

LabTalk Scripting Guide

Copyright © 2025 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any

means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab Corporation. Other

product and company names mentioned herein may be the trademarks of their respective owners.

OriginLab Corporation

One Roundhouse Plaza

Northampton, MA 01060

USA

(413) 586-2013

(800) 969-7720

Fax (413) 585-0126

iii

Table of Contents

1 LabTalk Scripting Guide .. 1

2 Getting Started with LabTalk ... 3

3 Resources for Learning LabTalk ... 11

4 Language Fundamentals .. 13

5 Calling X-Functions and Origin C Functions ... 119

6 Running and Debugging LabTalk Scripts .. 139

7 String Processing .. 177

8 Workbooks Worksheets and Worksheet Columns .. 185

9 Matrix Books Matrix Sheets and Matrix Objects .. 215

10 Graphing ... 227

11 Importing ... 245

12 Exporting ... 255

13 The Origin Project ... 263

14 Analysis and Applications ... 283

15 User Interaction ... 317

16 Working with Excel .. 329

17 Running R in Origin ... 333

18 Working with Python ... 341

19 Automation and Batch Processing .. 343

20 Function Reference ... 349

21 Appendix ... 495

Index .. 497

1

1 LabTalk Scripting Guide

guide

In this guide we introduce LabTalk, the scripting language in Origin. LabTalk is designed for users who wish to

write and execute scripts to perform analysis and graphing of their data. The purpose of this guide is to help

users who are generally familiar with programming in a scripting language to take advantage of the scripting

capabilities in Origin. We provide sufficient detail for a user with basic knowledge of Origin to begin tailoring the

software to meet their unique needs.

The guide starts with a quick introduction to LabTalk, followed by a chapter on language fundamentals, and a

chapter outlining various ways to organize and execute scripts within the Origin environment. The remaining

chapters are organized by various functional areas of Origin, such as importing, graphing, data analysis, user

interaction, and automation.

A few reference tables are included at the end. However this guide is not a full language reference. The full

LabTalk language reference documentation is accessible from the Help menu in Origin. New features are

continually introduced to LabTalk with successive versions of Origin. These are typically marked with a version

number stamp (i.e., 8.1, typically in a bold and/or red-colored font) in the language reference help file.

This guide should be used in conjunction with other resources for learning LabTalk, which are listed in the

Resources for Learning LabTalk chapter.

This guide provides several script examples. To try these examples you can either type in

the script, or you can simply copy and paste the script from the soft file version of this guide

accessible from the Help menu.

• Getting Started with LabTalk

• Resources for Learning LabTalk

• LT Language Fundamentals

• LT Calling X-Functions and Origin C Functions

• LT Running and Debugging LabTalk Scripts

• LT String Processing

https://www.originlab.com/doc/LabTalk/guide/Getting-Started-with-LT
https://www.originlab.com/doc/LabTalk/guide/Resources-Learning-LabTalk
https://www.originlab.com/doc/LabTalk/guide/Language-Fundamentals
https://www.originlab.com/doc/LabTalk/guide/Calling-XFs-and-OC-Functions
https://www.originlab.com/doc/LabTalk/guide/Running-and-Debugging-LT-Scripts
https://www.originlab.com/doc/LabTalk/guide/Category-Str-Process

LabTalk Scripting Guide

2

• LT Workbooks Worksheets and Worksheet Columns

• LT Matrix Books Matrix Sheets and Matrix Objects

• LT Graphing

• LT Importing

• LT Exporting

• LT The Origin Project

• LT Analysis and Applications

• LT User Interaction

• LT Working with Excel

• Running R in Origin

• Working with Python

• Automation and Batch Processing

• LT Function Reference (LabTalk)

• Appendix

https://www.originlab.com/doc/LabTalk/guide/Workbooks-Worksheets-and-Worksheet-Columns
https://www.originlab.com/doc/LabTalk/guide/Matrix-Books-Matrix-Sheets-and-Matrix-objs
https://www.originlab.com/doc/LabTalk/guide/Graphing
https://www.originlab.com/doc/LabTalk/guide/Importing
https://www.originlab.com/doc/LabTalk/guide/Exporting
https://www.originlab.com/doc/LabTalk/guide/The-Origin-Project
https://www.originlab.com/doc/LabTalk/guide/Analysis-and-Applications
https://www.originlab.com/doc/LabTalk/guide/User-Interaction
https://www.originlab.com/doc/LabTalk/guide/Working-with-Excel
https://www.originlab.com/doc/LabTalk/guide/LT-Running-R
https://www.originlab.com/doc/LabTalk/guide/work-with-python
https://www.originlab.com/doc/LabTalk/guide/Automation-and-Batch-Processing
https://www.originlab.com/doc/LabTalk/guide/Function-Reference
https://www.originlab.com/doc/LabTalk/guide/Appendix

3

2 Getting Started with LabTalk

Getting-Started-with-LT

2.1 Hello World

We begin with a classic example to show you how to execute LabTalk script. We use LabTalk command type in

the example. Please note that Origin's LabTalk commands are case insensitive.

Open Origin, and from the Window menu, select the Script Window option. The Script Window will open.

In this window, type the following text and then press Enter:

type "Hello World"

Origin adds a semicolon, ;, at the end of the line and also executes that line of script.

This line of script outputs Hello World directly beneath your command.

To run this line of script again, place the cursor anywhere before ; on the line and press Enter.

Commands can be abbreviated as long as it's unique. Both the following work.

typ "Hello Word"

ty "Hello World"

Now let us see how to execute multiple lines of script from the script window:

Make a workbook window active since the following script outputs workbook information.

In Script Window window, paste the following lines of script separated by ;

type "The current workbook is %h";

type "This book has $(page.nlayers) sheet(s)";

type "There are $(wks.ncols) columns in the active sheet";

Highlight all lines (if using mouse, drag and select all lines of script, or if using keyboard, put cursor at either the

beginning or the end of the script, hold Shift key and press up/down arrow keys to select all lines of script).

Press Enter to execute all selected lines of script.

It will output the current workbook name, how many number of sheets in book, and how many columns in active

sheet similar to the following text:

The current workbook is Book1

This book has 1 sheet(s)

There are 2 columns in the active sheet

https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/LabTalk/guide/Command-stmts
https://www.originlab.com/doc/LabTalk/ref/Type-cmd
https://www.originlab.com/doc/LabTalk/guide/Using-Semicolons-in-LT

LabTalk Scripting Guide

4

In the above example, we used the %H String Register that holds the currently active window name (which could

be a workbook, a matrix, or a graph). We then used the page and wks LabTalk Objects to get the number of

sheets in the book and the number of columns in the sheet. The $() is a substitution notations which tells Origin

to evaluate the expression within the () and return its value.

When typing multiple lines of script in the Script Window yourself,

Add ; and then press Enter key to avoid execution of the line. Origin will just start a new line

for you to continue the typing. At the end, select all lines and press Enter to execute them

together.

