior or do some additional processing during an event.

The following sections provide more details about each of the event handler functions including their purpose,

parameters passed in, and return type.

19.2.4.5.1 Dbefore_execute
This function will be called before execution of the main function and will be called two or three times.

Prototype

void xfname before execute (TreeNodeé& trGetN, int nGetNDialog, inté& nRet, int
dwCntrl)

Parameters

trGetN

397

Origin C Programming Guide

A TreeNode containing the variables passed to the X-Function.
nGetNDialog
An integer value indicating when the function is being called.

A value greater than zero indicates the function is being called before showing its dialog. This happens when
choosing Open Dialog from a menu, programmatically calling the X-Function with the -d option, or choosing

Change Parameters for a manual recalculate.

Value Before Opening Dialog for...
1 Simple GetNBox

2 GetNGraphBox with Preview
3 GetNImageBox

A value of -1 indicates the dialog was closed by the user clicking the OK button.
A value of zero indicates the main function is about to be called.
nRet

This option can control the execution states of the X-Function.

XFEVT PROCEED

0 // Follow with normal execution

XFEVT_ABORT = 1 // Abort execution

XFEVT_PROCEED NO DLG 2 // Execute silently without opening dialog.
dwCntrl

This option can be used to determine how this X-Function is accessed. Possible values are enumerated as:

LTXF_FROM GUI_MENU // Accessed from menu
LTXF FROM GUI PROMPT // Accessed from command window
LTXF FROM AUTO UPDATE // Accessed for Auto-update

398

X-Functions

LTXF FROM FUNCTION // Accessed from Origin C function
LTXF THEME USED // Theme is used
LTXF CHANGE PARAM // Accessed for Change Parameters

The following example shows how to check if the X-Function is accessed from the command window and a

theme is also used (type xfname -t themename in the command window).

if (! (dwCntrl & LTXF FROM GUI PROMPT) && (dwCntrl & LTXF THEME USED))

// handle this case

19.2.4.5.2 make_tree

This function is called once for each TreeNode variable passed to the X-Function. The calls occur before the

before_execute function is called.

Prototype

int xfname make tree (TreeNode& tr, LPCSTR lpcszVarName)

Return

Return zero to update the dialog or -1 to not update the dialog. The default behavior returns -1.
Parameters

tr

The TreeNode to be created, which should have been defined as an input TreeNode type variable of the X-

Function.
IpcszVarName

The name of the TreeNode variable.

19.2.4.5.3 eventl and eventl_ex

These are the primary event handling functions. They will be called by any event, such as dialog initialization,

changes to any settings in the dialog, button clicking, and more. These functions are only used in X-Functions

399

Origin C Programming Guide

with a simple GetN dialog. X-Functions with a graph preview or an image preview use a different set of event

handler functions and are discussed in a later section.

Prototype

int xfname eventl (TreeNode& trGetN, int nRow, int nEventID, DWORD& dwEnables,
LPCSTR lpcszNodeName, WndContainer& DynaCntrlContainer,
string& strAux, string& strErrMsg)

Return

If returning true, the dialog will be updated.

Parameters

trGetN

This is the tree node of the variables defined in the X-Function.

nRow

The index of the row of the value-changed control node in TreeNode {rGetN. The value will be -1 when the event

is not 'control value changed'.

nEventID

Event type ID. For example, GETNE_ON_INIT, GETNE_ON_THEME.
dwEnables

This parameter is used to enable or disable the OK, Apply or other custom button. It is true by default, and will

usually be set to false when the user's settings are invalid, so as to disable the OK or Apply button.
IpcszNodeName

If the event is generated by a control change in the dialog, it will be the variable name of this control. Otherwise,

it will be an empty string.
DynaCntriContainer

X-Function dialog window container.
strAux

This parameter is the auxiliary string, which is for advanced usage. Please refer to the header file <Origin

Installation Directory>\OriginC\System\GetNBox.h for more details like the following definition.

400

X-Functions

#define DLG NEED CHANGE GRID "GETN CHANGE GRID"
#define GETN CHANGE GRID set aux_value (strAux, DLG NEED CHANGE GRID) ;
strErrMsg

This is the string message that will be shown in the bottom of the dialog. It is usually used to notify the user of

any errors that occurred during the input of variable values.

19.2.4.5.4 GetNGraphPreview Event Handler Functions

The event1 and event1_ex event handler functions are not used by X-Functions that have a graph preview

dialog. Instead you use the GetNGraphPreview functions.

GetNGraphPreview_OnlnitGrid

This event function is used to initialize the controls on the dialog.

GetNGraphPreview_OnInitGraph

This event function is used to initialize the preview graph.

GetNGraphPreview_OnUpdateGraph

This event function is used to update the preview graph on other events, for example, GUI changed.
GetNGraphPreview_OnChange

Any change will trigger this event function, and this function will decide whether to update the preview graph or

update the dialog on this change.
GetNGraphPreview_OnDialogSetup
GetNGraphPreview_OnDestroy

GetNGraphPreview _OnCustomButton

See the Creating Graph Preview GetN Dialog section for an example of how to create an X-Function with a

graph preview dialog.

19.2.4.5.5 GetNImageBox Event Handler Functions

The event1 and event1_ex event handler functions are not used by X-Functions that have an image preview

dialog. Instead you use the GetNImageBox functions.

GetNImageBox_Onlnit

401

https://www.originlab.com/doc/

Origin C Programming Guide

The event function called when the image GetN dialog is open. The function can decide whether to update the

dialog, enable/disable the OK button or show an error message on the bottom of the dialog after calling.
GetNImageBox_OnChange

The event function called whenever any control on the dialog is modified by the user. This function can decide
whether to update the dialog, update the image preview, enable/disable the OK button, or show an error

message on the bottom of the dialog.

See the Creating Image GetN Dialog section for an example of how to create an X-Function with an image

preview dialog.

19.2.4.6 Error Handling
19.2.4.6.1 Display an Error Message in the Dialog

When a user passes a bad value to your X-Function and also passes the -d option, or enters a bad value in the
X-Function's dialog, you can display an error message in the dialog by setting the strErrMsg argument passed

into the event handler function.

Which event handler function is called depends on the GetN Dialog your X-Function uses.

GetN Dialog Used Event Handler Function

Simple GetNBox xfname_event1

GetNGraphBox with Preview GetNGraphPreview_OnChange
GetNImageBox GetNImageBox_OnChange

Let us assume we have an X-Function that accepts an integer variable named x1. The following code snippet,
inserted into the appropriate event handler function, checks the x1 variable's value to see if it is less than zero or
greater than 100. If it is then it sets the strErrMsg to an appropriate message to display in the dialog, and also

disables the OK button. If the value is within the accepted range then it simply makes sure the OK button is

enabled.
if(trGetN.x1l.nvVal < O || 100 < trGetN.xl.nVal)
{
strErrMsg = "x1 is out of range. Must be from zero to 100.";

402

https://www.originlab.com/doc/

X-Functions

bOKEnable = false;

else

bOKEnable = true;

19.2.4.6.2 Output Error Message

When an X-Function is being called programmatically and its dialog is not going to be shown, then you need
another way to notify the user of any errors that may occur. Origin C has defined macros to output an error
message to the Results Log, Command Window or Script Window. It is strongly recommended that you use

these macros instead of out_str or printf.

The XF_WARN macros are used to output warning messages and do not terminate execution. All three macros
accept a string as the first argument, containing the warning message. The two macros that accept additional

arguments assume the warning message is also a format string for outputting one or two values.
XF_WARN(msg)
XF_WARN_EX(msg, arg1)

XF_WARN_EX2(msg, arg1, arg2)

// Assume the following:

// #define MIN DATA POINTS 5

// int nNumPts = 3;

// string strWksName = "Bookl";

XF WARN ("Too few data points.");

XF WARN EX ("Number of data points less than %d.", MIN DATA POINTS) ;

XF WARN EX ("Worksheet named %s was not found.", strWksName);

XF WARN EX2 ("Only %d data points, need at least %d.", nNumPts, MIN DATA POINTS);

The XF_TRACE macro is similar to the XF_WARN macros in that it does not terminate execution. It also takes a

message for the first argument, but it allows any number of additional arguments.

XF_TRACE(msg, ...)

403

Origin C Programming Guide

// Assume the following:

// #define MIN DATA POINTS 5

// int nNumPts = 3;

// string strWksName = "Bookl";

XF TRACE ("Only %d data points found in %s, need at least %d.",
nNumPts, strWksName, MIN DATA POINTS);

The XF_THROW macros terminate execution, but everything else about them is the same as the XF_WARN
macros. All three macros accept a string containing the warning message as the first argument. The two macros
that accept additional arguments assume the warning message is also a format string for outputting one or two

values.
XF_THROW(msg)
XF_THROW_EX(msg, arg1)

XF_THROW_EX2(msg, arg1, arg2)

// Assume the following:

// #define MIN DATA POINTS 5

// int nNumPts = 3;

// string strWksName = "Bookl";

XF THROW ("Too few data points.");

XF THROW EX ("Number of data points less than %d.", MIN DATA POINTS);

XF THROW EX("Worksheet named %s was not found.", strWksName) ;

XF THROW EX2 ("Only %d data points, need at least %d.", nNumPts, MIN DATA POINTS) ;

19.2.5 Creating Graph Preview GetN Dialog

This section shows how to create an X-Function graph preview GetN dialog , including how to initialize a
preview graph, how to update the preview graph on a GUI change, and how to update the GUI on the rectangle

moving on the graph.

404

X-Functions

B Miscellaneous: PrevBox (User)

Dialog Theme ﬂ Preview |

Dezcrption % 01

L

¥ From |0.2 |
XTo |03 |

aa 4

NEERS

ua

0z 4

uug 4

'.Ill.l '.II: 1 I'.I
AL Tie

ok H Cancel] ﬂ

19.2.5.1 Create an Empty GetN Graph Preview Dialo

Press F10 to Open X-Function Builder.
Type "PrevBox" into the X-Function EditBox as the X-Function name.

Add a second variable by right-clicking on the Variables list and choosing "Add variable". Change the variable

names, labels, and other values to match the settings in the dialog below.

B X-Function Builder - Miscellaneous: PrevBox (User) |._||E”’E|

File Tools

o FE O E

H-Function |F'revB o
Yarables: [nght-click to add/del]

Hame | Label Input/Output | Data Type | Data | Contral
whramm # Fram Input * double - 0
sk ®To Input * double = 06

< |

[

Click Tree View button |Ehn X-Function Builder, open the branch Usage Context -> Menu, set Auto GetN

Dialog to GetNGraphBox with Preview, then click the Save button to save this X-Function.

Close X-Function Builder, and run "PrevBox -d" in Command window. A GetN graph preview dialog will show.

19.2.5.2 Coding X-Function in Code Builder

405

Origin C Programming Guide

Open Origin Code Builder, in the menu choose File -> Open, locate the X-Function saved above, make sure the
Add to Workspace check box is checked in the Open dialog, and click OK. PrevBox.XFC is added to the User

folder in Origin C Workspace view and shows the function body in Edit view.

Add the additional header file after the line //put additional include files here. For example:

//put additional include files here

#include <..\Originlab\grobj utils.h>

19.2.5.3 Initialize Preview Graph
The GetNGraphPreview_OnInitGraph function is used to initialize a preview graph. Copy the following codes
and paste them into the function, then click the Compile button. When the preview dialog box opens, a rectangle

will display on the preview graph. Click Compile and run "PrevBox -d" in the Command window.

// cast pgTemp from PageBase class object to GraphPage object

GraphPage gp (pgTemp) ;

// load this template to the graph in order to contain zoom
// in/out button on the graph. If this is not required,
// remove this line.

page load(gp, "CurvePreview");

// get active graph layer in the graph page

GraphLayer gl = gp.Layers();

// add a rectangle, set x position reference to xfrom and xto
// variables

GraphObject go;

add rect(gl, go, trGetN.xfrom.dval, 0, trGetN.xto.dval, -1,

SYSCOLOR BLUE, 2, LN VERTICAL, true, false);

406

X-Functions

19.2.5.4 Update Preview Graph on GUI Change
To cause the preview graph to be updated, you need to include the UPDATE_GRAPH_CHANGED bit in the

dwUpdateGraph variable in the GetNGraphPreview_OnChange function. For example:

// include the bit to call GetNGraphPreview OnUpdateGraph
// to update graph
if(! (dwUpdateGraph & UPDATE GRAPH CHANGED))

dwUpdateGraph |= UPDATE GRAPH CHANGED;
Add the following code into the GetNGraphPreview_OnUpdateGraph function to update the graph. Click the

Compile button and run "PrevBox -d" in the Command window.

// cast pgTemp from PageBase class object to GraphPage
// object

GraphPage gp (pgTemp) ;

GraphLayer gl = gp.Layers(); // get active graph layer

GraphObject go = gl.GraphObjects ("Rect");

double x0 = trGetN.xfrom.dVal;

double x1 = trGetN.xto.dVal;

// update x position of rectangle on GUI

vector vv (4);

vv[0] = x0; vv[l] = x1; vv[2] = x1; vv[3] = x0;

Tree tr;

tr.Root.Data.X.dvals = vv;

407

Origin C Programming Guide

19.2.5.5

go.UpdateThemeIDs (tr.Root) ;

go.ApplyFormat (tr, true, true);

// refresh graph window

gp.Refresh (TRUE) ;

Update GUI on Graph Object Event

If you want to update the GUI when you move/resize the rectangle on the preview graph, you need to:

Add the following to the GetNGraphPreview_OninitGraph function after the add_rect function.

// in oc_const.h file.

set LT script(go, "run -oc notify dlg on move obj;",

GRCT SIZEMOVE) ;

// set event script to notify preview dialog when rectangle

// is moved or resized. For other event types see the GRCT_*

Add the following code to GetNGraphPreview_OnChange to update the new position of the rectangle to the

GUI. Click the Compile button and run "PrevBox -d" in the Command window.

408

if (bChangedByGraph)

// get rectangle x from/to and update GUI
GraphPage gp (pgTemp) ;
GraphLayer gl = gp.Layers();

GraphObject goRect = gl.GraphObjects ("Rect");

Tree tr;

tr = goRect.GetFormat (FPB DATA, FOB ALL, TRUE,

TRUE) ;

X-Functions

vector vv;

vv = tr.Root.Data.X.dVals;

trGetN.xfrom.dvVal = vv[0];

trGetN.xto.dval = vv[1l];

// to include UPDATE GRID * bits to update GUI
if(! (dwUpdateGrid & UPDATE GRID SIMPLE))

dwUpdateGrid |= UPDATE GRID SIMPLE;

19.2.5.6 Add Preview buttons

To add a Preview button and an Auto Preview check box, please see X-Functions: Customizing an X-Function:

Adding Custom Button on Dialog: Show Preview Button on Graph Preview GetN Dialog

19.2.6 Creating Image GetN Dialog

This section shows how to create an X-Function GetN dialog with a matrix image data preview as in the
following dialog, including how to initialize an image preview and dialog controls, and how to update the image

preview or dialog controls on any control change in the dialog performed by the user.

409

https://www.originlab.com/doc/
https://www.originlab.com/doc/

Origin C Programming Guide

B Miscellaneous: ImageBox (User)

Dialog Theme | - oo »

L oS
|

Recalculate E]
Input Image |<active> P‘El'l

Brightness Level |14 |

L

Output Image [<input> »
b

[oK][Cancel]

19.2.6.1 Create an Empty GetN Image Preview Dialog

Press F10 to Open X-Function Builder.
Type "ImageBox" into the X-Function EditBox for X-Function name.

Add more variables by right-clicking on the Variables list and choosing "Add variable". Change the variable

names, labels, and other values to match the settings in the dialog below.

- [3]X]

B X-Function Builder - Miscellaneous: ImageBox {User)

File Tools

#-Function |ImageB o |
Yariables: [right-click to addd/del]

Mame | Label Input/Output | Data Type | Data Contral |
img |nput Image Input * |mage * <activer
lewel Brightness Level |nput - int - 1] Slider:-1 001 00[200
Qirmg COutput Image Output * lImage * <input:

£ Il])

410

X-Functions

Click the Tree View button E on X-Function Builder, open the branch Usage Context -> Menu, set Auto GetN

Dialog to GetNImageBox, then click the Save button to save this X-Function.

Close X-Function Builder, open a new matrix window, choose menu File -> Import -> Image, select an image file,

and click Open to import the image into a matrix window.

Keep the matrix window active, and run "ImageBox -d" in the Command window. An image preview GetN dialog

will show.

19.2.6.2 Coding X-Function in Code Builder

Open Origin Code Builder, in the menu choose File -> Open, locate the X-Function saved above, make sure the
Add to Workspace check box is checked in the Open dialog, and click OK. ImageBox.XFC is added to the User

folder in Origin C Workspace view and shows the function body in Edit view.

Add the additional header file after the line //put additional include files here as in the following.

//put additional include files here
#include <image utils.h>

#include <..\Originlab\matdata utils.h>

Add a static function, like the following, under the line //put your own support static functions here.

//put your own support static functions here

static bool adjust image brightness ex (BITMAPHANDLE* pPreviewBitmap,
TreeNode&

trGetN, bool& bOKEnable, stringé& strErrMsg)

int nRet = adjust image brightness (pPreviewBitmap,
trGetN.level.nVal) ;

if (SUCCESS != nRet)

bOKEnable = false; // disable OK button if adjust image
failed

strErrMsg = "Fail to adjust image brightness"; // error

411

Origin C Programming Guide

message string

return false;

return true;

19.2.6.3 GetNImageBox OnInit Event Function
This event function is called when the GetN image preview dialog is open. It can be used to initialize an image
preview, initialize dialog controls and enable/disable the OK button. For this example, add the following code into

the GetNImageBox_OnlInit function to adjust the image brightness according to the value of the Level control.

// Get bitmap handle pointer from image preview control

PBITMAPHANDLE pPreviewBitmap = pimgCntrl->GetBitmapHandlePtr () ;

// call internal function to adjust image

_adjust image brightness ex(pPreviewBitmap, trGetN, bOKEnable, strErrMsqg);

19.2.6.4 GetNImageBox OnChange Event Function

This event function is called whenever any controls in the grid are modified by the user. It can be used to update
the image preview on a dialog control change, update a dialog control on another control change, or update the

OK button's enable/disable status. Add the following code into the GetNImageBox_OnChange function.

// call internal function to adjust image, return true to update image preview.
bUpdatePreview = adjust image brightness ex(pPreviewBitmap, trGetN,

bOKEnable, strErrMsg);

19.2.6.5 Main Function

The main function has the same name as its corresponding X-Function. Add the following code into the main

function and click the Compile button.

// Copy bitmap handle pointer from the input image to the output image

412

X-Functions

bool bCopy = true;

oimg.SetLBmp (iimg.GetLBmp (), bCopy) ;

// Get bitmap handle pointer from the output image

pBITMAPHANDLE phBmp = oimg.GetLBmp () ;

// adjust
adjust image brightness (phBmp, level);
19.2.6.6 Using X-Function

Run "ImageBox -d" in the Command window to open this X-Function dialog. Change the value of the Level

control, and the brightness of the image preview will be changed.

Click the ﬂbutton to open the theme context menu, choose Save As, type "mylevel" into the Theme Name box,

then click OK to save the theme file. Click Cancel to close the X-Function dialog.

Run "ImageBox -d -t mylevel" in the Command window to open the X-Function dialog with the specified theme.

19.2.7 Creating Custom Dialog

X-Functions support custom dialog created in a dialog builder as interface. If the user wants to use the
customized dialog, and also wants to support Auto Update in the dialog, or wants to open the dialog from the
Origin menu, then they can create an X-Function with customized dialog. And then can create an OPX file to

share it to others.

19.2.7.1 Creating a Dailog Resource DLL

Here is an example to show you how to build a resource-only DLL in Visual Studio 2008 or 2010 which is
accessible in Origin C. Follow the section Creating a Resource-Only DLL, we will get two files: Welcome.dll

and resource.h.

19.2.7.2 Creating X-Function
Copy the above two files Welcome.dll and resource.h to Origin <User files Folder\OriginC\>. Note: the resource

DLL file and resource.h file should be saved in the same folder.
Press F10 to open X-Function Builder.

Type "CustomDIg" as the X-Function name and set the X-Function variables as below:

413

https://www.originlab.com/doc/OriginC/examples/Open-Customize-Dialog-in-Origin-C

Origin C Programming Guide

T ———.
¥ ¥-Function Builder - Miscellaneous: CustomDlg (User) lE|Ehu
File Teools

N EFEH o E
w-Function CustomDlg
Yariables: [right-click to add/del]

Mame |La|:ne| |Ir'||:|uta"EIut|:|ut |Data Type |Data |En:nntn:n| |EI|:|tin:|r'| Sking

in | nput * vwector * <activer
fachar | npit * double - 1
ok Qutput * vector * Jnew:

Click the Tree View button|E| to switch to Tree View, and choose Usage Context -> Menus -> Auto GetN Dialog

to Custom. Then type the custom dialog function name, for example "OpenCustomDIg", into the Custom Dialog

Function edit box. Click Save button to save this X-Function to the default folder under User Files folder and

then close X-Function Builder. Note:X-Function should be save to the X-Functions folder under OriginExe folder

or User Files Folder

Create a new header file named CustomDIg.h and save it to the "OriginC" folder. Type the following code into

this file. The code in the CustomDialog construct function is used to show how to get the X-Function settings

from the X-Function to the dialog, and how to set back the settings from the dialog to the X-Function by way of

the Origin C TreeNode variable.

414

#include <..\Originlab\DialogEx.h>

#include "resource.h"

// file name of the resource without extension, here stand for Welcome.dll,
//and it assume the DLL is in the same folder as this .h file

#define STR DLG RESOURCE DLL "Welcome"

// the file name of resource DLL
$ifdef OWING4

#define STR DLG_RESOURCE DLL "Welcome 64" // 64 bit DLL

X-Functions

415

#else //! OWING4
#define STRﬁDLGfRESOURCEiDLL "Welcome" // 32 bit DLL

#tendif// _OWIN64

class CustomDialog : public ResizeDialog

public:

// Important: IDD MY DIALOG is the dialog resource ID.

// STR_DLG _RESOURCE DLL is the name of the dialog resource DLL file.

CustomDialog (TreeNode& trXFSettings) : ResizeDialog(IDD MY DIALOG,
STR_DLG_RESOURCE_DLL)

m_trXFSettings = trXFSettings;

int DoModalEx (HWND hParent = NULL)

InitMsgMap () ;

return ResizeDialog::DoModal (hParent) ;

protected:

EVENTS BEGIN

ON_INIT(OnInitDialog)

Origin C Programming Guide

ON_OK (OnOK)

EVENTS END

BOOL OnInitDialog()

ResizeDialog::0OnInitDialog() ;

Edit ed;

ed = GetDlgItem(IDC EDITI);

// init dialog control with xf setting
ed.Text = ftoa(m trXFSettings.factor.dval);

return TRUE;

BOOL OnOK ()

Edit ed;

ed = GetDlgItem (IDC EDITI);

m_ trXFSettings.factor.dvVal = atof (ed.Text);

// If the input is 0, it will be changed to
automatically.

if (m_trXFSettings.factor.dval ==)

m_ trXFSettings.factor.dval = 1;

return TRUE;

416

X-Functions

private:
TreeNode m trXFSettings;

}i
Open Origin Code Builder, in the menu choose File -> Open, select your X-Function, make sure the Add to
Workspace check box is checked in the Open dialog, and click OK. CustomDIg.XFC is added to the User folder

in Origin C Workspace view and shows the function body in Edit view.

Add the additional header file after the line //put additional include files here, as in the following.

//put additional include files here

#include "CustomDlg.h"
Add a function to open the custom dialog after the line //put your own support static functions here, as below.
The function name is input into the Tree View Custom Dialog Function edit box. The function interface, return

type, and argument list should remain the same, as in the following.

//put your own support static functions here

bool OpenCustomDlg (TreeNode& tr, PEVENT FUNC pfn, LPCSTR lpcszTitle, LPCSTR

lpcszDescription, HWND hWndParent)

CustomDialog dlg(tr);

if(dlg.DoModal (GetWindow ()))

tr.AutoUpdate.nVal = AU AUTO; // Default is 2 (Manual)

return true;

else // click Cancel button on dialog

return false; // will not call main function

417

Origin C Programming Guide

}
Put the following code into the X-Function's main function - CustomDIg function

out = in * factor;

// put comments like "Col(A)*8" on the Comments label of output column
DataRange drIn;

drIn = in.GetSourceDataRange () ;

Worksheet wks;
int cl, c2;
drIn.GetRange (wks, cl, c2);

Column col (wks, cl);
if(wks && col)

string strOutputComment;
strOutputComment.Format ("Col (%s) *3g", col.GetName (), factor);
out.SetOutputComment (strOutputComment) ;

}

. Compile
Click button.

19.2.7.3 Using X-Function

Create a worksheet with two column and fill some different data.
Highlight column A and Run "CustomDlIg -d" in the Command Window.
Fill "8" to Factor.

Click the OK button to close the dialog.

A new column will be created with an Auto Update lock (Column(A)*factor).

418

X-Functions

If the input is 0, it will be changed to 1 automatically.

Changing any data in column A will trigger Auto Update to update the output column.
19.2.7.4 How to share your custom dialog with others

You can use Package Manager to distribute it as a single package file to other Origin users. Then he can install

your application by dropping the package file into Origin directly.

Select menu Tool->Package Manager. Click Add Files button to add the four files. CustomDIg.XFC,

CustomDig.h, resource.h, Welcome.dlIl.

Select File-> Save to save them as "CustomDIg.opx" file and share it with other users.

19.2.8 Creating Wizard Dialog

X-Functions support wizard dialogs. To create a wizard dialog, you need n+1 X-Functions, where n is the
number of wizard pages. One is the main X-Function. The main X-Function is used to construct wizard pages

and then open the wizard dialog if script mode is off, or run without dialog when script mode is on.

19.2.8.1 Creating a Wizard

The following shows how to create a two page wizard. Page 1 is used to select an XY range, and to specify the
sub x range of the selected data range. Page 2 is used to add a rectangle with the specified fill color onto the

source graph. The left x and right x of this rectangle are equal to the values of x from/to in Page 1.

Add a header file, wizDIg.h, under the UFF\OriginC\ folder. Put the following code into this header file to derive

subclasses from Origin C built-in X-Function wizard classes. The X-Function basic wizard classes are:
XFCore, which is used to save and pass values in each page.

XFWizTheme, which is used to arrange theme settings for each wizard page.
XFWizInputOutputRange, which is used to arrange input and output ranges for each page.

XFWizManager, which is very important and must have a user-defined subclass derived from it. It is used to

decide the steps in the wizard.

#ifndef WIZ DLG H

#define WIZ DLG H

#include <..\OriginLab\XFWiz.h>

419

Origin C Programming Guide

#include <..\OriginLab\XFCore.h>

#include <..\OriginLab\WizOperation.h>

#include <..\OriginLab\XFWizNavigation.h>

#include <..\OriginLab\XFWizManager.h>

#include <..\OriginLab\XFWizScript.h>

#include <..\OriginLab\XFWizDlg.h>

#include <..\OriginLab\XFWizard utils.h>

L1707 0707700770777 7777077777777 0777077077707 7777 77777777777777

class WizDlgCore : public XFCore

public:

WizDlgCore ()

void SetXRange (double from, double to)

m dFrom = from;

m _dTo = to;

void GetXRange (double& from, double& to)

420

X-Functions

421

from = m dFrom;

to = m dTo;

private:
double m dFrom;

double m dTo;

L1717 0700770007077 777777777777777

class WizDlgTheme : public XFWizTheme

LILTTTT007 777770777777 777 777777777777 77777777777777777777777777777777777777

class WizDlgInputOutputRange : public XFWizInputOutputRange

LILTTTT00 7777770777777 777 777777777777 77777777777777777777777777777777777777

class WizDlgManager : public XFWizManager

public:
WizDlgManager (LPCSTR lpcszThemeName = NULL,
const XFWizTheme *pXFWizTheme = NULL,

const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwUIDOp = 0);

Origin C Programming Guide

protected:
virtual XFCore* CreateXFCore () { return new WizDlgCore; }
virtual XFWizTheme* CreateXFWizTheme () { return new WizDlgTheme;

virtual XFWizInputOutputRange* CreateXFWizInputOutputRange ()

return new WizDlgInputOutputRange;

virtual string GetClassName () { return "WizDlgExample"; }
}i
#define STR XFNAME PAGE 1 "wizPagel"
#define STR XFNAME PAGE 2 "wizPage2"
#define STR LABEL XFNAME PAGE 1 "Page 1"
#define STR LABEL XFNAME PAGE 2 "Page 2"

WizDlgManager::WizDlgManager (LPCSTR lpcszThemeName,

const XFWizTheme *pXFWizTheme, const XFWizInputOutputRange
*pXFWizIO,

DWORD dwUIDOp) // = NULL, NULL, NULL, O

XFWizManager (lpcszThemeName, pXFWizTheme, pXFWizIO, dwUIDOp)

StringArray saMapXFNames = {STR XFNAME PAGE 1, STR XFNAME PAGE 2};

StringArray saMapXFLabels = {STR LABEL XFNAME PAGE 1,

422

X-Functions

STR_LABEL XFNAME PAGE 2};
m_saMapXFNames = saMapXFNames;
m saMapXFLabels = saMapXFLabels;

ASSERT (m_saMapXFNames.GetSize () == m saMapXFLabels.GetSize());

m saDefaultXFNames = saMapXFNames;

LILTTTT007 7777707777777 7 77777777777 77777777777777777777777777777777777777

int run wiz nodlg (LPCSTR lpcszThemeName = NULL,

const XFWizTheme *pXFWizTheme = NULL,

const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID = 0)

TEMPLATE run wiz nodlg(WizDlgManager, lpcszThemeName, pXFWizTheme,

pXFWizIO, dwOPUID)

int open wiz dlg(LPCSTR lpcszThemeName = NULL,

const XFWizTheme *pXFWizTheme = NULL,

const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID = O0)

TEMPLATE open wiz dlg(WizDlgManager, lpcszThemeName, pXFWizTheme,

pXFWizIO, dwOPUID)

#endif //__WIZ DLG H

423

Origin C Programming Guide

Press F10 to open X-Function Builder, to create a main X-Function as below.

M X-Function Builder - 0CGuide: wizDlg (User) [~ [O1][X]

File Tools

*-Function |wi2DIg |
Yariables: [right-click to add/del]

M arme |La|:ue| |Inputa’EIutput |Data Type |Data |Eu:untru:u| |
iy [Fipt * #“vYRange - Cactiver
zoript [ript - int - 0 an
theme [put * sting * <unassigned:
£ il | >

AClick the E button to save this X-

Function. Close X-Function Builder.

Open Code Builder, open the wizDIg.OXF file and add it to the current workspace. Add the following header files

after the line //put additional include files here.

#include <..\OriginLab\XFWiz.h>

#include <event utils.h>
#include <..\OriginLab\WksOperation.h>

#include <..\OriginLab\WizOperation.h>

#include <..\OriginLab\XFCore.h>

#include <..\OriginLab\XFWizNavigation.h>
#include <..\OriginLab\XFWizManager.h>
#include <..\OriginLab\XFWizScript.h>
#include <..\OriginLab\XFWizDlg.h>

#include <..\OriginLab\XFWizard utils.h>

#include <..\Originlab\wizDlg.h> // user added header file for this example

424

X-Functions

Add the following code to the main function wizDIg

WizDlgInputOutputRange objXFWizIO;

if (!xfwiz construct input range (&0bjXFWizIO, STR XFNAME PAGE 1, 1iy))

XF_THROW (XFERR_FAIL TO UPDATE GETN TREE);

if(script)

run wiz nodlg(theme, NULL, &objXFWizIO);

else

open_wiz_dlg(theme, NULL, &objXFWizIO);

}

Press F10 to open X-Function Builder and create the X-Function wizPage1 for the wizard page 1 as below.

I X-Function Builder - 0CGuide: wizPage1 (User)

File Tools

#-Function |wi2F‘age‘I |
Yanables: [nght-click to add/del]

M armne |La|:ue| |In|:|uta"EIut|:|ut |Data Type |Data |Eu:untru:u| ||I:I|:uti|:|n Strirg |E
it | Lt * #YRange = < achiver
wfram | pLit * double - <autor
who | npLit * double - <autor
rF CarePointer | npLit - int * {unazzigned: WO
£ il] B

Add the following user-defined header file after the line //put additional include files here, as below.

425

Origin C Programming Guide

#include <..\Originlab\wizDlg.h> // user added header file for this example

Put the following code into the page 1 main function wizPage1.

WizDlgCore* pWizCore =
(WizDlgCore*)get xf core handler (NODE NAME XF WIZ CORE POINTER) ;

ASSERT (pWizCore) ;

// Set X From/To to WizCore class object

pWizCore->SetXRange (xfrom, xto);

Add the following code to the wizPage1 X-Function _event1 function wizPage1_before_execute, to initialize the

xfrom and xto controls according to the input data range.

426

if (PDS _AUTO == okutil cvt str to predefined type (trGetN.xfrom.strVal)

| | PDS AUTO == okutil cvt str to predefined type (trGetN.xto.strVal)

DataRange dr;
TreeNode trRange = trGetN.iy;

okxf resolve tree construct range (&trRange, é&dr);

vector vx;

dr.GetData (DRR_GET DEPENDENT, 0, NULL, NULL, NULL, &vx);

double from, to;

vx.GetMinMax (from, to);

X-Functions

trGetN.xfrom.dval = from;
trGetN.xto.dvVal = to;

}
Open X-Function Builder to create the X-Function wizPage2 for page 2. Set up the X-Function name and

variables as below and click the Save button to save.

B X-Function Builder - OCGuide: wizPage? [User)

File Tools

N B e E

#Function |wi2F'ageE
“Wariables: [right-click to add/del]

= Label [nput/Output | Diata Type | Data Contral || Option String
color Color of Rectangle Input - int - 1 ColorList
retFCarePainter [t - intw <unazzigheds W0:T:1

Open the wizPage2.0XF file in Code Builder, and add it to the current workspace to include header files, as

below.