Or uncheck Edit: Script Execution. Type in the lines to avoid executing any lines by

mistake. At the end, check Edit: Script Execution. Select all lines and press Enter to

execute them together.

2.2 Using = to Get Quick Output

The = character is typically used as an assignment operator, with a left- and right-hand side. When the right-hand

side is missing, the interpreter will evaluate the expression on the left of the = character and print the result in the

script window.

Evaluation math expression on left and print result interactively.

3 + 5 =

Origin computes the result and displays it in the next line:

3 + 5 = 8

Output string register and Origin object properties

%H =; //current window name

wks.ncols=; //number of columns

wks.col1.name$=; //1st column's short name

Suppose the current window is Book1 with 1 sheet and 2 columns, executing the above script will output

Book1

wks.ncols=2

A

In the following example, we introduce the concept of variables in LabTalk. Variable names are case

insensitive. Entering the following assignment statement in the script window:

double A = 2

creates a variable A and initializes its value to 2. Then you can perform some arithmetic on variable A, such as

multiplying by PI (a constant defined in Origin,) and assign the result back to A:

https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/guide/LT-objs
https://www.originlab.com/doc/LabTalk/guide/Assignment-stmts
https://www.originlab.com/doc/LabTalk/guide/Arithmetic-stmt
https://www.originlab.com/doc/LabTalk/guide/Operators

Getting Started with LabTalk

5

A = A*PI

To display the current value of A, type:

A =

Press Enter and Origin responds with:

A = 6.2831853071796

There is List command to view a list of variables and their values. Type the following

command and press Enter:

list

Origin will open the LabTalk Variables and Functions dialog that lists all variables.

You can also get a dump of a specific type of variables, for example

list v

to list the numeric variables.

2.3 Simple Useful Commands

2.3.1 Worksheet

newbook; //create a workbook

wks.ncols=3; //set worksheet has 3 columns

col(B)=2*col(A); //set col(B)'s value by col(A)

2.3.2 Graph

//select a Y column firstly

plotxy; //use the selected Y column and its X column to plot

layer.x.from=5; //set X axis from value

2.4 Other Ways to Execute Script

In previous examples, you saw how to execute script from the Script Window. Origin provides several other

ways to organize and execute LabTalk script. These are outlined in detail in the Running and Debugging

LabTalk Scripts chapter. Here we take a quick look at a few of the methods to execute script: (1) from the

Custom Routine toolbar button, (2) from a custom menu item, and (3) from a button in a graph page.

2.4.1 Custom Routine Button

Origin provides a convenient way to save script and run it with the push of a toolbar button.

While holding down Ctrl+Shift on your keyboard, press the Custom Routine button () located in the

Standard Toolbar.

https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Running-and-Debugging-LT-Scripts
https://www.originlab.com/doc/LabTalk/guide/Running-and-Debugging-LT-Scripts
https://www.originlab.com/doc/LabTalk/guide/From-a-Toolbar-Button
https://www.originlab.com/doc/LabTalk/guide/From-a-Custom-Menu-Item
https://www.originlab.com/doc/LabTalk/guide/From-Graphical-objs
https://www.originlab.com/doc/Origin-Help/Standard-Toolbar

LabTalk Scripting Guide

6

This opens Code Builder, Origin's native script editor. The file being edited is called Custom.ogs. The code has

one section, [Main], and contains one line of script:

[Main]

type -b $General.Userbutton;

Replace that line with the following:

[Main]

type -b "Hello World";

Then press the Save () button in the Code Builder window.

Now go back to the Origin application window and click the button (keyboard shortcut: ALT + F5).

Origin will again output the text Hello World, but this time, because of the -b switch used with the type command,

the text will be presented in a pop-up window.

2.4.2 Custom Menu Item

LabTalk script can be executed from a custom menu item.

Select the menu item Preferences: Custom Menu Organizer... to open the Custom Menu Organizer dialog.

Make the Add Custom Menu tab active. Then right-click inside the left panel and select New Main Popup from

the context menu.

In the right panel, enter a name for Popup Text, such as My Menu. then click outside of the edit box.

Select My Menu from the left panel, and then right click on it, and select Add Item from the context menu.

In the right panel, change the Item Text to Hello World, then add the following script to the LabTalk Script text

box:

type -b "Hello World";

Click the Close button, and in the window that pops up, press Yes to save the menu changes as Default menu.

In the file dialog that opens, press Save to save the file with the default name to the default folder (User Files

Folder).

A new menu named My Menu should now appear in the menu bar, to the left of the Window menu. Click on this

new menu item, and then click on the Hello World entry in the drop-down. A Hello World dialog will pop up.

2.4.3 Button in a Graph

Origin also provides the ability to add a button to a graph or worksheet, and then execute LabTalk script by

pushing that button. This allows for script to be saved with a specific project or window.

https://www.originlab.com/doc/LabTalk/guide/Debugging-Tools
https://www.originlab.com/doc/LabTalk/guide/Flow-of-Control
https://www.originlab.com/doc/LabTalk/ref/Type-cmd
https://www.originlab.com/doc/Origin-Help/CustomMenuOrganizer-Dialog
https://www.originlab.com/doc/Origin-Help/UserFilesFolder
https://www.originlab.com/doc/Origin-Help/UserFilesFolder

Getting Started with LabTalk

7

Press the New Graph button () located in the Standard Toolbar to create a new graph.

Press the Text Tool button () in the Tools Toolbar, and then click on the newly created graph and type the

text My Button. Then click outside the text to finish editing the text.

Right click on the text to bring up the context menu, and then select Programming Control to open the

Programming Control dialog.

In the dialog, select Button Up from the Script, Run After: drop-down list, and then type the following script in

the edit box:

type -b "Hello World";

Click OK to close the dialog. Now the text label becomes a button. Click the button. A Hello World dialog will pop

up.

2.5 Script Example

We now present a script example that walks you through a particular scenario of importing and processing data,

and then saving the project. This example uses several LabTalk language features such as Commands,

Objects, and X-Functions. You will learn more details about these language features in subsequent chapters.

NOTE: We will use the Script Window to execute these statements. To execute a single line of code, make sure

that you leave out the ; at the end before pressing Enter. For multiple lines of code, at the end of each line, press

Enter after the ; to continue entering the next line. After you have typed in all lines, select them all and then press

Enter to execute.

Let's start with a new project using the doc command and the -n switch. If the current project needs saving, this

command will prompt user to save.

doc -n

Now let's import a data file from the Samples folder. We will first use the dlgfile X-function to locate the desired

file:

dlgfile gr:=ASCII

Then select the file S15-125-03.dat from the \Samples\Import and Export sub folder located in your Origin

installation folder, and click Open.