//put additional include files here
#include <..\Originlab\wizDlg.h>

#include <..\Originlab\grobj utils.h>
Find the main function wizPage2 and put the following code into it. The code is used to add a rectangle

according to the xfrom and xto values assigned in page 1.

WizDlgCore* pWizCore =

(WizDlgCore*)get xf core handler (NODE NAME XF WIZ CORE_POINTER) ;

ASSERT (pWizCore) ;

// Get the x from/to values that are specified in Page 1

427

Origin C Programming Guide

double xfrom, xto;

pWizCore->GetXRange (xfrom, xto);

// To get input range.
XFWizNavigation* pXFWizNavg =

(XFWizNavigation*) (pWizCore->GetXFWizNavigation()) ;
WizDlgInputOutputRange* pwizInputOutputRange =

(WizDlgInputOutputRange*) (pXFWizNavg->GetXFWizInputOutputRange ()) ;

// Get input ranges from Page 1
Array<DataRangeé&> arrdr;

if (pwizInputOutputRange->Get (&arrdr, STR XFNAME PAGE 1, true))

DataRange& dr = arrdr.GetAt (0);

vector<uint> vUIDs;
DataPlot dp;

if (dr.GetPlots (vUIDs) > 0)

// Get source graph layer from input range
dp = (DataPlot)Project.GetObject (vUIDs[0]) ;
Graphlayer gl;

dp.GetParent (gl) ;

// To add rectangle to graph

GraphObject go;

428

X-Functions

add rect(gl, go, xfrom, 0, xto, 0, color, 2, LN VERTICAL,

true, false);

19.2.8.2 Using X-Function

Before running the example wizard, you need to create a new worksheet, fill two columns with data, and plot a
line graph with two columns.
19.2.8.2.1 Run with wizard dialog
Keep the graph window active. Run "wizDIg" in the Command window.
In the dialog that appears, change the values of the xfrom and xto controls. Click the Next button.

In the next page, change the Fill Color control to Blue.

Click the theme button ﬂ choose Save As, type in theme1 as the name, and click OK.

Click the Finish button. The wizard dialog closes and a blue rectangle will be added to your source graph.

19.2.8.2.2 Run with script mode without dialog

Keep the graph window active. Run "wizDIg s:=1 t:=theme1" in the Command window. No dialog opens and a

rectangle will be added to the active graph with the settings specified in the theme file.

19.2.9 Creating a Gadget Tool with X-Function

Origin offers some gadgets that operate on graphs and matrices. You can find them in the Gadgets menu when

a graph or matrix is active.

When you choose one of the gadgets, Origin adds a rectangle to the graph or matrix, allowing you to choose the

region of data to be analyzed. After selecting the region of interest (ROI), you can open the context menu by

clicking the E]button and using the preference dialogs or themes to set up the analysis and output the results

to desired destinations.

429

Origin C Programming Guide

M= 12 Mean = 16.5

—B

25 - TopTexy — ™ SD= 36056
/,Gadg»;TCuwe Statz (x| w
30 Tille: Conjesl Menu Bution
/
/."
25 ,// Close Bution
;’__.-f
20 - yd
-
o
o
o 15 L
/““ — RO
e
10 - ,’“z
A
L
5 - o~
/
/.—"’
0. .
| — T T T 1 1T © 1
0 5 10 15 20 25 30 35

Origin allows users to add a user-defined gadget tool with an X-Function, and then add this tool to the Origin

Gadgets menu.

19.2.9.1 How to Create a Gadget

The following are the three main steps for creating a gadget tool:

Create an X-Function.

The X-Function handles the dialog theme and adds the gadget tool to Origin's Gadget menu.

Create an Origin C class derived from GraphObjCurveTool or MatObjROITool.

The GraphObjCurveTool and MatObjROITool classes are Origin C building classes and declared in the file:
OriginExeFolden\OriginC\Originlab\GraphObjTools.h

These classes are used to create a region of interest (ROI) object and provide default handling for events.

Events include moving and resizing the ROI object and choosing items on the ROI context menu.

Add event functions.
The name of the global event function needs to be in the xfname_events format, where xfname is the name of

the X-Function. A function's argument list must use the following syntax:

void xfname events(string strGrName, int nEvent, int nMsg = 0);

The next sections will explain these steps in more detail.

430

X-Functions

19.2.9.2 Creating an X-Function

With Origin active, press F10 to open X-Function Builder. Set up your new X-Function's name and variables as

shown below.

M X-Function Builder - OCGuide: quick_curve_stats (User) |:||E||X|

File Tools

AN EEH o E
#-Funchion |quick_-:uwe_stats |

Yariables: [rght-click to add/del]

Name | Label | Input/Output Data Type | Data | Cortrol
bkGUl Settings [nput * TreeMode * <unaszzigned:

€| Il | 3|

Click the E button to save the X-Function.

Click the i button to open the X-Function's source code in Code Builder.

Add two additional include statements.

//put additional include files here
#include <..\Originlab\grobj utils.h>

#include <..\Originlab\GraphObjTools.h>
Find the function named quick_curve_stats_make_tree and replace it's body with the following code for

creating a GUI tree.

if(0 == strcmp(lpcszVarName, "trGUI"))

GETN_USE (tr)

GETN_OPTION BRANCH (GETNBRANCH OPEN) // default to open branch

int nUserID = GET USER DATAID(O);

431

Origin C Programming Guide

int nBranchID = 1;

GETN_STR(toolname, STR TOOLNAME, "Quick Curve Stats")GETN ID(nUserID++)
// the option to add a checkbox control with editbox
GETN_ CONTROL OPTION BOX (1)

GETN_COLOR (rectColor, "Rectangle Fill Color", SYSCOLOR_LTYELLOW)
GETN_ID(nUserID++)

GETN_COLOR CHOICE OPTIONS (COLORLIST CUSTOM | COLORLIST SINGLE)

// quantities branch, for output result options
GETN BEGIN BRANCH (quantities, "Quantities") GETN_ID(nBranchID++)

GETN OPTION BRANCH (GETNBRANCH OPEN|GETNBRANCH CHECK CONTROL)

GETN_ CHECK (dataname, "Dataset Name", true) GETN_ ID(nUserID++)
GETN_CHECK(n, "Total Number", true) GETN ID(nUserID++)
GETN_CHECK(sum, "Sum", true) GETN_ID(nUserID++)

GETN CHECK (mean, "Mean'", true) GETN ID(nUserID++)

GETN CHECK(sd, "Standard Deviation", false) GETN ID(nUserID++)
GETN_CHECK (se, "SE of Mean", false) GETN ID(nUserID++)

GETN_END BRANCH (quantities) // the end of quantities branch

// output branch, the options for output destination

GETN_ BEGIN BRANCH (output, "Output To") GETN_ ID(nBranchID++)
GETN CHECK(script, "Script Window", true) GETN ID(nUserID++)
GETN_CHECK(reslog, "Results Log", false) GETN_ ID(nUserID++)

GETN_CHECK (outputwks, "Output to Worksheet", false)
GETN_ID(nUserID++)

432

X-Functions

GETN_END BRANCH (output) // the end of output branch

return 0;

Cornpile
Click the button to compile your changes. After successfully compiling, click the
Return to Dialog))
button to go back to X-Function Builder.

Click the E button to save the X-Function again, then close X-Function Builder.

Run "quick_curve_stats -d" in the Command window. The following dialog will display.

[

2]

Dialog Theme ﬂ
Dezcrption
El Settings
Show Tool Hame Cluick Curve Stats
Rectangle Fil Color []Lr velow |
Bl Quantities [+
D atazet Mame
Total Hurmber
Sum [v]
bean
Standard Deviation [
5E of Mean [FI
Output To
[]] [Cancel]

Now you have your X-Function. In the next section we will show you how to define a new class derived from an

Origin C building class.

19.2.9.3 Defining a Class Derived from GraphObjCurveTool

This section will show you how to define a new class derived from Origin C's GraphObjCurveTool class. The

GraphObjCurveTool class will help handle most of the work for your new class.

The GraphObjCurveTool class is used when making a gadget that will operate on a graph. If you are making a

gadget that will operate on matrix data then you would derive your class from the MatObjROITool class. Both

GraphObjCurveTool and MatObjROITool are declared in the GraphObjTools.h header file.

433

Origin C Programming Guide

Open quick_curve_stats.XFC in Code Builder. Near the top of the file we will define our new class.

//put additional include files here
#include <GetNbox.h>
#include <..\originlab\grobj utils.h>

#include <..\Originlab\GraphObjTools.h>

#define XF NAME "quick curve stats"

#define TOOL PREFERENCES TITLE _L("Statistics")

class QuickCurveStatsTool : public GraphObjCurveTool

protected:
string GetXFName () { return XF NAME; }
string GetSignature() { return "xf addtool quick curve stats"; }

string GetPreferenceTitle(){ return TOOL PREFERENCES TITLE; }

// Will rewrite this function in Adding Event Functions section
below.

bool DoOutput (bool bUpdateLastOutput, bool bMarkerOnly = false)

out str ("DoOutput") ;

return true;

}i
Go to the X-Function's main function, and use the class defined above to create an ROI on the graph.

434

X-Functions

QuickCurveStatsTool curveTool () ;
int nErr = curveTool.Create(XF NAME, LN VERTICAL, trGUI);

if (nErr)

error report("quick curve stats failed to Init!");

return;

curveTool.ExpandFullRange () ;
Activate a graph window with a curve, and run "quick_curve_stats -d" in the Command window. A rectangle with

top text, a title and two mini buttons will be added on the graph.

19.2.9.4 Adding Event Functions
19.2.9.4.1 Basic global event function

Open quick_curve_stats.XFC in Code Builder, and add the event function as below, after the line //put your own

support static functions here

//put your own support static functions here

void quick curve stats events(string strGrName, int nEvent, int nMsg = 0)

QuickCurveStatsTool sTool;
graphobjtool events(sTool, strGrName, nEvent, nMsg);

}

Run the X-Function, "quick_curve_stats -d", in the Command window and click the OK button to close the dialog.

Click the E]button, attached to the ROI, to open the context menu. Click New Output, and DoOutput will be
printed on the Script window. Choose Preference, and a dialog with the X-Function's settings will appear.
Change the color in the Rectangle Fill Color control, and update the text in the Show Tool Name control in the

opening dialog, then click OK. The fill color and title text of the rectangle will be changed.

19.2.9.4.2 Overload virtual event functions

Run this X-Function, "quick_curve_stats -d", in the Command window to add a ROI. If you move the ROl on a

graph, the Origin status bar on the left will show the current x from/to values and the width of the ROI. The

435

Origin C Programming Guide

following three steps will show you how to overload the OnMove virtual method to refresh the ROI top text with

the curve statistics results, on 'ROI moving'.

Declare the following two methods in the QuickCurveStatsTool class.

protected:

BOOL OnMove ()

string strTopText = getResult();
UpdateTopLabel (strTopText, true);

return true;

private:
string getResult (TreeNode& trResult = NULL)
{
// Get the data in ROI selected
vector vx, Vy;
GetData (vx, Vvy);
// Calculate statistic on data
int npts;
double sum, mean, sd, se;
vy.Sum(sum) ;
if(0 != ocmath basic summary stats(vy.GetSize(), vy,
&npts,

&mean, &sd, &se))

return "Error in calculation!";

436

X-Functions

// Get output options from GUI

Tree trGUI;

GetGUITree (trGUI) ;

bool bDatasetName = trGUI.quantities.dataname.nVal,

bPoints = trGUI.quantities.n.nVal,

bSum = trGUI.quantities.sum.nVal,

bMean = trGUI.quantities.mean.nVal,

bSD = trGUI.quantities.sd.nVal,

bSE

trGUI.quantities.se.nVal;

string strDatasetName;

if (bDatasetName)

m_dp.GetRangeString (strDatasetName) ;

// Put result to string

string strText;

string strNumDec = "*", strNextLine = "\r\n";
if (bDatasetName)
strText += "Dataset Name: " + strDatasetName +
strNextLine;
if (bPoints)
strText += "N = " + npts + strNextLine;

if (bSum)

437

Origin C Programming Guide

strText += "Sum = " + ftoa(sum, strNumDec) +
strNextLine;
if(bMean)
strText += "Mean = " + ftoa(mean, strNumDec) +
strNextLine;
if(bSD)
strText += "SD = " + ftoa(sd, strNumDec) +
strNextLine;
if(bSE)
strText += "SE = " + ftoa(se, strNumDec) +
strNextLine;
strText.TrimRight (strNextLine) ;
// Put result to tree
if (trResult && trResult.IsValid())
{
GETN USE (trResult)
if (bDatasetName)
{
GETN_STR (DatasetName, "Dataset Name",
strDatasetName)

GETN_CURRENT SUBNODE.SetAttribute (STR TYPE ATTRIB,

TNVAL TYPE CSTRING) ;

if (bPoints)

GETN NUM(N, "Number of Points", npts)

if (bSum)

438

X-Functions

GETN_NUM (Sum, "Sum", sum)

if (bMean)

GETN_NUM (Mean, "Mean", mean)

if(bSD)

GETN_NUM(SD, "SD", sd)

if(bSE)

GETN NUM(SE, "SE", se)

return strText;

}
Run the X-Function to add a ROI on your graph. Move the ROI, and the top text will be updated with the current

statistics results of the selected Y data.

The following shows how to make the context menu items "New Output" and "Go to Report Worksheet" work.
You need to overload the DoOutput and GetReportWorksheet virtual functions in the derived class
QuickCurveStatsTool, and add a private function, acessBinarylnfo, to set and get the report worksheet name in
the rectangle's binary storage. If you fail to get the report worksheet name from the rectangle, or the report
worksheet name represents an invalid worksheet, the "Go to Report Worksheet" context menu item will be gray.

Add the following methods to the QuickCurveStatsTool class.

439

Origin C Programming Guide

protected:

bool DoOutput (bool bUpdateLastOutput)

Tree trGUI;

GetGUITree (trGUI) ;

// Get output result to string and treenode
Tree tr;

TreeNode trResult;

if(trGUI.output.outputwks.nVal)

trResult = tr.AddNode ("Result");

string strResult getResult (trResult) ;

// Output to Script window, optional

if(trGUI.output.script.nval)

LT execute("type -a"); // to open Script window if
closed

out str(strResult);

// Output to Result Log, optional

if(trGUI.output.reslog.nvVal)

Project.OutStringToResultsLog (strResult) ;

440

X-Functions

// Output to worksheet, optional

if(trGUI.output.outputwks.nVal)

// To check output worksheet if already existed
Worksheet wks;

string strOutputWks;

bool bCreateNew = true;

if(acessBinaryInfo (true, strOutputWks))

wks.Attach (strOutputWks) ;

bCreateNew = !wks.IsValid();

// If it doesn't exist, you need to create a new
one,

// then put worksheet name into rectangle binary
storage

if (bCreateNew)

wks.Create (NULL, CREATE HIDDEN) ;

wks.SetSize (-1, 0);

wks.GetRangeString (strOutputWks) ;

acessBinaryInfo(false, strOutputWks);

out tree to wks(trResult, wks);

441

Origin C Programming Guide

return true;

BOOL GetReportWorksheet (Worksheet& wksReport)

string strWks;

if(acessBinaryInfo (true,

strWks))

wksReport.Attach (strWks) ;

return wksReport.IsValid() ;

return false;

private:

bool acessBinaryInfo (bool bGet,

string strStorageName =

Tree tr;

if (bGet)

string& strInfo)

"Info";

// To get output worksheet name from rectangle

binary storage

if (m_go.GetBinaryStorage (strStorageName,

tr)

&& tr.OutputWks

&&

442

'tr.OutputWks.IsEmpty ())

X-Functions

strInfo = tr.OutputWks.strVal;

return true;

return false;

else

// Save output worksheet name to rectangle binary
storage

tr.OutputWks.strVal = strInfo;

return m go.PutBinaryStorage (strStorageName, tr);

}
Prepare a graph with a data plot set as active, and run "quick_curve_stats -d" in the Command window to add a

ROI. Move the ROI to an interesting area on the graph, open the context menu, and choose Preferences to open
a dialog. Select all the check boxes in the Quantities and Output To branch, and click OK to close the dialog.
Open the context menu again, and notice the Go to Report Worksheet menu item is gray. Click the New Output
menu, and the result string will be outputted to a Script window and a Result Log, and a hidden worksheet will be
created. Choose the Go to Report Worksheet menu, and the report worksheet displays. The columns in the

worksheet hold the results.

19.3 Customizing an X-Function

19.3.1 Customizing an X-Function

This section covers the following topics:

Putting an X-Function in the Product Menu

Adding Documentation to an X-Function

Adding Custom Button on Dialog

443

https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/

Origin C Programming Guide

19.3.2 Putting an X-Function in the Product Menu

Putting an X-Function into the Origin menu involves the following two steps:
Modifying basic settings in the X-Function Builder Tree View
Putting the X-Function into the specified main menu and sub menu

Then, in the menu, choose Preference: Menu:Full Menus, or restart Origin to auto-scan the changes for all X-
Functions and add the newly added X-Function to the menu. Please refer to X-Function Builder's documentation

for more details.