The above process will load the file path and name into a variable named fname$. You can examine the value of

this variable by typing:

fname$=

Now let's import this files into the active workbook. We will use the impasc X-Function with options to control

naming, so that the file name does not get assigned to the workbook:

https://www.originlab.com/doc/Origin-Help/Standard-Toolbar
https://www.originlab.com/doc/Origin-Help/Tools-Toolbar
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/LabTalk/guide/Importing
https://www.originlab.com/doc/LabTalk/guide/Command-stmts
https://www.originlab.com/doc/LabTalk/guide/LT-objs
https://www.originlab.com/doc/LabTalk/guide/XFs
https://www.originlab.com/doc/LabTalk/ref/Document-cmd
https://www.originlab.com/doc/X-Function/ref/dlgFile
https://www.originlab.com/doc/X-Function/ref/impASC

LabTalk Scripting Guide

8

impasc Options.Names.FNameToBk:=0

Now we want to perform some data processing of the Position column. We first define a range variable to point

to this column.:

range rpos = "Position"

Since the column we select is also the 4th column in the current worksheet, we can also use index number to

specify it.

range rpos = 4

You can check what range variables are currently defined, using this command:

list a

We now normalize the column so that the values go from 0 to 100. To check what X-Functions are available for

normalization, we can use the command:

lx *norm*

The above command will dump X-Functions where the name contains norm. There are several X-Functions for

normalizing data. For our current purpose we will use the rnormalize X-Function.

To get help on the syntax for this particular X-Function, you can type:

rnormalize -h

to dump the information, or type:

help rnormalize

to open the help file.

Let us now normalize the position column:

rnormalize irng:=rpos method:=range100 orng:=<input>

The normalized data will be placed in the same column, replacing the original data, as we set the output range

variable orng to be <input>.

When using X-Functions, you can leave out the variable names, if they are specified in the correct order. The

above line of code can therefore be written as:

rnormalize rpos range100 orng:=<input>

The reason we still specified the name orng is because there are other variables that precede this particular

variable, which are not relevant to our current calculation and were therefore not included in the command.

Now let's do some changes to the folder in the project. There are several X-Functions for managing project

folders, and we will use some of them:

// Get the name of the current worksheet

string name$ = wks.name$;

// go to root folder

pe_cd ..;

https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/X-Function/ref/rnormalize
https://www.originlab.com/doc/X-Function/ref/Output-Notations
https://www.originlab.com/doc/X-Function/ref/Output-Notations
https://www.originlab.com/doc/LabTalk/guide/XFs-Overview
https://www.originlab.com/doc/LabTalk/guide/Managing-the-Project

Getting Started with LabTalk

9

// rename Folder1 to be the same as worksheet

pe_rename Folder1 name$;

Now let's list all the sub folders and workbooks under the root folder:

pe_dir

Finally, let's save the Origin Project to the User Files Folder. The location of the user files folder is stored in the

string register %Y. You can examine where your User Files Folder is by checking this variable:

%Y =

Now let's use the save command to save our project to User Files Folder, with the name MyProject.opj.

save %yMyProject

In the above command %Y will be replaced with the User Files Folder path, and thus our project will be saved in

the correct location.

2.6 Using CTRL + SHIFT to capture Menu Command and Toolbar

Button Script

Many of the actions of menu commands and toolbar buttons in Origin's graphical user interface (GUI) are

implemented in LabTalk script. When this is the case, you can locate and view this script in the following way:

Press CTRL + SHIFT on your keyboard and hold.

Click on the menu command or toolbar button.

This, then, becomes a source of usable LabTalk Script that you can incorporate into your custom routines.

Origin 2024b support CTRL + SHIFT to capture Mini Toolbar Button Script

2.6.1 Example

Open a new workbook, select columns A and B, then right-click and choose Fill Columns With: Row Numbers.

With your worksheet active, press CTRL + SHIFT and click the Scatter toolbar button (or choose Plot > 2D:

Scatter: Scatter).

This does two things:

Opens Code Builder (Origin's Integrated Development Environment) to the line in Plot.ogs (an Origin system

script file) to the section that executes the toolbar button or menu command.

Writes the menu id and run.section command out to the Script Window.

https://www.originlab.com/doc/LabTalk/guide/Managing-the-Project
https://www.originlab.com/doc/Origin-Help/UserFilesFolder
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/ref/Save-cmd

LabTalk Scripting Guide

10

Menu id=33248 (0x81e0)

run.section(Plot,Scatter)

Information from both of these lines of script can be reused in your own scripts, to create a line plot. To see this

at work, make sure that the workbook with your two columns of highlighted row numbers is still active, then go to

the Script Window (Window: Script Window), type either of the following, then press Enter:

menu -e 33248

run.section(Plot, Scatter)

For more information, see these topics:

FAQ-666 How to open the dialog in Origin by using LabTalk Script?.

The menu command's "-e" switch.

Origin's run.section method.

2.7 Where to Go from Here?

The answer to this question is the subject of the rest of the LabTalk Scripting Guide. The examples above only

scratch the surface, but have hopefully provided enough information for you to get a quick start and excited to

learn more. The next chapter lists various resources available for learning LabTalk.

https://www.originlab.com/doc/Quick-Help/Dialog-Labtalk
https://www.originlab.com/doc/LabTalk/ref/Menu-cmd
https://www.originlab.com/doc/LabTalk/ref/Run-obj

11

3 Resources for Learning LabTalk

Resources-Learning-LabTalk

Besides the content provided in this guide, the following resources are available for learning LabTalk.

3.1 Online Documentation

Most up-to-date documentation for LabTalk, including updates to this guide, can be found online at this location:

http://www.originlab.com/doc/labtalk

3.2 Tutorials

Several LabTalk tutorials are shipped with Origin. These are accessible from the Help menu.

3.3 Script Examples

Various Script Examples are shipped with Origin. These are accessible from the Help menu, and are contained

in the sub folder: <Origin Installation Folder>\Samples\LabTalk Script Examples\.

3.4 X-Function Script Examples

Press the F11 key in Origin to open the XF Script Dialog. This dialog provides many script examples specific to

calling X-Functions, organized in various categories such as Import, Fitting, Signal Processing, and

Spectroscopy.

3.5 LabTalk Forum

Post your question on the LabTalk forum. Go to: http://www.originlab.com/forum and then select the LabTalk

Forum. Our forums are monitored by our technical staff, plus you may get ideas and answers from other power

users as well.

3.6 Training and Consulting

OriginLab and our distributors worldwide offer Training and Consulting services to help you with advanced

customization using LabTalk. Please contact us for further details.

http://www.originlab.com/doc/labtalk
https://www.originlab.com/doc/LabTalk/Tutorials
https://www.originlab.com/doc/LabTalk/examples
http://www.originlab.com/forum

13

4 Language Fundamentals

4.1 Language Fundamentals

Language-Fundamentals

In this chapter, we introduce various aspects of the LabTalk language structure. In the first section you will learn

about general language features such as data types, variables, operators, conditional and loop structures,

macros and functions. The second section covers features that are unique to LabTalk, such as range and

substitution notation, objects, methods and properties, and accessing X-Functions.