19.3.2.1 Setup in Tree View

To make your X-Function show properly in the menu, the following settings in X-Function Builder are required:
Open the X-Function in X-Function Builder.

Switch to Tree View mode, in the Usage Context branch.

Choose Main Menus for Menus.

Check the Windows check box.

Check one or several window types: Worksheet, Graph, or Matrix.

19.3.2.2 Menu Accessible
Once the X-Function is set up in Tree View, you can put the X-Function into the specified menu. Origin enables

the user's X-Function to be accessible from the two kinds of menus:
Default menu

(This mechanism has a few limitations: you need to put the X-Function into the specified file folder, and the X-
Function name needs to follow the specified prefix. Also, it is not easy to control its location in the menu. The

next mechanism, a user defined menu, will solve all these problems.)

User defined menu

19.3.2.2.1 Default Menu

X-Functions are accessible from a specified default menu if they are saved in the proper sub-folder of the X-

Functions folder under the User folder.

All X-Functions in the subfolders below will be shown in the menu.

444

X-Functions

Folder Menu

Signal Processing\ Analysis: Signal Processing
Spectroscopy\ Analysis: Spectroscopy
Mathematics\ Analysis: Mathematics
Statistics\ Statistics

All X-Functions with the specified prefix in the subfolders below will be shown in the menu.

Folder Prefix Menu

imp* Data: Import from File

Import and Export\

exp* File: Export
w* Worksheet
Data Manipulation\
col* Column
Database Access\ db* File: Database Access

The X-Functions in the Miscellaneous, Data Exploration, and Utilities folders will never be shown in the menu,

except if the user directly modifies the XML file, the process for which will be described in the next section.

19.3.2.2.2 User Defined Menu

In addition to adding X-Functions to default menus, the user is able to put X-Functions into user-defined menus
by editing the XML files under the OriginExePath\Themes\Menus folder. There are two XML files under this

folder: ConfMenus.xml is used to control the Origin main menu, and ContextMenus.xml is for the context menu.

Example

445

Origin C Programming Guide

The following is a complete example that shows how to add a user-defined X function to a new sub menu, OC
Guide Tools, under Origin's Analysis main menu. The user-defined menu is the mid in Analysis:Fitting and

Analysis:Signal Processing.
Create a folder OC Guide under the path <User Files Folder>\X-Functions\.

Create a user-defined X function following this example, but name it as MyAnalysis and make sure it is saved

under the path <User Files Folder>\X-Functions\OC Guide\.

Open the MyAnalysis X-Function in X-Function Builder. Switch to Tree View, in the Usage Context branch, set
Menus as Main Menus, check the Windows check box, and check the Worksheet check box under the Windows

branch.

Type some text into the Description edit box, for example, "&Custom Dialog". & is used to access the quick

selection menu with the keyboard. Click Save to save changes to the X-Function and close X-Function Builder.
Open ConfMenus.xml in an XML editor, for example, XML Marker.
Choose wks -> wksAnalysis -> wfit in the left panel.

Copy the following and paste it into the right panel after <wfit...></wfit>, then click Save.

<testmenul Label = "OC Guide Tools" popup = "1">
<efg Label = "">
<name>*</name>

<auxopts>2162688.</auxopts>
<catsubcat DataID = "74">0C Guide</catsubcat>
</efg>

</testmenul>
Close Origin and restart. Activate a worksheet and, in the menu, choose Analysis. Menu Test:Custom Dialog will

display.

446

https://www.originlab.com/doc/
http://symbolclick.com/index.htm

X-Functions

POEEEN Statistics Image Tools Format Window Help
] Mathematics L % %

Data Manipulation r

Eitking r

O Guide Tools Cuskom Dialog, ..

Signal Processing

Peaks and Baseline

19.3.3 Adding Documentation to an X-Function

Documentation is necessary for an X-Function to be complete. In the documentation, the X-Function creator

needs to tell the user something like how to use it, or how it is implemented.

Now documentation, which can be written in four languages: English, Japanese, German, and Chinese, can be
packaged into the X-Function. To do this, there are two X-Functions that can be used: xf2doc, and doc2xf. Note
that these two X-Functions cannot be found from the menu, and can only be accessed from script. The X-
Function xf2doc will unpack the help from the .oxf file and generate a Microsoft Word® document to the
specified path (If the option chm is checked, either from the dialog or using script xf2doc chm:=1, a document
with the same structure as the chm help will be generated. This is useful when you need to preview the help).
Then the document can be edited with Microsoft Word®. After the documentation is finished, you need to save

the document and then use doc2xf to package the document into the .oxf file.

When documentation is finished for an X-Function that meets the specifications and can run compatibly,
smoothly, and robustly, an integrated X-Function is born. Now you can share the X-Function with others simply

through the .oxf file.

19.3.4 Adding Custom Button on Dialog

19.3.4.1 Adding Custom Button on Dialog

The following example shows how to add two custom buttons: the Reset button and the Apply button, to an X-

Function dialog, as well as an event1 function to catch what button is being clicked.

Press F10 to open X-Function Builder. Type "CustomButton" into the X-Function edit box as the X-Function

name.

Click the |E'button to switch to the Tree View panel, and type "Reset|Apply" in the GetN Dialog Custom Buttons

edit box. Click Save to save this X-Function.

447

Origin C Programming Guide

Open the X-Function in Code Builder, and put the following code in the CustomButton_event1 function, then click

Compile
the button.

if (nEventID == GETNE ON_CUSTOM BUTTON1)

out str("Reset click");

if (nEventID == GETNE ON APPLY)

out str("Apply click");

if (nEventID == GETNE ON OK)

out str("OK click");

}
Run CustomButton -d in the Command window to open the dialog of this X-Function. There should be four

buttons: Reset, Apply, OK and Cancel.

Click the Reset button, and "Reset click" gets printed in the Command window. If you click the Apply button,
"Apply click" is printed and the Cancel button is changed to a Close button. Click OK, and "OK click" is printed

and the dialog is closed.

19.3.4.2 Show Preview Button on Graph Preview GetN Dialog
X-Function framework supports a Show Preview button and an Auto Preview check box on the Graph Preview
GetN dialog. These two controls are used to update the preview automatically (keep the Auto Preview check box

checked) or manually (click the Preview button). The following steps demonstrate how to add the two controls.
The following five steps illustrate the process to add Preview button controls.

Press F10 to open X-Function Builder. Type "PreviewButtons" into the X-Function edit box as the X-Function

name.

448

X-Functions

In the Variables table, set up a variable as below and then click the Save button to save this X-Function.

Name: gp

Label: Graph
Input/Output: Input
Data Type: string

Control: ...Graph
Run the command PreviewButtons -d to open this X-Function dialog. There are only two buttons: OK and

Cancel. Click Cancel to close the dialog.

E

GetN Dialog as GetNGraphBox with Preview, and check the Show Preview Button check box. Save this X-

In X-Function Builder, click the button to switch to the Tree View panel, set Usage Context -> Menus -> Auto

Function.

Run PreviewButtons -d to open the dialog again. Now there are two more controls displayed on the dialog: an

Auto Preview check box and a Preview button.

The steps below show how to auto-update the dialog's preview graph according to the selection of the gp

variable. For more details about the GetN Graph Preview Dialog, see X-Functions: Creating an X-Function:

Creating Graph Preview GetN Dialog.

Open this X-Function in Code Builder, copy the following code, and paste it into the

GetNGraphPreview_OnChange function.

//include the bit to call GetNGraphPreview OnUpdateGraph to update graph
if (! (dwUpdateGraph & UPDATE GRAPH CHANGED))

dwUpdateGraph |= UPDATE GRAPH CHANGED;

Copy the codes below into the GetNGraphPreview_OnUpdateGraph function.

string strGraph = trGetN.gp.strVal;
GraphPage gpSource (strGraph) ;
GraphPage gpDest (pgTemp) ;

page clone (gpSource, gpDest);

449

https://www.originlab.com/doc/
https://www.originlab.com/doc/

Origin C Programming Guide

Compile
Click the button. Then run PreviewButtons -d in the Command window to open the dialog.

In the dialog, type the graph page name into the Graph control, or click the Bbutton to choose one graph page
via the Graph Browser dialog. Click the Auto Preview check box or the Preview button, and the specified graph

will display on the preview panel. See the picture below.

M OC Guide: PreviewRuttons (User)

Dislog Theme 2 Pravvies
Descrption _|_|_|T N -
f
Graph Grephd D d ¢
"J""'ll IH"'M"J

£ *

[#] e Previsw oK Carsel &®

19.4 Using X-Functions

19.4.1 Using X-Functions

This section covers the following topics:

Calling X-Functions from Script

Calling X-Functions in Origin C

19.4.2 Calling X-Functions from Script

X-Functions can be called from LabTalk by default. This means that by default you can call an X-Function from
the Command Window, Script Window, and anywhere else LabTalk script can be executed. This includes .OGS

files, toolbar buttons, and more.

The LabTalk setting for an X-Function can be changed by doing the following:

Open the X-Function in X-Function Builder.

Activate Tree View by choosing it on the Tools menu or by clicking the Tree View toolbar button.

Expand the Usage Context branch to show the LabTalk setting.

450

https://www.originlab.com/doc/
https://www.originlab.com/doc/

X-Functions

When the check box is checked, it means the X-Function can be used from LabTalk.

19.4.2.1.1 Call an X-Function and show it's variables dialog

Passing the -dialog or -d option to an X-Function will open the X-Function's variables dialog. This dialog will

allow you to set variables using the dialog's interface.

The following will open the smooth X-Function variables dialog using all the default values.

smooth -d;

You can set some variables in the command line and still open the variables dialog. The variables that were not

set in the command line will use their default values.

smooth (1,2) method:=2 -d;
19.4.2.1.2 Call an X-Function and do not show it's variables dialog

The variables dialog is not necessary to set variables. All variables can be set in the command line. Again, any

variables that are not set in the command line will use their default values.

The following will call the smooth X-Function to smooth the data in columns 1 and 2 using the "Savitzky-Golay"

method, with a 5-point window and the boundary condition set to "reflect".

smooth (1,2) npts:=5 method:=SG b:=1;
The variable assignment can be done in multiple ways:

By variable index. Assign values without a variable name. For example, (1,2) assigns the data in the active

Worksheet columns 1 and 2 to the iy variable. iy is the first variable.

Use the default value. No assignment is necessary to use the default value. Here if you do not assign a value to

the weight variable, the default value is 0.

By the variable's full name. For example, npts:=5, assigns a numeric value of 5 to the npts variable;

method:=SG, assigns enumeration to the method variable.

By the first letter of the variable. For example, b:=1. This usage is very simple and can avoid having to remember

the long variable names, but you need to make sure the first letter of each of the variables is unique.

19.4.2.1.3 Call an X-Function and set variables with a theme

451

Origin C Programming Guide

The variable settings for an X-Function can be saved into a theme. You can call an X-Function and have it use a

saved theme by using the -theme or -t option.

smooth (1,2) -t mytheme; // Call smooth and use the 'mytheme' theme
smooth -t mytheme -d; // Open dialog and load the 'mytheme' theme

For more details please see the X-Functions: Accessing X-Functions from Script chapter in Origin's Help.

19.4.3 Calling X-Functions in Origin C

Origin comes with many X-Functions for handling a variety of tasks. X-Functions can be called from both
LabTalk and Origin C. This Section will show you how to call X-Functions from Origin C using Origin C's XFBase

class. This mechanism also can be used in calling one X-Function in another X-Function.

The XFBase class is declared in the XFBase.h header file located in the Origin C System folder. The XFBase.h
header file is not included in the Origin.h header file and must be included separately in any Origin C file that

uses the XFBase class.

#include <XFBase.h>

19.4.3.1 Calling the impFile X-Function From Origin C
The following Origin C code defines a general function for importing files into Origin. The function takes two
arguments: a data file name and an import filter file name. The function first creates an instance of the XFBase
class, constructed with the name of the X-Function to be called. In this case, the X-Function name is impFile. It
then sets the X-Function arguments using the SetArg method, and finally calls the X-Function using the Evaluate

method.

bool call impFile XF(LPCSTR lpcszDataFile, LPCSTR lpcszFilterFile)

string strDataFile = lpcszDataFile;

string strFilterFile = lpcszFilterFile;

// Create an instance of XFBase using the X-Function name.

XFBase xf ("impFile");

452

X-Functions

if (!xf)

return false;

// Set the 'fname' argument.
if (!xf.SetArg("fname", strDataFile))

return false;

// Set the 'filtername' argument.
if (!xf.SetArg("filtername", strFilterFile))

return false;

// Call XFBase's 'Evaluate' method to execute the X-Function

if (!xf.Evaluate())

return false;

return true;

The following Origin C code shows how to call our call_impFile_XF function defined above. We will call it to

import an image file.

// Lets import the Car bitmap located in Origin's Samples folder.
string strImageFile = GetAppPath (TRUE) +

"Samples\\Image Processing and Analysis\\Car.bmp";

// Lets import the bitmap using the Image import filter.

string strFilterFile = GetAppPath (TRUE) + "Filters\\Image.oif";

453

Origin C Programming Guide

// Let's call our general function that will call the impFile X-Function.

call impFile XF(strImageFile, strFilterFile);

19.5 X-Function Examples

19.5.1 X-Function Examples

This section covers the following topics:

Construct Controls on X-Function GUI

Open Graph Browser Dialog in X-Function

X-Function ReportTree Example

X-Function ReportData Example

19.5.2 Construct Controls on X-Function GUI

19.5.2.1 Summary
This example demonstrates how to construct controls in an X-Function GetN dialog by TreeNode variable. This

mechanism is used to avoid adding controls by multiple variables. This is an example X-Function dialog:

454

https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/
https://www.originlab.com/doc/

X-Functions

Guide: pui_controls [User

Dialog Theme ﬂ

Dezcrption
E Gul
[l User Infarmation
Mame |Ja|:ky |
Paszword s |
B Details
B Gender
%) Male
) Female
Age 183 |

Have Email
E rnail | |

[OF. ” Cancel]

19.5.2.2 You will learn

How to create different controls by make_tree.
How to update a GUI on a specified control event.

How to check and ask for valid input.

19.5.2.3 Steps
Select Tools: X-Function Builder to open the X-Function Builder dialog, select File: New X-Function Wizard
to create an X-Function with only one Input Variable named GUI of TreeNode type, and save it as

gui_controls.oxf.

Open the X-Function in Code Builder, and add the following code into the gui_controls_make_tree function.

if (strcmp("GUI", lpcszVarName) == 0) // check variable by name

// ID should be unique

455

Origin C Programming Guide

int nBranchID = 0x0001;

int nUserID = GET USER DATAID(0); //NodeID to enable Theme support

GETN USE (tr) //use this node as current node

//begin of sub branch

GETN BEGIN BRANCH (UserInfo, "User Information")
GETN_ID(nBranchID++)

// string edit box

GETN_STR (UserName, "Name", "Unknown") GETN_ ID(nUserID++)

// pass word edit box
GETN_ PASSWORD (Password, "Password", "") GETN ID(nUserID++)

GETN_END BRANCH (UserInfo) //end of sub branch

//begin of sub branch
GETN_ BEGIN BRANCH (Detail, "Details") GETN_ID(nBranchID++)
// editable drop-down list

GETN_STRLIST (Language, "Language", "English",
"|English|German")

GETN_ ID(nUserID++)

// radio buttons
GETN_ BEGIN BRANCH (lGender, "Gender") GETN ID(nBranchID++)

GETN_ RADIO INDEX (Gender, 0, "Male|Female")
GETN_ID(nUserID++)

// the format of radio buttons

GETN_OPTION DISPLAY FORMAT (DISPLAY EDITOR LEFT)

456

X-Functions

GETN_END BRANCH (1Gender)

//numeric edit box, age must be Integer, so use format "%d"
GETN NUM (Age, "Age", 18) GETN OPTION NUM FORMAT ("%d")

GETN_ ID(nUserID++)

//check box with event handling function

GETN CHECK (iEmail, "Have Email", O0)
GETN_ID(nUserID++)//check box

GETN OPTION EVENT (show email) //event of iEmail
checkbox

// string edit box
GETN_STR(Email, "Email"™, "") GETN_ID(nUserID++)
GETN_END BRANCH (Detail) //end of sub branch

}

Add the following event handling functions after the line /put your own support static functions here.

static bool show email (TreeNode& tr, int nRow, int nType, Dialog& Dlg)

TreeNode trDetail = tr.GUI.Detail;
if (!'trDetail)

return false;
int nShow = trDetail.iEmail.nVal;
//1if check, show, else hide.
trDetail.Email.Show = (nShow == 1);

return true;

457

Origin C Programming Guide

static bool check email (LPCSTR lpcszEmail)

string strEmail (lpcszEmail) ;
if (strEmail.Count('@') != 1)
return false; //should contains 'Q@' and only one.
int nSep = strEmail.Find('@"');
string strLeft = strEmail.Left (nSep);
string strRight = strEmail.Right (strEmail.GetLength() - nSep - 1);
if (strLeft.Getlength() == 0)
return false;
if (strRight.GetLength() ==)
return false;
LPCSTR lpcszInvalid = "~!#$%7&* ()+ —-=|\\/><, " ";
if (strEmail.FindOneOf (lpcszInvalid) >= 0)
return false;
return true;

}
Add error checking code into the gui_controls_event1 function.

if (strcmp(lpcszNodeName, "Email") == 0)

string strVal = trGetN.GUI.Detail.Email.strVal;

if (! check email (strVval))

strErrMsg = "Invalid Email Address! Please correct it";

458

X-Functions

//disable OK button, should not continue when there is error.

bOKEnable = false;

}

Change the return value from return false (default) to return true to force a GUI change.

Compile
In the X-Function body, we just print out the user settings by tree. Click the Compile button wto

compile and save changes.

out tree (GUI);

19.5.2.4 Run the X-Function

Run the gui_controls -d command in the Script Window.
Click the Have Email check box on the dialog, and an email edit box will display.

If you input an invalid email address to the email edit box, for example, type in abc, an error message will show

on the bottom of the dialog and the OK button will be disabled.

Click OK. The setting tree will be outputted to the Script Window.

19.5.3 Open Graph Browser Dialog in X-Function

19.5.3.1 Summary
This example demonstrates how to add a button to open the Graph Browser dialog to pick a graph in the X-

Function GetN dialog, and then how to customize the Graph Browser dialog by filter function.

19.5.3.2 You will learn

How to add a button to open a Graph Browser in the X-Function dialog.

How to customize the Graph Browser dialog by filter function.

19.5.3.3 Steps
The following three steps will show how to add a button in the X-Function dialog to open a Graph Browser dialog
without the use of a filter function. This is the simplest process, and all settings in the Graph Browser dialog will

be set to their defaults.

459

Origin C Programming Guide

Select Tools: X-Function Builder from the Origin menu. Create an X-Function GraphFilterTest as follows.

B X-Function Builder - Miscellaneous: GraphFilterTest {User) |Z||E|r5__(|
File Tools
A EBE o E

¥-Function | GraphFikerT est
Y ariables: [right-click to add/del]

Mame | Label |[nputsOutput | Data Tepe | Data | Control Diption String

§pages§ Cutput * shing ...[araph GraphBroveserFilker

Note the control string is ... Graph GraphBrowserFilter.

Click Edit X-Function in the Code Builder toolbar, and type out_str(pages); in the main function, GraphFilterTest.
Click the Compile button and then click Return to Dialog.

Click the Save OXF File toolbar button to save. Run GraphFilterTest -d in the Command window, and when a
dialog shows, click the ... button to choose a graph, then click OK to close the dialog. The name of the selected

graph window will be printed in the Command window.

If you do NOT want to customize the Graph Browser Dialog, then there is no need to go on; the following steps
are all about customizing the Graph Browser dialog, for example, setting the default view mode to Tree view.
Create a GraphFilter.c file and save it in <Origin installation folder>\OriginC\OriginLab. The source file should

include the following code.

#include <..\Originlab\GraphFilter.h> // this is an Origin built-in file

int GraphBrowserFilter (int nMsg, Page& pg = NULL)

switch (nMsqg)

case GBFM_ IS USE_PAGE: // return 1 for true.

if (!pg)

return -1;

// filter page including multiple layers

460

X-Functions

return pg.Layers.Count() > 1?2 0 : 1;

case GBFM SHOW EMBED PAGE CHKBOX:
// see other options in GraphFilter.h

return EMBED CHECKBOX ENABLE;

case GBFM_SHOW SWITCH MODE:
// see other options in GraphFilter.h

return VIEW MODE BOTH WITH TREE DEFAULT;

case GBFM_ SORT PAGES:

return 1; // return 0 or 1

return -1; // error

}
Create a header file named MyGraphFilter.h and save it in <Origin installation folder>\OriginC\OriginLab.

Open this X-Function in X-Function Builder, and click the Edit X-Function in Code Builder button, to include the
newly created header file, from above. Note that MyGraphFilter.c and MyGraphFilter.h can also be put in another
folder, but you have to make sure that they are in the same folder as each other. If they are in another folder, an

absolute path should be used to include the header file, e.g.

//Case 1. if header file is located in the OriginC\Originlab\ folder
//put additional include files here

#include <..\Originlab\MyGraphFilter.h>

//Case 2. if header file is NOT located in the OriginC\Originlab\ folder

//put additional include files here

#include "D:\MyFolder\MyGraphFilter.h"

461

Origin C Programming Guide

Run GraphfFilterTest -d in the Command Window, and click the Browse button in the GraphFilterTest dialog. You
can see that the Show Embedded Graph check box is enabled and selected, and the embedded graph is listed

in the tree browser.

B Graph Browser

= (L7 GraphFilter
= B8 Folder
] Tabled - Tabled

=| Graph1 - Graph
= Graph? - Graph3

Show Embedded Graph [] List Yiew ok, » |

Open MyGraphFilter.c from <Origin installation folder>\OriginC\Originlab\ with the Code Builder. Change the
return value from EMBED_CHECKBOX_ENABLE to
EMBED_CHECKBOX_DISABLE_EMBEDDING_PAGE_NEVER_ENABLE for the
GBFM_SHOW_EMBED_PAGE_CHKBOX case. Click the Compile button to compile MyGraphFilter.c. Then run
GraphFilterTest -d in the Command Window again. The Show Embedded Graph check box is disabled and

unchecked now, and the embedded graph is not listed in the tree browser.

B Graph Browser

=l [GraphFilter
=l [Foldert
|=] | Graph3 - Graph3

Show Embedded Graph [List Wisw [Ok] Cancel }}l

You can try to use other enum values in <Origin installation folder>\OriginC\Originlab\GraphFilter.h as the return

value for other cases in MyGraphFilter.c. Please remember to compile MyGraphFilter.c after each change.

The built-in X-Functions containing Graph Browsers (e.g. Import and Export X-Function expGraph) can be

customized using the same method.

19.5.4 X-Function ReportTree Example

19.5.4.1 Summary

462

X-Functions

In this example, we will show how to do statistics on the selected data in a worksheet, and generate a report in a
new hierarchy sheet. The selected data can be one column, multiple columns, or any one subrange in the

worksheet.

As the output data type is ReportTree, the dialog will have a Recalculate combo box, which can set the

recalculate mode of the report sheet to "Manual”, "Auto Update" or "None".

19.5.4.2 You will learn

How to get data from the selected data range.
How to do error handling in event1, before_execute and the main function.

How to generate report tables in a hierarchy sheet with a recalculation lock.

19.5.4.3 Steps

Hit F10 to open X-Function Builder, enter the X-Function name and variables, as in the following picture, and

then click Save.

B X-Function Builder - OC Guide: StatsReport {User)

File Tools

#-Function |StatsHepnrt |
Yariables: [right-click to addd/del]

Name Label |Input/Output | Data Type | Data | Conteal | Option Sting|
Iy [nput Data Input - Range w Lactiver [:3
report Report Cutput * FReportTree = <new: H:1
< e

Open this X-Function in Code Builder to edit the source code. First include the needed header file, as below.

#include <ReportTree.h> // needed for ReportTable class

Add error checking code into StatsReport_event1 to check the input data range, like in the following.

DataRange drInput;

drInput.Create (trGetN.iy.strVal);

463

Origin C Programming Guide

// 1if input is invalid, show error message
// on the bottom of dialog
// and disable OK button

if (!drInput.IsValid() || drInput.GetNumRanges() < 1)

strErrMsg = "Please select valid data for input";
bOKEnable = false;

}
Add error checking code in report_stats_before_execute.

DataRange drInput;

drInput.Create (trGetN.iy.strVal) ;

// if input is invalid, print out error message

// and abort the X-Function execution

if (!drInput.IsValid() || drInput.GetNumRanges() < 1)

out_str("Invalid Input Data");

nRet = XFEVT ABORT;

}
Add a static function to check the input range after the line /put your own support static functions here

static bool _check input (const Range& 1iy)

int nRanges;

if (!iy.IsValid())

464

X-Functions

return false;

nRanges = iy.GetNumData (DRR COLUMN INDEX |

DRR_NO FACTORS) ;

if (nRanges <= 0)
return false;
return true;

}

Add any needed macros under the static function. The macros will be used in the X-Function main function.

// ID can be any value, but must be unique.
#define TABLE ID BEGIN 0x1000

#define ROW_ID BEGIN 0x0001
In the X-Function main function StatsReport, add the following code to get the data from the specified data

range, do statistics, and generate a report sheet.

if (! check input(iy))

// if input is not wvalid,

// show error message and

// abort X-Function execution.

XF THROW ("Invalid input data");

return;

//create table to show statistics summary.

465

Origin C Programming Guide

ReportTable rt = report.CreateTable ("Summary", L("Summary"),

TABLE ID BEGIN) ;

//report table's column headers.
const vector<string> vsColLabels = {

N

"Number of Missing",

"Mean",

"sSD",

"SEM",

"Sum",

"Variance"

int nRowID = ROW ID BEGIN;
int nRanges = iy.GetNumData (DRR_COLUMN INDEX |

DRR_NO FACTORS) ;

for (int nRange = 0; nRange < nRanges; nRange++)

// get the subrange - one column

DataRange drOne;

iy.GetSubRange (drOne, DRR_COLUMN INDEX |

DRR_NO FACTORS, nRange);

// get range string, like [Bookl]Sheetl!A

string strDatalabel;

466

X-Functions

467

drOne.GetRangeString (strDatalabel) ;

vector vInput;
drOne.GetData (&vInput, 0);

if (vInput.GetSize() == 0)

// print out warning message when column is empty
// and then go to the next column
warning msg box (

strDatalabel + ", empty column found.",

false, 'W'");

continue;

int N, Missing;

double dMean, dSum, dVariance, dSD, dSE;

int nRet = ocmath basic summary stats (vInput.GetSize(),
vInput,
&N, &dMean, &dSD, &dSE, &dVariance, &dSum,
NULL, NULL, NULL, NULL, NULL, NULL, &Missing);

if (STATS _NO_ERROR != nRet)

// print out warning message when
// statistics function failed.
warning msg box(

strDatalLabel + ", statistics fails.",

Origin C Programming Guide

false, 'W');

continue;
}
vector vResults (vsColLabels.GetSize());
vResults[0] = N;
vResults[l] = Missing;
vResults[2] = dMean;
vResults[3] = dSD;
vResults[4] = dSE;
vResults[5] = dSum;
vResults[6] = dVariance;

//add new row to report table.
string strName = "Data" + nRange;
rt.AddRow (strName, vResults, strDatalLabel,

vsColLabels, NULL, nRowID++);

19.5.4.4 Run the X-Function

468

X-Functions

Keep one Worksheet active with some data, highlight two columns, and type StatsReport -d in the Script Window

Dialog Theme H

Description

Recalculate | Manual w

Input Data ([Book1]3heeti!1:2 |=|’; 3
Report ||<new> |=§ k
[QK] [Cancel]

to open the X-Function dialog.

Click OK , and a new report sheet will be generated.

au 3

2 Book1 o (=13
M
= OnginStorage
L- Summary |
|_ M| Mumber of Missing Mean 2D
[Book1)Sheet1!B 32 0 044836 0.30602
v
Sheet1) Report / | ES]fim] >
19.5.5 X-Function ReportData Example

19.5.5.1 Summary
This example demonstrates how to get multiple XY data sets, do linear fitting on each XY, and put the fitted data

into a new result sheet.

As the output data type is ReportTree, the dialog will have a Recalculate combo box, which can set the

recalculate mode of the report sheet to "Manual”, "Auto Update" or "None".

19.5.5.2 You will learn

How to work on multiple XY data sets.

How to report data in a new result sheet with a recalculation lock.

19.5.5.3 Steps

469

Origin C Programming Guide

Hit F10 to open the X-Function Builder, enter the X-Function name and variables, as in the following picture, and

then click Save.

M -Function Builder - Miscellaneous: FitLinearReport (User) |:||E E|

File Tools

¥-Function | FitLinearReport |
Varables: {rght-click to add/del)

Name | Label |Input/Output| Data Type |Data | Control | Option String |
iy Input Data Input * XYRange = <active: 18
rd Report Data Output = RepotData + <news Q:A;M:"Fit Linear”

Open this X-Function in Code Builder to edit the source code. First include the needed header file, as below.

#include <ReportTree.h> // needed for ReportTable class
Add any needed macros under the line //put your own support static functions here. The macros will be used in

the X-Function's main function.

// ID can be any value, but must be unique.
#define TABLE ID 1

#define SUBNODE_ ID BEGIN 1000
In the X-Function's main function, FitLinearReport, add the following code to get the XY data from the specified

data range, do linear fitting on each XY, and generate a report sheet.

// create report table
ReportTable rt;
rt = rd.CreateTable ("ReportData", "Fitted Data", TABLE ID);

int nSubID = SUBNODE ID BEGIN;

470

X-Functions

471

DWORD dwRules = DRR GET DEPENDENT | DRR NO FACTORS;

int nNumData = iy.GetNumData (dwRules) ;

for (int nRange = 0; nRange < nNumData; nRange+t+)

DataRange drOne;

iy.GetSubRange (drOne, dwRules, nRange);

vector vx, Vvy;

drOne.GetData (dwRules, 0, NULL, NULL, &vy, &vx);

// there are two parameters in linear fitting
FitParameter sFitParameter[2];
if (STATS NO ERROR == ocmath linear fit (vx, vy,

vy.GetSize (), sFitParameter)

// add fitted X data to report table
string strName = "X" + (nRange+l);

string strLongName = "X";

)

rt.AddColumn (vx, strName, nSubID++, strLongName,

OKDATAOBJ DESIGNATION X) ;

// calculate fitted Y data

double dIntercept = sFitParameter[0].Value;

double dSlope = sFitParameter([l].Value;

vector vFitY;

Origin C Programming Guide

vFitY = vx * dSlope + dIntercept;

// add fitted Y data to report table

strName = "Y" + (nRange+tl);

string strRange;

strRange = drOne.GetDescription (GETLC COL LN ONLY) ;
strLongName = "Fitted data on " + strRange;
rt.AddColumn (vFitY, strName, nSubID++, strLongName,

OKDATAOBJ DESIGNATION Y);

19.5.5.4 Run the X-Function
Import Linear Fit.dat from OriginExePath\Samples\Curve Fitting to a Worksheet.

Highlight all columns and run FitLinearReport -d in the Script window, and then you can see the dialog below.

Miscellaneous: FitLinearReport (User) E]E|

Dialog Theme | .| 22t yzad- b
Description J
Recalculate
Input Data ||[B|:u:uk'|]"Linear Fit"'1[4.8] |="= [4
Report Data ||<new: E‘EILI
[oK] [Cancel]

Accept the default settings, and click the OK button. A report sheet will be generated with three group-fitting XY

data sets.

472

X-Functions

i LinearFit - Linear Fit.dat |Z||E|[z

)

K100 &y YY) @ ~
Comments| Fitted Data Fitted Data

Long Mame X Fitted data on B
1 1.01566
15 1.64507
2 227449
25 29039

3 353332]
25 416273
4 4789215
45 542156
5 6.05098
55 G.6804
5] 7.30881
6.5 T.893923
7 a.56864
75 9.18806

15 2 FAT b

k \ Linear Fit ;"n,ﬁtljma'.-" |‘¢_ |

473

20 Accessing External Resources

20.1 Accessing External Resources

Origin C can access external DLLs and, in addition, applications outside of Origin can be added using

automation (COM) server capability.

This section covers the following topics:

Calling Third Party DLL Functions

Access an External Application

20.2 Calling Third Party DLL Functions

20.2.1 Calling Third Party DLL Functions

20.2.1.1 Declaration

Origin C can make calls to functions (C linkage only) in external DLLs created by C, C++, C++(.Net), C# or
Fortran compilers. To do this, you need to provide the prototype of a function in a header file and tell Origin C
which DLL file contains the function body. Assume the functions are declared in a header file named myFunc.h.

You should include this file in your Origin C file where you want to call those functions, like:

#include <myFunc.h> //in the \OriginC\System folder
#include "myFunc.h" //in the same folder as your Origin C code

#include "C:\myFile.h" //in specified path

20.2.1.2 Loading DLL
Then you should tell Origin C where to link the function body, and you must include the following Origin C

pragma directive in the header file myFunc.h, just before your external DLL function declarations. Assume your
DLL file is UserFunc.dll:

#pragma dll (UserFunc) //in the Origin exe folder

#pragma dll (C:\UserFunc) //in specified path

475

https://www.originlab.com/doc/OriginC/guide/Calling-Third-Party-DLL-Functions
https://www.originlab.com/doc/OriginC/guide/Access-an-External-Application

Origin C Programming Guide

#pragma dll (UserFunc, header) //in the same folder as this .h file
#pragma dll (UserFunc, system) //in the Windows system folder

The Origin C compiler supports three calling conventions: __cdecl(default), __stdcall and __fastcall. These
calling conventions determine the order in which arguments are passed to the stack as well as whether the

calling function or the called external function cleans the arguments from the stack.

Notes: you don't need to include the .dll extension in the file name. And all function declarations after the pragma
directive will be considered external and from the specified DLL. This assumption is made until a second

#pragma dli(filename) directive appears, or the end of the file is reached.