This chapter covers the following topics:

• LT General Language Features

• LT Special Language Features

• LabTalk Script Precedence

4.2 General Language Features

4.2.1 General Language Features

General-Language-Features

These pages contain information on implementing general features of the LabTalk scripting language. You will

find these types of features in almost every programming language.

This section covers the following topics:

• Data Types and Variables

• Programming Syntax

• Operators

• Conditional and Loop Structures

• Macros

• Functions

https://www.originlab.com/doc/LabTalk/guide/General-Language-Features
https://www.originlab.com/doc/LabTalk/guide/Special-Language-Features
https://www.originlab.com/doc/LabTalk/guide/LT-Script-Precedence
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Programming-Syntax
https://www.originlab.com/doc/LabTalk/guide/Operators
https://www.originlab.com/doc/LabTalk/guide/Flow-of-Control
https://www.originlab.com/doc/LabTalk/guide/Macros
https://www.originlab.com/doc/LabTalk/guide/Functions

LabTalk Scripting Guide

14

4.2.2 Data Types and Variables

Data-Types-and-vars

4.2.2.1 LabTalk Data Types

LabTalk supports 9 data types:

Type Comment

Double Double-precision floating-point number

Integer Integers

Constant Numeric data type that value cannot be changed once declared

Dataset Array of numeric values

String Sequences of characters

StringArray Array of strings

Range Refers to a specific region of Origin object (workbook, worksheet, etc.)

Tree Emulates data with a set of branches and leaves

Graphic Object Objects like labels, arrows, lines, and other user-created graphic elements

4.2.2.1.1 Numeric

LabTalk supports three numeric data types: double, int, and const.

Double: double-precision floating-point number; this is the default variable type in Origin.

Integer: integers (int) are stored as double in LabTalk; truncation is performed during assignment.

Language Fundamentals

15

Constant: constants (const) are a third numeric data type in LabTalk. Once declared, the value of a constant

cannot be changed. From Origin 2016, constant is auto-saved to orgvar.ogs once declared. It means that the

constant will be saved as "System Variable" and available whenever a new Origin session is conducting.

// Declare a new variable of type double:

double dd = 4.5678;

// Declare a new integer variable:

int vv = 10;

// Declare a new constant:

const em = 0.5772157;

Note:

To use a constant after open a new Origin session, you will need to define the constant in the CONST.CNF file

under User File Folder.

LabTalk does not have a complex datatype. A column can be set as Numeric Complex and basic operations (+,-

,*,/) work between columns or using literal values. While functions are available for extracting real and imaginary

parts of a complex column value or literal expression, you should use Origin C if you need complex variables.

// Direct, literal expression:

(3-13i) / (7+2i) =;

// (3-13i) / (7+2i)=-0.094339622641509-1.8301886792453i

// Assign literal expression to complex column

col(A)[3] = (3-13i) * (7+2i);

// Get Real part of complex column or literal expression

dReal1 = imreal(col(A)[3]);

dReal2 = imreal((3-13i) + (7+2i));

// Get imaginary part of complex column or literal expression

dImag1 = imaginary(col(A)[3]);

dImag2 = imaginary((3-13i) - (7+2i));

Values such as 0.0, NANUM (missing value) and values between -1.0E-290 to 1.0E-290

will be evaluated to be False in logic statement. For instance, LabTalk command will return

a value 0 (False) instead of 1 (True).

type $(-1e-290?1:0); // Returns 0 (False)

type $(1/0?1:0); // Returns 0 (False), where 1/0 == NANUM

4.2.2.1.2 Dataset

The Dataset data type is designed to hold an array of numeric values.

4.2.2.1.2.1 Temporary Loose Dataset

When you declare a dataset variable it is stored internally as a local, temporary loose dataset. Temporary

means it will not be saved with the Origin project; loose means it is not affiliated with a particular worksheet.

Temporary loose datasets are used for computation only, and cannot be used for plotting.

https://www.originlab.com/doc/LabTalk/ref/Datasets

LabTalk Scripting Guide

16

The following brief example demonstrates the use of this data type (Dataset type declaration and $() Substitution

Notation are used in this example):

// Declare a dataset 'aa' with values from 1-10,

// with an increment of 0.2:

dataset aa={1:0.2:10};

// Declare integer 'nSize',

// and assign to it the length of the new array:

int nSize = aa.GetSize();

// Output the number of values in 'aa' to the Script Window:

type "aa has $(nSize) values";

4.2.2.1.2.2 Project Level Loose Dataset

When you create a dataset by vector assignment (without declaration) or by using the Create (Command) it

becomes a project level loose dataset, which can be used for computation or plotting.

Create a project-level loose dataset by assignment,

bb = {10:2:100}

Or by using the Create command:

create %(strWks$) -wdn 10 aa bb;

For more on project-level and local-level variables see the section below on Scope of Variables.

For more on working with Datasets, see Datasets.

For more on working with %(), see $() Substitution - Numeric to String Conversion.

4.2.2.1.3 String

LabTalk supports string handling in two ways: string variables and string registers.

4.2.2.1.3.1 String Variables

String variables may be created by declaration and assignment or by assignment alone (depending on the

desired variable scope), and are denoted in LabTalk by a name comprised of continuous characters (see

Naming Rules below) followed by a $-sign (i.e., stringName$):

// Create a string with local/session scope by declaration and assignment

// Creates a string named "greeting",

// and assigns to it the value "Hello":

string greeting$ = "Hello";

// $ termination is optional in declaration, mandatory for assignment

string FirstName, LastName;

FirstName$ = Isaac;

LastName$ = Newton;

https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/ref/Create-cmd
https://www.originlab.com/doc/LabTalk/ref/Create-cmd
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

Language Fundamentals

17

// Create a project string by assignment without declaration:

greeting2$ = "World";//project scope and saved with OPJ

// string variable can make use of string class methods

string str$ = Johann Sebastian Bach;

str.Find('Sebastian')=;

// Define literal strings

// The syntax <[< indicates the start of literal strings

// The syntax >]> indicates the end of literal strings

// Can be used to include special symbols like double quotation marks in a

string

string s1$ = <[<a"b'";"c">]>;

s1$=;

//Should return a"b'";"c"

//Use literal strings in X-Function arguments

// Fill in three rows in the current selected worksheet column

patternT text:=<[<"Sample A" "Sample B" "Sample C">]>;

For more information on working with string variables, see the String Processing section.

4.2.2.1.3.2 String Registers

Strings may be stored in String registers, denoted by a leading %-sign followed by a letter of the alphabet

(i.e., %A-%Z). String Registers are always global in scope.

/* Assign to the string register %A the string "Hello World": */

%A = "Hello World";

For current versions of Origin, we encourage the use of string variables for working with

strings, as they are supported by several useful built-in methods; for more, see

String(Object). If, however, you are already using string registers, see String Registers for

complete documentation on their use.