20.2.1.3 Version Control
To make sure the external dll works correctly, the 32-bit dll is for 32-bit version of Origin, and the same for the
64-bit version. #ifdef _OWING64 is used to detect which version (32-bit or 64-bit) of current Origin is, so to

determine which version of dll to be loaded. For example,

#ifdef _OWING64

#pragma dll(UserFunc_64, header)
#else

#pragma dll (UserFunc, header)

#endif //_OWING4

20.2.1.4 Examples

A good and complete example of how to access an external DLL is Accessing SQLite Database. There are other

Origin sample projects demonstrating how to call a function from a C dll or a Fortran dll in Origin C. These
examples can be found in this zip file, under the \Programming Guide\Calling Fortran and \Programming
Guide\Calling C DLL subfolders.

This section covers the following topics:

Calling GNU Scientific Library

Access CPlusPlus(.Net) And CSharp DLL

Access Python via External DLL

20.2.2 Calling GNU Scientific Library

476

https://www.originlab.com/doc/OriginC/guide/Accessing-SQLite-Database
https://blog.originlab.com/wp-content/uploads/2017/01/OriginCExamples.zip
https://www.originlab.com/doc/OriginC/guide/Calling-GNU-Scientific-Library
https://www.originlab.com/doc/OriginC/guide/Access-CPlusPlusNet-And-CSharp-DLL
https://www.originlab.com/doc/OriginC/guide/Access-Python-via-External-DLL

Accessing External Resources

This article demonstrate how to use GSL in Origin C.

Note: To use Visual Studio build 64bit dlls from a GSL source code of v2.5:

Get files from https://qgithub.com/BrianGladman/gsl

Follow https://github.com/BrianGladman/gsl/blob/master/build.vc/gsl.readme.txt instruction to build the

project/solution to get gsl.dll and cblas.dll.

gsl.dll is libgsl.dll mentioned below

First you need download the GSL dlls from http://gnuwin32.sourceforge.net/packages/gsl.htm. You need just two

dlls (libgsl.dll and libgslcblas.dll), and you can put them into the same folder where you are going to keep your
Origin C files. For example, in a folder called c:\oc\. When using the downloaded dlls, please pay attention to the

version issues.
libgsl.dll

This is the main gsl dll
libgslcblas.dll

This dll is needed by libgsl.dll

To use libgsl.dil in Origin C, you will need a header file that provides the prototypes of the gsl functions. You can
copy and translate(if needed) the necessary prototype/definition from GSL header files, for example, call it

ocgsl.h, and create in the c:\oc\ folder.

20.2.2.1.1 ocgsl.h

// when loading the dll, need to load the correct version,
// see the "version issues" link above for more details
#pragma dll (libgsl, header)

// this is OC special pragma,

// header keyword is to indicate libgsl.dll is in same location as this file

477

https://github.com/BrianGladman/gsl
https://github.com/BrianGladman/gsl/blob/master/build.vc/gsl.readme.txt
http://gnuwin32.sourceforge.net/packages/gsl.htm
https://www.originlab.com/doc/OriginC/guide/Calling-Third-Party-DLL-Functions

Origin C Programming Guide

#define GSL EXPORT // for OC, this is not needed, so make it empty

// you can directly search and copy gsl function prototypes here

GSL _EXPORT double gsl sf zeta int (const int n);

GSL _EXPORT int gsl fit linear (const double * x, const size t xstride,
const double * y, const size t ystride,
const size t n,
double * c0, double * cl1,
double * cov00, double * cov0l, double * covll,

double * sumsq);

Note: Please don't write #pragma dll(libgsicblas, header) in code, or it may cause compile error.

20.2.2.1.2 test_gsl.c

The following is a simple OC file to show how to call gsl_sf_zeta_int and gsl_fit_linear

#include <Origin.h>

#include "ocgsl.h"

// Example of using Riemann Zeta Function in GSL

void gsl test zeta function()

double resultl = gsl sf zeta int(2);

478

Accessing

External Resources

double result2 = pi*pi/6;

printf ("Zeta (2) = %f\n", resultl);

printf ("pi~2/6 = %f\n", result2);

// Example of using linear fit in GSL

void gsl test linear fit (int npts = 10)

&sumsq) ;

479

vector vx(npts), vy(npts);

const double ds = 2, di = 10;

for (int 1i=0; ii<npts; ++ii)

vx[1i] = 1ii;

vy[ii] ii*ds + di + (rand()%100-50)*0.05;

for (ii=0; ii<npts; ++ii)

printf ("%$.2£\t%.2f\n", vx[ii], vyl[iil);

double c0, cl, cov00, cov0l, covll, sumsqg;

gsl fit linear(vx, 1, vy, 1, npts, &cO, &cl, &cov00, &cov0l,

&covll,

Origin C Programming Guide

printf ("Slope=%f, Intercept=%f", cl, c0);

20.2.2.2 Using GSL in a Fitting Function

There is also an exampleto show how to use gsl functions in a fitting function.

20.2.2.2.1 Notice on using GSL functions

Origin C doesn't support external functions that return a struct type variable, so those functions return this kind of

data can not be used in Origin C, e.g.

gsl complex gsl complex add (gsl complex a, gsl complex b)

since it returns a gsl_complex type of data, and gsl_complex is defined as:

typedef struct

double dat[2];

}gsl complex;

20.2.3 Access CPlusPlus(.Net) And CSharp DLL

This chapter will introduce how to access the DLL created by C++(.Net) or C# in Origin C.

20.2.3.1 Access C# Class DLL

The following example shows how to create a DLL in Microsoft Visual Studio 2005 with C#, and then access it in

Origin C. This DIl provides a class with properties and functions. Function Sum shows how to pass data array

from Origin C vector to C# function.

Run Microsoft Visual Studio as administrator, select File -> New -> Project..., in New Project dialog, choose the

settings as below:

480

https://www.originlab.com/doc/Tutorials/UDF-GNU

Accessing External Resources

Mew Project

Project types: Templakes: |§|
=) visual C# ¥isual Studio installed templates
Windows
Smart Device (A windaws Application {FClass Library
Database L windaws Contral Library i web Control Library
Skarter Kiks E—ECDI‘ISNE Application IE'-.-‘-.-'inu:h::ws Service
Other Languages [Empty Project ‘ECrystal Repaorts &pplication
Other Project Types
My Templates
~ii|Search Online Templates. ..
A project For creating a C# class library (dll) |
Mame; | MyOCCallableLibrary| |
Location: | CDocuments and SettingstOriginlabi My Documentsiisual Studio Z0051FP | [Browse, .,]
Salution Mame: | MO ZallableLibrary | Create directory for solukion
[kK l[Cancel]

Copy the following codes to cs file.

using System;
using System.Collections.Generic;
using System.Text;

using System.Runtime.InteropServices;

namespace temp

[Guid ("4A5BFDFA-7D41-49d1-BB57-C6816E9EDC87")]

public interface INet Temp

481

Origin C Programming Guide

double Celsius{ get; set; }

double Fahrenheit{ get; set; }

double GetCelsius();

double GetFahrenheit ();

double Sum(object obj);

namespace temp

[Guid ("2AE913C6-795F-49cc-B8DF-FAF7FBA49538")]

public class NET Temperature : INet Temp

private double celsius;

private double fahrenheit;

public NET Temperature ()

public double Celsius

get{ return celsius; }

482

Accessing External Resources

483

set { celsius = value; fahrenheit = celsius + 273.5;

public double Fahrenheit

get { return fahrenheit; }

}

set { fahrenheit = wvalue; celsius = fahrenheit - 273.5;

public double GetCelsius()

return celsius;

public double GetFahrenheit ()

return fahrenheit;

public double Sum(object obj)

double[] arr = (double[])obj;

double sum = 0.0;

for (int nn = 0; nn < arr.Length; nn++)

sum += arr[nn];

return sum;

}

Origin C Programming Guide

}
Choose menu Tools -> Create GUID, in opening dialog select Registry Format radio button, click New GUID
button and then click Copy button. Paste this GUID to replace that one in [Guid("...")] in the above codes.

Reproduce this action again to replace the second GUID in code.

Right click on the project and select Properties to open the property page. Go to Application tab, and click
Assembly Information button, then check the check-box of Make assembly COM-Visible. If for 32 bit version, go
to the Build tab, and select the check-box of Register for COM interop. If for 64 bit version, go to Build Events
tab, and then copy and paste the following command line to the Post-build event command line text box. Press

F6 to build solution.

"$Windir%\Microsoft.NET\Framework64\v4.0.30319\regasm™ "$ (TargetPath)"
/CodeBase

Start Origin, open Code Builder, new a c file, then copy the following Origin C code to c file.

void access DLL()

Object obj = CreateObject ("temp.NET Temperature");

obj.Celsius = 0; // access property

out_double("", obj.GetFahrenheit()); // access function

obj.Fahrenheit = 300;

out double("", obj.GetCelsius());

vector vec;

vec.Data(1,10,1);

484

Accessing External Resources

_VARIANT var = vec.GetAslDArray () ;

out double("", obj.Sum(var));

20.2.3.2 Access C# and C++ Resource DLL

The following shows how to create an ActiveX control by C#, and use it in a dialog in Origin C.
Steps 1~7 shows how to create an C# ActiveX control in Microsoft Visual Studio 2005.

Start Microsoft Visual Studio 2005, choose File -> New -> Project... to open New Project dialog, do the following

settings, then click OK button.

New Project

Project bypes: Templates; |§|
=) Wisual C# Yisual Studio installed termplates
Windows
Smart Device _EWinduws Application @Class Libraty
Database EWinduws Contral Library @Web Conkral Library
starter Kits ¥ Console Application LA windows Service
Other Languages [Ernpty Project -ECr'y'staI Reports Application

Other Project Types
My Templates

=i 3earch Online Templates. ..

& project for creating contrals ko use in Windows applications |

Mame: | SampleControl |
Location: | CDocuments and Settings) Originlabiky Documentsivisual Studio 20051 v| [Browse, .,]
Solution Mame: | SampleContral | Create direckory For solution

[Ok H Cancel]

Copy the following codes to UserControl.cs file to add a protected override function to set control fill color and a

public function to set control border.

using System;

485

Origin C Programming Guide

486

using

using

using

using

using

using

using

System.Collections.Generic;

System.ComponentModel;

System.Drawing;

System.Data;

System.Text;

System.Windows.Forms;

System.Runtime.InteropServices;

namespace SampleControl

[Guid ("A31FE123-FD5C-41al1l-9102-D25EBD5FDFAF") ,

ComSourcelInterfaces (typeof (UserEvents)),

ClassInterface (ClassInterfaceType.None),]

public partial class UserControll : UserControl, UserControllInterface

public UserControll ()

InitializeComponent () ;

protected override void OnPaint (PaintEventArgs pe)

Brush brush = new SolidBrush (Color.Beige) ;

pe.Graphics.FillRectangle (brush, ClientRectangle);

Accessing External Resources

public void SetBorder (bool bSet)

this.BorderStyle = bSet ? BorderStyle.FixedSingle
BorderStyle.None;

Refresh () ;

//declare an Interface for the control settings
[Guid ("CCBD6133-813D-4dbb-BB91-16E3EFAE66B0")]

public interface UserControllInterface

void SetBorder (bool bSet);

}
Select Tools -> Create GUID to open Create GUID dialog, choose Registry Format radio button, click New GUID
and Copy button to copy the newly created GUID. Use the new GUID to replace the one in above code
[Guid("...")].
Choose UserControl1.cs[Design] tab, in Properties window, click Events button > , drag scroll bar to choose
MouseClick and double click it to add mouse click event function into UserControl.cs file. Use the same method

to add mouse double click event.

In UserControl1l.cs file, copy the following code outside UserControl1 class.

//declare delegates for events

public delegate void MouseAction (int x, int y);

In UserControl1 class, add the following implements.

487

Origin C Programming Guide

public event MouseAction OnUserClick;

public event MouseAction OnUserDbClick;

private void UserControll MouseClick(object sender, MouseEventArgs e)

if (OnUserClick != null)

OnUserClick(e.X, e.Y);

private void UserControll MouseDoubleClick(object sender, MouseEventArgs e)

if (OnUserDbClick != null)

OnUserDbClick(e.X, e.Y);

}

Outside UserControl1 class, add the following interface.

//declare interface for events
[Guid ("DAOSOAGF-FFAC-4a39-ACD3-351FA509CA86"),
InterfaceType (ComInterfaceType.InterfacelsIDispatch)]

public interface UserEvents

488

Accessing External Resources

[DispIdAttribute (0x60020001)]

void OnUserClick(int x, int y);

[DispIdAttribute (0x60020002)]
void OnUserDbClick(int x, int y);

}
Create a resource-only DLL in Visual Studio 2008 as explained in Dialog Builder: Simple Hello World Dialog:

Create Resource-only DLL in Visual Studio 2008

Use an ActiveX control in a dialog and show dialog by Origin C. In Origin Code Builder, create a c file, and copy

the following code to it.

//Dialog and control Ids. Need change dialog id according to real case.

#define IDD DIALOGL 101

#define IDC_DOTNET 1000

//Exposed events from Control

#define ON_INTEROP_CLICK(_idCntl, _ocFunc)

ON_ACTIVEX EVENT (0x60020001, _idCntl, _ocFunc, VTS _CTRL VTS I4 VTS I4)

#define ON_ INTEROP DBLCLICK(idCntl, ocFunc)

ON_ACTIVEX EVENT (0x60020002, _idCntl, _ocFunc, VTS CTRL VTS I4 VTS I4)

class CDotNetComInteropDlg : public Dialog

public:

CDotNetComInteropDlg () ;

489

https://www.originlab.com/doc/OriginC/guide/Simple-Hello-World-Dialog
https://www.originlab.com/doc/OriginC/guide/Simple-Hello-World-Dialog

Origin C Programming Guide

EVENTS BEGIN

ON_ INIT(OnInitDialog)

//Event handler entries for the exposed events

ON_INTEROP CLICK(IDC DOTNET, OnClick)

ON_INTEROP DBLCLICK (IDC DOTNET, OnDblClick)

EVENTS END

BOOL OnClick (Control ctrl, int x, int vy)

printf ("Clicked at (%d,%d)\n", x,y);

return true;

BOOL OnDblClick (Control ctrl, int x, int y)

printf ("DblClicked at (%d,%d)\n", x,y);

return true;

BOOL OnInitDialog();

Control m ctrlDotNet;

490

Accessing External Resources

491

// Do not specify DLL file path here. Assume the dll file under the same
// path with the current c file.
CDotNetComInteropDlg: :CDotNetComInteropDlg ()

Dialog (IDD DIALOG1, "DialogBuilder.dll")

InitMsgMap () ;

BOOL CDotNetComInteropDlg::0OnInitDialog()

// [Guid ("A31FE123-FD5C-41al1-9102-D25EBD5SFDFAF")]
GUID guid = {0xA31FE123, 0xFD5C, 0x4lal,

{0x91, 0x02, 0xD2, Ox5E, O0xBD, O0x5F, OxDF, OxAF}};

RECT rect = {20,20,200,100};
if (m_ctrlDotNet.CreateActiveXControl (guid, WS CHILD|WS VISIBLE,

rect, GetSafeHwnd(), IDC DOTNET))

//Control intialization using the exposed interface of
//the DotNet control
Object ctrlObj = m ctrlDotNet.GetActiveXControl();

ctrlObj.SetBorder (true);

return TRUE;

Origin C Programming Guide

void Launch CDotNetComInteropDlg ()

{
CDotNetComInteropDlg dlgDotNet;

dlgDotNet.DoModal () ;

20.2.4 Access Python via External DLL

In Origin C, there is no way to call Python functions directly. However, if you want to reuse your Python code in
Origin C, it is recommended to wrap the Python functions in a DLL first, and then expose the functions in the DLL
to Origin C code. In the following sections of this chapter, an example will be shown on how to do this step by

step.

Notes: From Origin 2015, we can run python in Origin (support both command line and .py file), and use a

PyOrigin module to access Origin from Python. view Python.chm for more details.

20.2.4.1 Running Environment

The example shown below is based on the following environment.
Windows 7
Python 3.3.5 (Assume the Python settings are already OK.)

Visual Studio 2012

20.2.4.2 Python File

The Python functions defined in the following are going to be reused in Origin C.

SayHello () :

("Welcome to use Python in your Origin C programs!") #actually this string
will not show in Origin C

12345

492

https://www.originlab.com/doc/python

Accessing External Resources

Add(a, b):

a + b
Sub (a, b)

a -b
Mult (a, b):

a *b
Div(a, b):

a /b
Mod (a, b):

a%$ b

First of all, go to the Python installed directory, then create a Python file under this directory, say "myLib.py".
Then open this newly created file using a text editor, Notepad for example, and put the Python code above to this

file, and save.
Start Windows Console (cmd.exe), and then switch the current path to the directory where Python installed.

Run the following command to compile the Python file created just now.

python -m py compile myLib.py
If successfully, there will be a pyc file (myLib.cpython-33.pyc, or something similar with "myLib") under this folder

<Python Installation Directory>/__pycache__/ by default.

20.2.4.3 Build DLL
Start Visual Studio 2012, and create a new Win32 Project, named OPython.

493

Origin C Programming Guide

Mew Project
b Recent NET Framework 4.5 - Sortby: Default

4 Installed

Wi onsole Application Visual C++
ct for creating a Win32 application,
e application, DLL, tatic library

4 Templates

o Visual C++ MFC Application Visual C++
LightSwitch

b Other Languages Win32 Project Visual C++
P Other Project Types

Modeling Projects Empty Project el B

Samples

b Online Makefile Project Visual C++

Name: OPython

Location: A\ \originlab\documents\visual studic -

Solution: Create new io =

Solution name: OPython eate directo
[] Add to source co

Click OK, and select the Application type to be DLL, and click Finish to create the project.

Win32 Application Wizard - OPython

Overview

Application Settings

Application type: Add common header files for:

Application Settings

() Windows application Clan

—

() Console application

CIwmrc

(®) DLL
() Static library
Additional options:
[Empty project

[] Export symbols

Security Development Lifecyde (SOL)
checks

[Finish] [Cancel

Set the Solution Configurations to be Release. Right click on the project, and choose Property from the context

menu, to open the Property dialog.
Note: Here the 32-bit DLL will be created, and that will be used in 32-bit version of Origin.

In the Property dialog, from the left panel, activate Configuration Properties: VC++ Directories, and then in the
right panel, add the Python header file path and library path to Include Directories and Library Directories

respectively.

494

Accessing External Resources

OPython Property Pages

=

Configuration: | Active(Release)

> Common Properties
4 Configuration Properties
General

Debuggi
> CfC++
> Linker
> Manifest Tool
> XML Document Generator
> Browse Information
> Build Events
» Custom Build Step
> Code Analysis

« 1 | »

v] Platform: | Active(Win32) V] ’ Configuration Manager...]
4 General
Executable Directories S(VCInstallDir) bin; 5(Wind ows5DK_ExecutablePath_x86); 5(VSInstallDi
| Include Directories C:\Python335\include;$(IncludePath) |
Reference Directories S(VCInstallDir) atlmfc\lib: S (VCInstallDirllib
| C:\Python335\libs;$(LibraryPath) [~]
Library WinRT Directories S(Windows5DK_MetadataPath)
Source Directories S(VCInstallDir) atlmfc\srehmfc; S(VCInstallDir)atlmfch\srcmfem; S{VCT
Exclude Directories S(VCInstallDirinclude S(VCInstallDir)atimfcinclud e S (WindowsSDK]

Library Directories
Path to use when searching for library files while building a VC++ project. Corresponds to environment variable
LIB.

[ok | cancel || appy |

From the left panel, activate Configuration Properties: Linker: Input, and then in the right panel, add the

Python library to Additional Dependencies, here is python33.lib. Apply all the settings and click OK.

4 Configuration Properties
General
Debugging
VC++ Directories
C/C++
Linker

General

[

Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
Manifest Tool
XML Document Generator

Browse Information
Build Events
Custorn Build Step
Code Analysis

] 1 | »

OPython Property Pages 7=
Configuration: | Active(Release) v] Platform: | Active(Win32) V] ’ Configuration Manager...]
> Common Properties | Additional Dependencies kernel32.Iib;userBE.Iib;gdiBE.Iib;winspool.lib;comdlgBE.Iib;ad\rapi32.l|

Ignore All Default Libraries
Ignore Specific Default Libraries
Module Definition File

Add Module to Assembly Additional Dependencies @
Embed Managed Resource File -

Force Symbol References @ i
Delay Loaded Dlls

Assembly Link Resource

] b

Inherited values:
kernel32.lib

user32.lib |TE|
gdi32.lib n
winspool.lib
comdlg32.lib
[¥] Inherit from parent or project defaults
l 0K H Cancel l
Additional Dependencies
Specifies additional items to add to the link command line [i.e. kernel32.lib]
’ QK] [Cancel] ’ Apply

Add a header file, named OPython.h, to the project, and put the following code to it.

495

Origin C Programming Guide

#ifndef OPYTHON H

#define _OPYTHON H
#ifdef _OPYTHON CPP_

#define OP_API _ declspec(dllexport) //use in VC
#else

#define OP_API

//use in OC

#pragma dll (OPython) //this line is important, when use in OC,
Origin will find function body by searching in this DLL. Note:0OPythonDLL,
is the generated dll, without extension name.

#endif

OP_API int PY SayHello();

Op_API float PY Add(float a, float b);

Op API float PY Sub(float a, float b);

Op API float PY Mult (float a, float b);

OP API float PY Div(float a, float b);

Op API float PY Mod(float a, float b);

#endif // OPYTHON H
Open the OPython.cpp, which is created automatically when creating the project (If no such file, create it).

Replace the original code by the following code.

496

Accessing External Resources

#include "stdafx.h"

#define _OPYTHON _CPP_ //use this macro to identify whether OPython.h is
included in VC (when create the DLL) or OC(when use the DLL)

#include "OPython.h"

#include <Python.h>

class PythonManager

public:

PythonManager (); //init python environment

~PythonManager () ; //clean python environment

PythonManager: :PythonManager ()

Py Initialize();

PythonManager: :~PythonManager ()

Py Finalize();

OP API int PY SayHello()

497

Origin C Programming Guide

PythonManager pm;

PyObject* pModule;

PyObject* pFunc;

//call python function, with no parameters

int nRet = 0;

pModule = PyImport ImportModule ("myLib");

if (NULL == pModule)

return nRet;

pFunc = PyObject GetAttrString(pModule, "SayHello");

if (pFunc)

PyObject* pRet = NULL;

pRet = PyEval CallObject (pFunc, NULL);

PyArg Parse (pRet, "i", &nRet);

return nRet;

static float ~call float float (LPCSTR lpcszFunc, float a,

PythonManager pm;

PyObject* pModule;

498

float Db)

Accessing External Resources

PyObject* pFunc;

//call python function, with multiple parameters
float fRet = 0;

pModule = PyImport ImportModule ("myLib");

if (NULL == pModule)

return fRet;

pFunc = PyObject GetAttrString(pModule, lpcszFunc):;

if (pFunc)

PyObject* pParams = NULL;

pParams = PyTuple New(2); //create tuple to put
parameters

PyTuple SetlItem(pParams, 0, Py Buildvalue("f", a));

PyTuple SetItem(pParams, 1, Py Buildvalue("f", b));

PyObject* pRet = NULL;

pRet = PyEval CallObject (pFunc, pParams);

PyArg Parse(pRet, "f", &fRet);

return fRet;

OP API float PY Add(float a, float b)

return call float float ("Add", a, b);

499

Origin C Programming Guide

Op API float PY Sub(float a, float b)

return call float float ("Sub", a, b);

Op API float PY Mult(float a, float b)

return call float float("Mult", a, b);

OP API float PY Div(float a, float b)

return call float float("Div", a, b);

Op API float PY Mod(float a, float b)

return call float float("Mod", a, b):;

}
Add a Module-Definition File, named OPython.def, to the project, and replace the original code with the code

below.

LIBRARY "OPython"

EXPORTS

500

Accessing External Resources

;Functions to export
PY SayHello

PY Add

PY Sub

PY Mult

PY Div

PY Mod
Build the solution to generate the DLL, OPython.dll, by default

20.2.4.4 Use the DLL

The following code show how to use the DLL generated above in Origin C.
Copy the DLL generated above (OPython.dll), and paste it to the directory where Origin installed.
Copy the header file created above (OPython.h) to this folder: <User Files Folder>/OriginC/.

Start 32-bit version of Origin and launch Code Builder. Create a new C file and replace with the following code to
it.

#include <Origin.h>

#include "OPython.h" //remember to include this header.

int test Python()

{

int nRet = PY SayHello();

float ¢ = PY Add(2, 4);

float d = PY Div(2, 3);

501

Origin C Programming Guide

return 0;

}
Compile the above code in Code Builder, and then run the following line in LabTalk Console (Open by Code

Builder menu View: LabTalk Console).

test Python;

20.2.4.5 Remarks

The example shown in this page is only to create a simple DLL that can reuse the functions written in Python. If
to process a large amount of data in Python, and transfer the data between Origin and Python, a buffer will be
recommended. With buffer, when transfer data from Origin's Column, the vector, which contains data, can be
passed from Origin C to a DLL function, which receive a pointer (maybe double *pBuffer) as parameter. And any
change based on this buffer will take effect immediately on the vector in Origin C. In \Samples\Python folder of
your Origin software, you can see code example(CCallPython.cpp , CCallPython.py , and python.h) to transfer
data buffer by two OC API:

OPYTHON API OIP OPy GetItemsFromList (int nType, void* pyObj, void* pBuffer);

OPYTHON_ API void* OPy SetItemsToList (int nType, void* pBuffer, OIP* pnDims, int
nDims) ;

20.3 Access an External Application

The Microsoft Component Object Model (COM) is a software architecture that allows applications to be built from

a binary software component, and it makes the development of software much easier and more effective.

Origin provides the capability for COM client programming, and it is supported only in OriginPro. This
mechanism uses Object type to represent all COM (automation server) objects. All COM objects can be

initialized in two ways:

//by the CreateObject method
Object oExcel;

oExcel = CreateObject ("Excel.Application");

502

Accessing External Resources

//by initialization from an existing COM object.
Object oWorkBooks;
oWorkBooks = oExcel.Workbooks;

Origin C also provides a class to access Matlab, which enables communication between Origin and Matlab.

#include <Origin.h>
#include <externApps.h> //required header for the MATLAB class

void test Matlab ()

Matlab matlabObj (true) ;

if (!matlabObij)

out str("No MATLAB found");

return;

//defines 3x5 matrix named ma

string strRet;

strRet = matlabObj.Execute("ma=[1 2 3 4 5;
456 7 8;10.3 4.5 -4.7 -23.2 -6.71");

out_str(strRet);// show str from MATLAB

// put matrix into Origin matrix
MatrixLayer matLayer;
matLayer.Create() ;

Matrix mao (matLayer) ;

503

Origin C Programming Guide

//Transfer MATLAB's matrix (ma) to Origin's mao matrix.

BOOL bRet = matlabObj.GetMatrix("ma", &mao);

COM client programming in Origin C can be used to programmatically exchange data with MS Office
applications. There is a comprehensive example demonstrating how to read data from Excel worksheets, plot a
graph in Origin, and place it in a Word document. This example can be found in the \Samples\COM Server and
Client\MS Office\Client subfolder in Origin.

(Origin C COM programming can also be used to communicate with databases by accessing an ActiveX Data
Object (ADO), and there is a sample file demonstrating that SQL and Access databases can be imported to a
worksheet, and subsequent data modifications returned to the database. For more information, see the file

ADOSample.c in the Samples\COM Server and Client\ADO\Client subfolder of Origin.

504

21 Reference

21.1 Reference

This section covers the following topics:

Class Hierarchy

Collections

21.2 Class Hierarchy

The following schematic diagram shows the hierarchy of built-in Origin C classes.

505

https://www.originlab.com/doc/OriginC/guide/Class-Hierarchy
https://www.originlab.com/doc/OriginC/guide/Collections

Origin C Programming Guide

Internal Origin Objects

506

Layer
Datasheet
MatrixLayer
Worksheet
GraphLayer
Layout
PageBase
Mote
Page
— GraphPageBase
GraphPage
LayoutPage

— MatrixFage

— WorksheetPage
GraphObjectBase

GraphQ bject
— ROIObject
— StyleHolder

— PolylineGraphObject

— PolyPolylineGraphChbject
DataCbjectBase
DataObject
Column
MatrixObject
DataF ot

DatasetObject

OriginObject

— DataRange

— DataRangeEx

— X¥Range

I— X¥RangeComplex

— X¥ZRange
— Froject

— Grid

— Axis

— AxisObject

— Scale

— GroupHat
Classes Not Derived from OriginObject
Collection
I— TreelodeCollection
CollectionEmbeddedPages
Folder
fpoint
fpoint3d
GetGraphPoints
OperationManager
paoint
Selection
storage

UndoBlock

Reference

Com posite Data Types

vectorbase

— vector

I— Dataset

I— CategoricalData
— curvebase
Curve
CategoricalMap
matrixbase
I— miatrix
I_ Matrix
PropertyNode
TreeNode
I— Tree
string
complex

507

Utility
Array
BitsHex
JSON
OrgApplnfo
OrgApps
Profiler
VideoWriter

System
file
|— stdioFile
INIFile

Registry

Application Communication
Matlab

Analysis
NLFtSession

NLFtContext

Origin C Programming Guide

User Interface Controls

I— Window

— WndContai ner

CmdTarget

Dialog
PropertyPage

PropertySheet

I— Wizards heet

— Control Classes Not Derived from CmdTarget

— Button waitCursor

L

— ColorText Menu

BitmapRadioButton progressBox

— ComboBox DeviceContext
— DhtmiControl GraphObjT ool
— DialogBar GraphObjCurveT ool
— DynaCantrol
— Edit
= ListBox
- OriginControls
GraphControl
WaorksheetControl
— PictureControl
— RichEdit
I— CodeEdit
— Slider
— SpinButton

— WizardControl

— TabControl

508

Reference

21.3 Collections

The Collection class provides a template for holding multiple objects of the same type. In Origin C, an instance of

a Collection is read-only. You cannot add items to, or delete items from, a collection.

There are a number of Origin C classes that contain data members which are instances of a Collection. For
example, the Project class contains a data member named WorksheetPages. The WorksheetPages data

member is a collection of all the existing WorksheetPage objects in the project.

The table below lists each of the Origin C Collections, along with the class that contains the collection and the

item types in the collection.

Class Data Member Collection of
Folder Pages PageBase
Folder Subfolders Folder
GraphLayer DataPlots DataPlot
GraphLayer StyleHolders StyleHolder
GraphPage Layers GraphLayer
Layer GraphObijects GraphObiject
MatrixLayer MatrixObjects MatrixObject
Page Layers Layer
Project DatasetNames string (loose and displayed datasets)
Project GraphPages GraphPage

509

https://www.originlab.com/doc/OriginC/ref/folder-class
https://www.originlab.com/doc/OriginC/ref/Folder-Pages
https://www.originlab.com/doc/OriginC/ref/PageBase
https://www.originlab.com/doc/OriginC/ref/folder-class
https://www.originlab.com/doc/OriginC/ref/Folder-Subfolders
https://www.originlab.com/doc/OriginC/ref/folder-class
https://www.originlab.com/doc/OriginC/ref/GraphLayer
https://www.originlab.com/doc/OriginC/ref/GraphLayer-DataPlots
https://www.originlab.com/doc/OriginC/ref/DataPlot-Class
https://www.originlab.com/doc/OriginC/ref/GraphLayer
https://www.originlab.com/doc/OriginC/ref/GraphLayer-StyleHolders
https://www.originlab.com/doc/OriginC/ref/StyleHolder
https://www.originlab.com/doc/OriginC/ref/GraphPage
https://www.originlab.com/doc/OriginC/ref/GraphPage-Layers
https://www.originlab.com/doc/OriginC/ref/GraphLayer
https://www.originlab.com/doc/OriginC/ref/Layer
https://www.originlab.com/doc/OriginC/ref/Layer-GraphObjects
https://www.originlab.com/doc/OriginC/ref/GraphObject
https://www.originlab.com/doc/OriginC/ref/MatrixLayer
https://www.originlab.com/doc/OriginC/ref/MatrixLayer-MatrixObjects
https://www.originlab.com/doc/OriginC/ref/MatrixObject
https://www.originlab.com/doc/OriginC/ref/Page-Class
https://www.originlab.com/doc/OriginC/ref/Page-Layers
https://www.originlab.com/doc/OriginC/ref/Layer
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-DatasetNames
https://www.originlab.com/doc/OriginC/ref/string
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-GraphPages
https://www.originlab.com/doc/OriginC/ref/GraphPage

Origin C Programming Guide

Project LayoutPages LayoutPage
Project LooseDatasetNames string (loose datasets)
Project MatrixPages MatrixPage
Project Notes Note
Project Pages PageBase
Project WorksheetPages WorksheetPage
Selection Objects OriginObject
TreeNode Children TreeNode
Worksheet Columns Column
Worksheet EmbeddedPages Page

Examples

List all graph pages in the current project.

foreach (GraphPage gp in Project.GraphPages)

out str(gp.GetName ())

List all worksheet pages in the current project.

foreach (WorksheetPage wksPage in Project.WorksheetPages)

510

https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-LayoutPages
https://www.originlab.com/doc/OriginC/ref/LayoutPage
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-LooseDatasetNames
https://www.originlab.com/doc/OriginC/ref/string
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-MatrixPages
https://www.originlab.com/doc/OriginC/ref/MatrixPage
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-Notes
https://www.originlab.com/doc/OriginC/ref/Note
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-Pages
https://www.originlab.com/doc/OriginC/ref/PageBase
https://www.originlab.com/doc/OriginC/ref/Project
https://www.originlab.com/doc/OriginC/ref/Project-WorksheetPages
https://www.originlab.com/doc/OriginC/ref/WorksheetPage
https://www.originlab.com/doc/OriginC/ref/selection-class
https://www.originlab.com/doc/OriginC/ref/Selection-Objects
https://www.originlab.com/doc/OriginC/ref/OriginObject
https://www.originlab.com/doc/OriginC/ref/TreeNode
https://www.originlab.com/doc/OriginC/ref/TreeNode-Children
https://www.originlab.com/doc/OriginC/ref/TreeNode
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-Columns
https://www.originlab.com/doc/OriginC/ref/Column-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-Class
https://www.originlab.com/doc/OriginC/ref/Worksheet-EmbeddedPages
https://www.originlab.com/doc/OriginC/ref/Page-Class

Reference

out str (wksPage.GetName ());

List all matrix pages in the current project.

foreach (MatrixPage matPage in Project.MatrixPages)

out str (matPage.GetName ()) ;

List all data plots.