4.2.2.1.4 StringArray

The StringArray data type handles arrays of strings in the same way that the Datasets data type handles arrays

of numbers. Like the String data type, StringArray is supported by several built-in methods; for more, see

StringArray (Object).

The following example demonstrates the use of StringArray:

// Declare string array named "aa",

// and use built-in methods Add, and GetSize:

StringArray aa; // aa is an empty string array

aa.Add("Boston"); // aa now has one element: "Boston"

aa.Add("New York"); // aa has a second element: "New York"

https://www.originlab.com/doc/LabTalk/guide/String-Processing
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/ref/String-obj
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/ref/StringArray-obj

LabTalk Scripting Guide

18

/* Prints "aa has 2 strings in it:" then each string. */

type "aa has $(aa.GetSize()) strings in it:";

loop(ii,1,aa.GetSize())

{

 ty aa.GetAt(ii)$;

}

4.2.2.1.5 Range

The range data type allows functional access to many data-related Origin objects, referring to a specific region in

a workbook, worksheet, graph, layer, or window.

The general syntax is:

range rangeName = [WindowName]LayerNameOrIndex!DataRange[subRange]

which can be made specific to data in a workbook, matrix, or graph:

range rangeName = [BookName]SheetNameOrIndex!ColumnNameOrIndex[RowBegin:RowEnd]

range rangeName = [MatrixBookName]MatrixSheetNameOrIndex!MatrixObjectNameOrIndex[CellBegin:CellEnd]

range rangeName =[GraphName]LayerNameOrIndex!DataPlotIndex[RowBegin:RowEnd]

The special syntax [??] is used to create a range variable to access a loose dataset.

For example:

// Access Column 3 on Book1, Sheet2:

range cc = [Book1]Sheet2!Col(3);

// Access second curve on Graph1, layer1:

range ll = [Graph1]Layer1!2;

// Access second matrix object on MBook1, MSheet1:

range mm = [MBook1]MSheet1!2;

// Access loose dataset tmpdata_a:

range xx = [??]!tmpdata_a;

Notes:

CellRange can be a single cell, (part of) a row or column, a group of cells, or a non-contiguous selection of cells.

Worksheets, Matrixsheets, and Graph Layers can each be referenced by name or index.

You can define a range variable to represent an origin object, or use range directly as an X-Function argument.

Many more details on the range data type and uses of range variables can be found in the Range Notation.

4.2.2.1.6 Tree

LabTalk supports the standard tree data type, which emulates a tree structure with a set of branches and leaves.

The branches contain leaves, and the leaves contain data. Both branches and leaves are called nodes.

https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/Origin-objs
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/Range-Notation

Language Fundamentals

19

Leaf: A node that has no children, so it can contain a value

Branch: A node that has child nodes and does not contain a value

A leaf node may contain a variable that is of numeric, string, or dataset (vector) type.

// Declare an empty tree

tree report;

// Tree nodes are added automatically during assignment:

//report two has 2 branches, each branche has two leaves

report.user.name$="dog"; //string

report.user.age=22; // number

report.test.name$="sensor";

report.test.temp = 32.0;

report.=; //output the tree contents

// Save the tree contents to an XML string

string strXML;

report.ToString(strXML$);

strXML$=;

// Declare a new tree 'newReport' and assign to it data from tree 'report':

tree newReport = report;

newReport.user.name$=;

newReport.test.temp=;

Check if a tree, branch or leaf exists

//Run after above script. Return 24 if exists. Otherwise return 0

exist(report)=; //returns 24

exist(report.user.name)=; //returns 24

exist(report.test.temp)=; /returns 24

exist(report.test.x)=; //returns 0

Check if it's branch or leaf

//returns 2 for branch, 1 for leaf, 0 for invalid

report@= //returns 2 tree itself is a branch

report.user@=; // returns 2, branch

report.user.name@=; // returns 1, leaf

report.test.temp@=; // returns 1, leaf

report.test.speed@=;/// return 0, invalid

Trees are commonly used in Origin to set and store a set related of parameters. The tree data type is often used

in X-Function's tree type argument, no matter it's input or output.

For example: when using impasc X-Function to import data into Origin, a tree type argument options holds the

parameters which determine how the import is performed. This is options tree is an input argument.

string str$ = system.path.program$ + "Samples\Graphing\Group.dat";

impasc fname:=str$

https://www.originlab.com/doc/X-Function/ref/Details-of-TreeNodes-in-Import-ASCII

LabTalk Scripting Guide

20

/* Start with new sheet */

options.ImpMode:=4

/* Only import the first three columns */

options.Cols.NumCols:=3;

impinfo X-Function has a tree type output argument trInfo After importing data into a worksheet, the following

script put the file info. into a tree variable 'fileInfo'.

impinfo trInfo:=fileInfo;

fileInfo.= //output all contents of the tree

Tree nodes can be strings or numbers. The following example shows how to copy tree nodes with string data

and numeric data to worksheet columns:

//Import the data file into worksheet

newbook;

string fn$=system.path.program$ + "\samples\statistics\automobile.dat";

impasc fname:=fn$;

tree tr;

//Perform discrte frequency counts on 2nd column, save results to tr

discfreqs irng:=2 rd:=tr;

newsheet name:=Result; //add a new worksheet with name 'Result'

col(1) = tr.freqcount1.data1; // put 'data1' leaf (all strings) to 1st column

col(2) = tr.freqcount1.count1; //put 'count1' leaf (numbers) to 2nd column

Tree nodes can also be vectors. Prior to Origin 8.1 SR1 the only way to access a vector in a Tree variable was

to make a direct assignment, as shown in the example code below:

tree tr;

// If you assign a dataset to a tree node,

// it will be a vector node automatically:

tr.a=data(1,10);

// A vector treenode can be assigned to a column:

col(1)=tr.a;

// A vector treenode can be assigned to a loose dataset, which is

// convenient since a tree node cannot be used for direct calculations

dataset temp=tr.a;

// Perform calculation on the loose dataset:

col(2)=temp*2;

You can access elements of a vector tree node directly, with statements such as:

// Following the example immediately above,

col(3)[1] = tr.a[3];

that assigns the third element of vector tr.a to the first row of column 3 in the current worksheet.

You can also output analysis results to a tree variable, like the example below.

newbook;

//Import the data file into worksheet

string fn$=system.path.program$ + "\samples\Signal

Processing\fftfilter1.dat";

impasc fname:=fn$;

Language Fundamentals

21

tree mytr;

//Perform FFT and save results to a tree variable

fft1 ix:=col(2) rd:=mytr;

page.active=1;

col(3) = mytr.fft.real;

col(4) = mytr.fft.imag;

More information on trees can be found in the chapter on Origin Projects,Accessing Metadata section.

4.2.2.1.7 Graphic Objects

The new LabTalk variable type GObject allows the control of graphic objects in any book/layer.