GraphlLayer gl = Project.Activelayer();

foreach (DataPlot dp in gl.DataPlots)

string strRange;

dp.GetRangeString (strRange, NTYPE BOOKSHEET XY RANGE) ;

printf("sd, %s", dp.GetIndex()+1l, strRange);

511

Index
A22

Accessing X-Function 303
Active Column 108

Active Matrixbook 67

Active Page, Page Active 203
Active Window 67

Active Workbook 67

Active Worksheet 108

Add Column 96

Analysis Functions 235
Arithmetic 100
Arithmetic Operators 8

Array, One-Dimensional 187
Array, Two-Dimensional 6-5
Array, Two-Dimensionals 188
Auto Update 472

B
Baseline, Create 273
Baseline, Remove 273
Binning, 2D 247
break Statement 18
Building by Script 50
Building on Startup 49
Building Origin C File with Project 48

Building Origin C Files under Workspace System
Folder48

513

Building with Dependent Files 50

Building, Handle Compiling and Linking Error50

C
C#DLL 477
C# Features 1
C++ Features 1
C++(.Net) DLL 477
Caret Character 9
char Type 5
Class Hierarchy 509
Classes 24

Classes, Analysis Category 29

Classes, Application Communication Category

30
Classes, Data Types Category 30
Classes, Origin Objects Category 31
Classes, Predefined 24,29
Classes, System Category 33
Classes, User Defined 24, 333, 340
Classes, User Interface Controls Category
Classes, Utility Category 37
Clone Page 92
Code Builder 1, 46
Collections 513

Color Palette 6

Color, Auto Color 7

34

Origin C Programming Guide

Color, Check as RGB Value or Palette Index 7
Color, Extract Single Color from RGB 8
Column Designation 99

Column Label 97

Column Properties 99

Column, Access Data Buffer 119
Column, Add Tree Variable 208
Column, Data Format 100

Column, Data SubFormat 100

Column, Get the Names of All Storages 209
Column, Get Tree Variable 208

Column, Get/Set Date and Time Data 104
Column, Get/Set Numeric Data 103

Column, Get/Set String Data 104
Column, Setting Value by Formula 101

COM 505

Comments Label 97

Comparison Operators 10

Compile and Link Source Files 47
Compiler, Generate Pre-processed File 41
Compiler, Type of Pre-processed File 41
Complex Variable 190

Complex, Imaginary Component 6
Complex, Real Component 6
continue Statement 18

Contour Graph, Get/Set Z Levels of Colormap
163

514

Contour Graph, Set Line Style 168-67

Convolution 270
Copy Format 160
Copy Matrix 81
Correlation 270
Correlation Coefficient 247
Curve Fitting 261
D
Data Comparison 128
Data Range Control 192
Data Range, from Graph 192
Data Range, from Matrix 191
Data Range, from Worksheet 191
Data Reader 382
Data Selector 192
Data Types 5
Database 291
Database, SQL 507
DataPlot, Bar/Column 150
DataPlot, Contour151
DataPlot, Image Type 153
DataRange, Construct XYZ Range 129
Date Time, Convert Julian Date to String
Date Time, Convert String to Julian Date
Date Time, Custom Date Format 198

Date Time, Get Current Date Time 197

198

198

Index

Debugging 51

Debugging, Breakpoints 51

Delete Column 97

Delete Worksheet108

Descriptive Statistics 246

Dialog Boxes 312

Dialog Builder 324, 325

Dialog with Tree View Control 339
Dialog, Event Functions 346

Dialog, Open 348

Dialog, Resource DLL Created by Origin Dialog
AppWizard 325

Dialog, Resource DLL Created by Visual Studio
2008 326

Dialog, Resource DLL Created by Win32 Dynamic-

Link Library 326
Differentiation 245
Distributing Code 59

double Type 5

Duplicate Window 65, 92
E
Exception Handling 26

Exponentiate Operator 9

Export Data from Matrix to ASCII File 231
Export Data from Worksheet to ASCII File 229
Export Data to Database 293

Export Graph to Image File 230

515

Export Image from Matrix to Image File 232
External Application, Database 507

External Application, Execute Matlab Command

505
External Application, MS Excel 505
External Application, MS Word 505
External DLL, Access 477
External Resources, Access 477
Extract Frame 225

Extrapolation 237

F
FDF File 266
FFT 270

FFT Filtering 270
File Open Dialog 315
File SaveAs Dialog 316

File, Object File(*.OCB) 40

File, Preprocessed File(*.OP) 41
File, Workspace File(*.OCW) 42
float Type 5

Flow Control Statements 13

Folder, Get Path 200

Folder, Get Sub Folders 201

Folder, Move Folder 202

Folder, Move Window 202

Font, Convert from Index to DWORD 169

for Statement 16

Origin C Programming Guide

foreach Statement 19, 203
Fortran 477

Frequency Count 246

Functions, Adding for Set Values Dialog F(x) menu

57

Functions, Calling Origin C Function from Script

53
Functions, Control LabTalk Access 53
Functions, Execution 3,46, 53

Functions, List All LabTalk Callable Origin C

Functions 54

Functions, Pass LabTalk Variable to Origin C by

Reference 54

Functions, Pass LabTalk Variable to Origin C by
Value 54

Functions, Precedence Rules for the Same Name

Functions 57
Functions, Predefined 20
Functions, User-defined 21

G

Gadget Tool 431

GetN Data Selector Control 192
GetN Graph Preview Dialog 404
GetN Simple Dialog 316
GetN, Image Dialog 409

Global Functions 20
goto Statement 19

Graph Browser 461

516

Graph Layer, Add 3D Surface Plot 150
Graph Layer, Add Data Marker 157
Graph Layer, Add Worksheet Table 183
Graph Layer, Add XY Data Plot 148
Graph Layer, Axis Label Properties 144
Graph Layer, Axis Properties 144
Graph Layer, Axis Tick Label Properties
Graph Layer, Axis Ticks Properties 146
Graph Layer, Border 141

Graph Layer, Copy 110

Graph Layer, Dimension 176

Graph Layer, Double-Y Axes 153
Graph Layer, Fill Color 141

Graph Layer, Get Active Data Plot 149
Graph Layer, Get Format 141

Graph Layer, Get Format on DataPlot
Graph Layer, Grid Lines 142

Graph Layer, Legend 183

Graph Layer, List all Data Plots 514
Graph Layer, Refresh 145

Graph Layer, Remove Data Marker 157
Graph Layer, Rescale 148

Graph Layer, Scale Settings 143
Graph Layer, Set Color on DataPlot 158

Graph Layer, Set Data Marker 157

Graph Layer, Set Format on Grouping Plot

146

158

162

Index

Graph Layer, Set Format on Line Plot 159
Graph Layer, Set Format on Scatter Plot 161
Graph Layer, Show Additional Lines 142

Graph Layer, Show/Hide Axis 145

Graph Object, Add Curve Arrow 179

Graph Object, Add Rectangle 177

Graph Object, Add Text Label 177

Graph Object, Attach Property 181

Graph Object, Create 177

Graph Object, Disable Moving and Selection 181
Graph Object, General Properties 180

Graph Object, Position 180

Graph Object, Programming Control 182
Graph Object, Resize 180

Graph Object, Set Line Position 178

Graph Page, Add Layer 172

Graph Page, Arrange Layers 154

Graph Page, Attach a User Defined Dialog to It
383

Graph Page, Delete 139

Graph Page, Get Format 140

Graph Page, Get the Existing Window 139
Graph Page, Gradient Control 141

Graph Page, Layer Arrangement 170, 173
Graph Page, Linking Layers 176

Graph Page, Move Layer 173

517

Graph Page, Plotting Separated Data in Multiple
Layers 171

Graph Page, Rename 139
Graph Page, Resize Layer 174
Graph Page, Swap Layers 175

Graph Preview Dialog 333

Gridding 128

H
Hello World Dialog 325, 350
Hello World Function 1

Hidden Page, Create 90
Hide Column 98

HTML Dialog 349, 350, 354, 364

if Statement 13

if-else Statement 13

Import ASCII Data File to Matrixsheet 218
Import ASCII Data File to Worksheet 215
Import Data with Filter 218

Import File, Get Storage Tree by Name 209
Import Files with Import Wizard 221

Import Image into Matrix 222

Import Image into Worksheet Cell 224

Import Image to Graph 225

Import Video 225

Importing from a Database 291

Importing, Get Info from Image File 223-22

Origin C Programming Guide

Improve OC Execution Speed 119
Input String 312
Insert Column 96
Integer Type 5
Integral, Multi-dimension 243
Integral, with Multiple Parameters 240
Integral, with One Integration Variable
Integration 238

L

LabTalk Variable, Get/Set in Origin C

238

297

LabTalk Variable, Get/Set in Origin C, LabTalk

Object, Use in Origin C 300

LabTalk Variable, LabTalk Script, Execution in

Origin C 299
Language Basic Features 1
Language Fundamentals 5
Layer, Alignment 175
Linear Fitting 249
List Labtalk Callable Functions 54
Logical Operators 11
Long Name Label 97
loop Statement 16

LT execute 299

LT _get str 299
LT _get var 297
LT set str 299
LT set var 297

518

M
Mathematics 235
matrix 6
Matrix 188
Matrix Object, Set Value By Formula
matrix sheet 75
Matrix Sheet, Copy 110
Matrix Sheet, Data Format 80

Matrix Sheet, Set Internal Data Type

matrix, copy 81

Matrix, Dot Multiply 82

Matrix, Multiply with Constant 81
Matrixbook, Activate a Sheet 67
Matrixbook, Create 90

matrixbook, Get Name 67
matrixbook, Get One Sheet 67
Matrixsheet, Get/Set Labels for XY 70
Matrixsheet, Get/Set Labels forZ 72
Message Box 313

Message Map 340

Missing Values 185

Modal Dialog 330

Modulus Operator 10

Move Column 98

Multiple Linear Regression 259

Multiple XY Datasets 472

80

79

Index

N

NAG Callback Functions 278

NAG Error Structure 278

NAG Functions 277

NAG Get Data From Origin 279
NAG Header Files 277

NAG, Memory Free 280

NANUM 185

New a Source File 46

NLFit, Get Number of Parameters 262
NLFit, Set Parameter Values 263
NLFitSession Class 261

NLFitSession, Get Fitted Data 264
NLFitSession, Get Number of lterations

NLFitSession, Get Reduced Chisqr 264

264

NLFitSession, Run Code to Initialize Parameter

Values 263
NLFitSession, Set Fitting Data 262
NLFitSession, Set Fitting Function 262
NLFitSession, Share Parameters 264
NLFitSession, Statistic Result 264
Nonlinear Fitting 261
Normality Test 248
Normalize 235
Numeric, Convert to String 187
Numeric, Data Comparison Data 186

(0]

519

Operation, List All211

Operators 8
Origin Object, Copy Format 160
Origin System Path 197

Output to Notes Window 288
Output to Report Sheet 289
Output to Results Log 287
Output to Script Window 287
oxf File 449
P
Package Files 59
Page, Clone 65, 92
Page, Get Name 139
Page, Get Path 201
Palette 6
Parameters Label 97
Path Browser Dialog 316
Peaks, Find 275
Peaks, Fit 276
Peaks, Verify Peaks by Minimum Height
Pick Data Points 382
Plotting in Multiple Graph Layers 154
Plotting, from Matrix 150
Plotting, from Virtual Matrix 135
Plotting, from Worksheet 148

Pointer 5

276

Origin C Programming Guide

Polynomial Fitting257

pragma 477

Progress Box 314

Project, Add Range Variable 205
Project, Add Tree Variable 205

Project, Append 199

Project, Get Active Folder 200, 201
Project, Get the Active Layer 203
Project, Get the Active Page 203

Project, Get the Existing Window 202

Project, Get the Names of All Tree Variables 206

Project, Get Tree Variable 206
Project, List all Graph Pages 514
Project, List all Matrixbooks 514
Project, List All Operations 211
Project, List All Range Variables 205
Project, List all Workbooks 514
Project, Loop the Existing Windows 203
Project, Modified Flag 200
Project, New 199
Project, Open 199
Project, Save 199

R
Recalculation 465
Rename Column 97

Report Sheet, Get Result Tree 210

520

Report Sheet, Get the Specified Result
11

Report with Auto Update 472
Result Sheet 472

RGB 7

Script Window 287
Select Data Range 465
Set Column Values 101
Set Formula 101

Share Code 59

short Type 5
Signal Processing 270
Smoothing 270

Source File, New 339

Sparkline 99

SQL 291

SQLite 295

Statistics Functions 246-45
STFT 270

string 6

String Array 6

String, Append Numeric 194

String, Convert to Complex 194
String, Define Variables 193

String, Extract File Name from Full Path

String, Get Sub String 195

212—-

196

Index

String, Replace 195
Swap Column 98

switch Statement 15

T
Template 140
Theme File 160

throw Statement 26

TreeNode 189

try-catch Statement 26
U

Units Label 97

User Defined Labels 97

User File Folder 197

User Interface 311

Using NAG Functions 277
\%

Variable Extraction in Import Wizard222

vector 6

Vector 187

Video 225

Video Writer 232

Virtual Matrix 135

void Return Type 5
w

Wait Cursor 381

Wavelet 270

521

while/do-while Statement 17

Wizard Dialog 420

Wizard Dialog, Add Steps Map 331
WizardSheet 331

Workbook, Activate a Sheet 107
Workbook, Delete One Sheet 108
Workbook, Get Name 108
Workbook, Get One Sheet 108

Workbook, Get Page from Layer 109

Workbook, Reorder Sheets 109
worksheet 118
Worksheet 97

Worksheet, Add Tree Variable 206
Worksheet, Alignment 111
Worksheet, Check If Hierarchy 211
Worksheet, Compare Data 127
Worksheet, Convert Data To Matrixsheet
Worksheet, Delete All Columns 119
Worksheet, Embedded Graph 120
Worksheet, Extract Data 125

Worksheet, Find Data 122

128

Worksheet, Get Data from Specified Data Range

118

Worksheet, Get Sheet Name 109

Worksheet, Get the Names of All Storages

Worksheet, Get Tree Variable 207

Worksheet, Highlight Selection 125

207

Origin C Programming Guide

Worksheet, Merge All Sheets 110
Worksheet, Merge Cells 113
Worksheet, Put Text to Cell 111
worksheet, reduce data 124

Worksheet, Set Color for the Selected Range
126

Worksheet, Set Column Width by LabTalk
Command 299

Worksheet, Set Display Range 118
Worksheet, Sorting Data 121
Worksheet, Text Font 111
Workspace, Load Files 47
Workspace, Packages Folder 43
Workspace, Project Folder 45
Workspace, System Folder 45
Workspace, Temporary Folder 45
Workspace, User Folder 45

X
XF_THROW macros 404
XF_TRACE macro 403
XF_WARN macros 403
XFBase Class 303, 454
X-Function Builder 387, 390
X-Function Custom Dialog 414
X-Function Dialog Controls 392
X-Function Dialog Theme 393

X-Function Option Strings 393

522

X-Function ReportData 472

X-Function ReportTree 465

X-Function Tree View 393

X-Function Variable 390

X-Function Variable Type 391

X-Function, Add Custom Button on Dialog 449
X-Function, Add Documentation 449
X-Function, Add Internal Functions 396
X-Function, Add to Origin Menu 446
X-Function, Auto Compile Dependent Files 395
X-Function, before_execute 397, 427

X-Function, Coding in Code Builder 394, 406-5,
411

X-Function, Construct Controls on Dialog 457—
56

X-Function, Control Labtalk Accessing 389
X-Function, Create 387, 388
X-Function, Create Graph Browser Dialog 461

X-Function, Display Error Message on Dialog
402

X-Function, Error Handling 402

X-Function, Event Handler Functions in Image
Dialog 401

X-Function, Event Handler Functions in Preview

Dialog400
X-Function, Event Handling Functions 396
X-Function, event1 399, 450

X-Function, Execution 389, 413

Index

X-Function, Execution from Script 453
X-Function, Execution in Origin C 454
X-Function, Execution with Theme 431
X-Function, Execution with Wizard Dialog 430
X-Function, Execution without Dialog 453
X-Function, Fitting 473

X-Function, Handle Runtime Error 404
X-Function, Image Dialog Init Event Function412

X-Function, Image Dialog OnChange Event

Function 412

523

X-Function, Include Header Files 395
X-Function, Main Function 396

X-Function, make_tree 399, 433

X-Function, Output Error Message 402
X-Function, Output Warning Message 403
X-Function, Set Parameters in Origin C 454
X-Function, Statistics 468

X-Function, Update Control Value on Dialog 461

XOR Operator 12