The general syntax is:

GObject name = [GraphPageName]LayerIndex!ObjectName;

GObject name = [GraphPageName]LayerName!ObjectName;

GObject name = LayerName!ObjectName; // active graph

GObject name = LayerIndex!ObjectName; // active graph

GObject name = ObjectName; // active layer

You can declare GObject variables for both existing objects as well as for not-yet created objects.

For example:

GObject myLine = line1;

draw -n myLine -l {1,2,3,4};

win -t plot;

myLine.X+=2;

/* Even though myLine is in a different graph

that is not active, you can still control it! */

For a full description of Graphic Objects and their properties and methods, please see Graphic Objects.

4.2.2.2 Variables

A variable is simply an instance of a particular data type. Every variable has a name, or identifier, which is used

to assign data to it, or access data from it. The assignment operator is the equal sign (=), and it is used to

simultaneously create a variable (if it does not already exist) and assign a value to it.

4.2.2.2.1 Variable Naming Rules

Variable, dataset, command, and macro names are referred to generally as identifiers. When assigning

identifiers in LabTalk:

Use any combination of letters and numbers, but note that:

the identifier cannot be more than 25 characters in length.

https://www.originlab.com/doc/LabTalk/guide/Accessing-Metadata
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs

LabTalk Scripting Guide

22

the first character cannot be a number.

the underscore character "_" has a special meaning in dataset names and should be avoided.

Use the Exist (Function) to check if an identifier is being used to name a window, macro, tool, dataset, or

variable.

Note that several common identifiers are reserved for system use by Origin, please see System Variables for a

complete list.

To avoid conflict with column short names in column value calculations, it is recommended that you use at least

4 characters when assigning variable names.

4.2.2.2.2 Handling Variable Name Conflicts

The @ppv system variable controls how Origin handles naming conflicts between project, session, and local

variables. Like all system variables, @ppv can be changed from script anytime and takes immediate effect.

Variable Description

@ppv=0

This is the DEFAULT option and allows both session variables and local variables to use

existing project variable names. In the event of a conflict, session or local variables are

used.

@ppv=1

This option makes declaring a session variable with the same name as an existing project

variable illegal. Upon loading a new project, session variables with a name conflict will be

disabled until the project is closed or the project variable with the same name is deleted.

@ppv=2

This option makes declaring a local variable with the same name as an existing project

variable illegal. Upon loading of new project, local variables with a name conflict will be

disabled until the project is closed or the project variable with the same name is deleted.

@ppv=3

This is the combination of @ppv=1 and @ppv=2. In this case, all session and local

variables will not be allowed to use project variable names. If a new project is loaded,

existing session or local variables of the same name will be disabled.

4.2.2.2.3 Listing and Deleting Variables

Use the LabTalk commands list and del for listing variables and deleting variables, respectively.

https://www.originlab.com/doc/LabTalk/ref/Exist-func
https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/Origin-Help/Wks-SetColVal-QuickStart

Language Fundamentals

23

/* Use the LabTalk command "list" with various options to list

variables; the list will print in the Script Window by default: */

list a; // List all the session variables

list v; // List all project and session variables

list vs; // List all project and session string variables

list vt; // List all project and session tree variables

// Use the LabTalk command "del" to delete variables:

del -al <variableName>; // Delete specific local or session variable

del -al *; // Delete all the local and session variables

// There is also a viewer for LabTalk variables:

// "ed" command can also open the viewer

list; // Open the LabTalk Variables Viewer

Please see the List (Command), and Del (Command) (in Language Reference: Command Reference) for all

listing and deleting options.

If no options are specified, running either the List or Edit command will open the LabTalk Variables and

Functions dialog and list all variables and functions.

4.2.2.3 Scope of Variables

The way a variable is declared determines its scope. Variables created without declaration (only allowed for

types double, string, and dataset) become Project variables and are saved with the Origin Project file. Declared

variables become Session or Local variables. Scope in LabTalk consists of three (nested) levels of visibility:

Project variables

Session variables

Local variables

In practical terms this means that (a) you can have multiple variables of the same name and (b) when that is the

case, the value returned at any given time is dependent upon the current scope (see Session and Local

variables, below).

4.2.2.3.1 Project Variables

Project variables are saved with the Origin Project (*.OPJ). Project variables are said to have Project scope.

Project variables are automatically created without declaration for variables of type double, string, and dataset

as in:

// Define a project (project scope) variable of type double:

myvar = 3.5;

// Define a loose dataset (project scope):

temp = {1,2,3,4,5};

https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/ref/Delete-cmd
https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/ref/Edit-cmd

LabTalk Scripting Guide

24

// Define a project (project scope) variable of type string:

str$ = "Hello";

All other variable types must be declared, which makes their default scope either Session or Local. Note that you

can make Local variables available as Session variables, using the @glob system variable, as described below.

4.2.2.3.2 Session Variables

Session variables are not saved with the Origin Project, and are available in the current Origin session across

projects. Thus, once a Session variable has been defined, they exist until the Origin application is terminated or

the variable is deleted. Session variables are defined with variable declarations:

// Defines a variable of type double:

double var1 = 4.5;

// Define loose dataset:

dataset mytemp = {1,2,3,4,5};

You can have a Project variable and a Session variable of the same name. In such cases, the Session variable

takes precedence:

aa = 10;

type "First, aa is a project variable equal to $(aa)";

double aa = 20;

type "Then aa is a session variable equal to $(aa)";

del -al aa;

type "Now aa is project variable equal to $(aa)";

And the output is:

First, aa is a project variable equal to 10

Then aa is a session variable equal to 20

Now aa is project variable equal to 10

4.2.2.3.3 Local Variables

Local variables exist only within the current scope of a particular script.

Script-level scope exists for scripts:

enclosed in curly braces {},

in separate *.OGS files or individual sections of *.OGS files,

inside the Set Column/Matrix Values Dialog, or

behind a custom button (Button Script).

Local variables are declared and assigned values in the same way as Session variables:

loop(i,1,10){

 double a = 3.5;

 const e = 2.718;

 // some other lines of script...

}

https://www.originlab.com/doc/LabTalk/guide/From-Files

Language Fundamentals

25

// "a" and "e" exist only inside the code enclosed by {}

It is possible to have Local variables with the same name as Session variables or Project variables. In this case,

the Local variable takes precedence over the Session or Project variable of the same name, within the scope of

the script. For example, if you run the following script (Please refer to Run LabTalk Script From Files for details

on how to run such script):

[Main]

double aa = 10;

type "In the main section, aa equals $(aa)";

run.section(, section1);

run.section(, section2);

[section1]

double aa = 20;

type "In section1, aa equals $(aa)";

[section2]

// This section does not declare a local variable named 'aa'.

// A variable named 'aa' will be searched for in the following order:

// If a Session variable named 'aa' exists then it will be used.

// Else if a Project variable named 'aa' exists then it will be used.

// Else if this section is called from another section and the caller

// section declared a local variable named 'aa' then it will be used.

// Else 'aa' will be a missing value.

type "In section2, aa equals $(aa)";

Origin will output:

In the main section, aa equals 10

In section1, aa equals 20

In section2, aa equals 10

4.2.2.3.4 Making Local Variables and Functions Available in the Session

At times you may want to define variables or functions in a *.OGS file, but then be able to use them from the

Script Window, in a text label, etc. (normally, the Local variable or function ceases to exist when the OGS runs to

completion). To do so, set the value of the @glob system variable to 1 (default value is 0). This makes Local

variables and functions in the OGS file available in the Session:

[Main]

@glob = 1;

// the following declarations become available in the session

range a = 1, b= 2;

if(a[2] > 0)

{

 // begin a local scope

 range c = 3; // this declaration is still available in the session

}

Upon exiting the *.OGS, the @glob variable is automatically restored to its default value, 0.

Note that one can also control a block of code by placing @glob at the beginning and end, as in:

@glob=1;

https://www.originlab.com/doc/LabTalk/guide/From-Files
https://www.originlab.com/doc/LabTalk/guide/From-Files

LabTalk Scripting Guide

26

double alpha=1.2;

double beta=2.3;

Function double myPeak(double x, double x0)

{

 double y = 10*exp(-(x-x0)^2/4);

 return y;

}

@glob=0;

double gamma=3.45;

In the above script, variables alpha, beta, and the user-defined function myPeak will be available in the session.

The variable gamma will not be available because it was declared after @glob was returned to its default value

of 0.

4.2.2.3.5 Summary Table: Scope of Variables

Data

Type
Declared?

Where

Defined
Example Lifetime

Constant constant
Yes

(const)

Script

Window

Command

Window

OGS File

Various

GUI

dialogs

const av =

6.022×1023;

While Origin runs.

All constants are

saved in orgvar.ogs.

Project

Variable

double,

string,

dataset

No

Script

Window

Command

Window

OGS File

Various

GUI

dialogs

av =

6.022×1023;

While the OPJ is

open.

Saved with the OPJ.

Language Fundamentals

27

Session

Variable
all types Yes

Script

Window

Command

Window

double av =

6.022×1023;

While the session

runs.

NOT saved with the

OPJ.

Local

Variable
all types Yes

OGS file

Various

GUI

dialogs

double av =

6.022×1023;

While the script

runs.

Local

Variable

as

Session

Variable

all types Yes

OGS file

Various

GUI

dialogs

@glob=1;

double av =

6.022×1023;

While the session

runs.

Can be saved with

the OPJ (see

ProjectEvents.OGS).

4.2.3 Programming Syntax

4.2.3.1 Programming Syntax

Programming-Syntax

A LabTalk script is a single block of code that is received by the LabTalk interpreter. A LabTalk script is

composed of one or more complete programming statements, each of which performs an action.

Each statement in a script should end with a semicolon, which separates it from other statements. However,

single statements typed into the Script window for execution should not end with a semicolon.

Each statement in a script is composed of words. Words are any group of text separated by white space. Text

enclosed in parentheses is treated as a single word, regardless of white space. For example:

type "Hello World"; // Single LabTalk statement

ty s1; ty s2; ty s3; // Three statements

Parentheses are used to create long words containing white space. For example, in the script:

menu 3 (Long Menu Name);

the open parenthesis signifies the beginning of a single word, and the close parenthesis signifies the end of the

word.

https://www.originlab.com/doc/LabTalk/guide/ProjectEvents-Script

LabTalk Scripting Guide

28

This section covers the following topics:

• Statement Types

• Using Semicolons in LabTalk

• Extending a Statement over Multiple Lines

• Comments

• Order of Evaluation in Statements

4.2.3.2 Statement Types

4.2.3.2.1 Statement Types

stmt-Types

LabTalk supports five types of statements:

Assignment Statements

Macro Statements

Command Statements

Arithmetic Statement

Function Statements

4.2.3.2.2 Assignment Statements

Assignment-stmts

The assignment statement takes the general form:

LHS = expression ;

expression (RHS, right-hand side) is evaluated and put into LHS (left-hand side). If LHS does not exist, it is

created if possible, otherwise an error will be reported.

When a new data object is created with an assignment statement without declaration

Object Type Description Example

https://www.originlab.com/doc/LabTalk/guide/stmt-Types
https://www.originlab.com/doc/LabTalk/guide/Using-Semicolons-in-LT
https://www.originlab.com/doc/LabTalk/guide/Extending-a-stmt-over-Multiple-Lines
https://www.originlab.com/doc/LabTalk/guide/Comments
https://www.originlab.com/doc/LabTalk/guide/Order-of-Evaluation-in-stmts
https://www.originlab.com/doc/LabTalk/guide/Assignment-stmts
https://www.originlab.com/doc/LabTalk/guide/Macro-stmts
https://www.originlab.com/doc/LabTalk/guide/Command-stmts
https://www.originlab.com/doc/LabTalk/guide/Arithmetic-stmt
https://www.originlab.com/doc/LabTalk/guide/Function-stmts

Language Fundamentals

29

string variable
LHS ends with a $ and right side

evaluates to a string

name$=page.name$;

fpath$=%Y;

numeric variable
LHS not ending with $ and right side

expression evaluates to a scalar

min=0.5; max=min+100;

size=wks.nrows;

dataset variable
LHS not ending with $ and right side

expression evaluates to be a range

ds1=col(A); ds2={1.2, 3.4, 5.6};

ds3=ds2;

unresvered string

register

LHS starts with % with one letter not

reserved as system variables
 %A = "Hello World";

When new values are assigned to an existing data object, the following conventions apply:

LHS RHS Description Example

dataset/rang

e variable

scalar

expression

Every value

in 'LHS

dataset will

be set to the

expression

col(A)=3; //every value of col(A)

set to 3

Book1_B=100; //every value of

column B in Book1 set to 100

dataset/rang

e variable

dataset/ran

ge

expression

Assign each

value on

RHS

expression

to the

correspondi

ng value of

LHS

variable

col(C) = col(B)*2.5; //column B

times 2.5 and assign to column C

numeric

variable

dataset/ran

ge variable

or

Assign the

1st value of

dataset/rang

ds1={1.2, 3.4, 5.6}; //create a

dataset

begin=ds1; //assign 1st value in

ds1 to begin

LabTalk Scripting Guide

30

expression e to LHS

variable

string

variable
expression

RHS will be

assumed to

be string

expression

even without

" "

name$=Amplitude; //name$ will be

assigned to "Amplitude"

fn$=system.path.program$ +

"Samples\Spectroscopy\HiddenPeaks.d

at";

object.proper

ty
expression

Set object's

numeric or

string

property

wks.ncols=5; //set number of

columns in worksheet to 5

wks.name$=MyInput; //set current

sheet name to "MyInput"

Book1!wks.rhw=100; doc -uw; //set

row header height to 100 and

refresh.

unresvered

string

register

string

expression

Evaluate

expression

and assign

to the string

register

%A = "%YTest.opju" concatenate %Y

and Test.opju and assign to %A

Note: If a string register to the left of the assignment operator is enclosed in parentheses, the string register is

substitution processed before assignment. For example:

ds={1.2, 2.3, 3.4};

%B=ds;

(ds)=2*%B; //ds times 2 and put back to ds, '''%B''' still holds the string

"ds".

type $(ds); //will output new ds values 2.4 4.6 6.8

4.2.3.2.3 Macro Statements

Macro-stmts

Macros provide a way to alias a script, that is, to associate a given script with a specific name. This name can

then be used as a command that invokes the script.

For more information on macros, see Macros

4.2.3.2.4 Command Statements

https://www.originlab.com/doc/LabTalk/guide/Macros

Language Fundamentals

31

Command-stmts

The third statement type is the command statement. LabTalk offers commands to control or modify most

program functions.

Each command statement begins with the command itself, which is a unique identifier that can be abbreviated to

as little as two letters (as long as the abbreviation remains unique, which is true in most cases). Most commands

can take options (also known as switches), which are single letters that modify the operation of the command.

Options are always preceded by the dash "-" character. Commands can also take arguments. Arguments are

either a script or a data object. In many cases, options can also take their own arguments.

Command statements take the general form:

command [option] [argument(s)];

The brackets [] indicate that the enclosed component is optional; not all commands take both options and

arguments. The brackets are not typed with the command statement (they merely denote an optional

component).

Methods (Object) are another form of command statement. They execute immediate actions relating to the

named object. Object method statements use the following syntax:

ObjectName.Method([options]);

For example:

The following script adds a column named new to the active worksheet and refreshes the window:

//turn off Spreadsheet Cell Notation firstly

page.xlcolname = 0;

wks.addcol(new);

doc -uw;

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more information.

The following examples illustrate different forms of command statements:

Integrate the dataset myData from zero.

integ myData;

Adding the -r option and its argument, baseline, causes myData to be integrated from a reference curve named

baseline.

integ -r baseline myData;

The repeat command takes two arguments to execute:

the number of times to execute, and

https://www.originlab.com/doc/LabTalk/ref/Methods-obj
https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation

LabTalk Scripting Guide

32

a script, which indicates the instruction to repeat.

This command statement prints "Hello World" in a dialog box three times.

repeat 3 {type -b "Hello World"}

4.2.3.2.5 Arithmetic Statement

Arithmetic-stmt

The arithmetic statement takes the general form:

dataObject1 operator dataObject2;

where

dataObject1 is a dataset or a numeric variable.

dataObject2 is a dataset, variable, or a constant.

operator can be +, -, *, /, or ^.

The result of the calculation is put into dataObject1. Note that dataObject1 cannot be a function. For example,

col(3) + 25 is an illegal usage of this statement form.

The following examples illustrate different forms of arithmetic statements:

If myData is a dataset, this divides each value in myData by 10.

myData / 10;

Subtract otherData from myData, and put the result into myData. Both datasets must be Y or Z datasets (see

Note).

myData - otherData;

If A is a variable, increment A by 1. If A is a dataset, increment each value in A by 1.

A + 1;

Note: There is a difference between using datasets in arithmetic statements versus using datasets in assignment

statements. For example, data1_b + data2_b is computed quite differently from data1_b = data1_b + data2_b.

The latter case yields the true point-by-point sum without regard to the two datasets' respective X-values. The

former statement, data1_b + data2_b, adds the two data sets as if each were a curve in the XY-plane. If

therefore, data1_b and data2_b have different associated X-values, one of the two series will require

interpolation. In this event, Origin interpolates based on the first dataset's (data1_b in this case) X-values.

4.2.3.2.6 Function Statements

Function-stmts

There are two types of functions in Origin. One is the LabTalk Functions and the other is X-Functions.

https://www.originlab.com/doc/LabTalk/guide/Functions
https://www.originlab.com/doc/LabTalk/guide/Brief-XF-Introduction

Language Fundamentals

33

LabTalk Functions

The syntax is functionname(arguement1, arguement2, ...)

Most LabTalk functions contains return type and can be used on the right hand side(RHS) of assignment

statement or as argument of other command or functions.

Col(B)=sin(Col(A)); //call sine funciton

type $(total(Col(B))); //output total of column B

Some LabTalk functions automatically assigns values to built-in object or with no return type and can be called

directly independently in a statement.

sum function will create a sum object with many basic stats result

sum(%C); //call function on selected dataset or active plot

sum.N=; //return total number of data

sum.total=; //return the total

sum.mean =; //return the mean

sum.= // check all properties of sum object

X-Functions

Though called function, it's called with similar syntax as commands, where square-brackets [] indicate optional:

xfname [-options] arg1:=value arg2:=value ... argN:=value;

The following script creates a new book, fill data and then do a linear fit, in which X-Functions newbook, fitlr are

use together with LabTalk functions data(), uniform(), and sort().

newbook name:="Test"; //create a new book with name "Test"

col(A)=data(0.1, 10, .1); //fill column 0.1, 0.2, ... 10

col(B)=sort(uniform(100)); //fill column B with sorted uniformly distributed

data from 0 to 1

fitlr iy:=(col(a), col(b)); //linear fit with tree object fitlr created.

type "intercept is $(fitlr.a, .2)"; //output slope value with 2 decimal

places

type "slope is $(fitlr.b, .2)"; //output slope value with 2 decimal places

4.2.3.3 Using Semicolons in LabTalk

Using-Semicolons-in-LT

4.2.3.3.1 Separate Statements with a Semicolon

Like the C programming language, LabTalk uses semicolons to separate statements.

In general, every statement should end with a semicolon, with the following exceptions:

Single statement script in the Script window.

https://www.originlab.com/doc/LabTalk/ref/Sum-func
https://www.originlab.com/doc/X-Function/ref/newbook
https://www.originlab.com/doc/X-Function/ref/fitLR
https://www.originlab.com/doc/LabTalk/ref/Data-func
https://www.originlab.com/doc/LabTalk/ref/Uniform-func
https://www.originlab.com/doc/LabTalk/ref/Sort-func

LabTalk Scripting Guide

34

type "hello". With cursor anywhere on the same line, press ENTER will execute it. ; will be auto added at

the end to indicate the execution

If there is ; e.g. type "hello";, The cursor must be put before ; to execute it

The last statement inside a { } block

if (m>2) {type "hello"; type "goodbye"} // no ; needed right before }

Right after a {} block.

//if (m>2) {type "hello";} else {type "goodbye";} //no ; needed right after }

4.2.3.3.2 Leading Semicolon for Delayed Execution

You can place a ';' in front of a script to delay its execution. This is often needed when you need to run a script

inside a button that will delete the button itself, like to issue window closing or new project commands. For

example, placing the following script inside a button will possibly lead to a crash

// button to close this window

type "closing this window";

win -cn %H;

To fix this, the script should be written as

// button to close this window

type "closing this window";

;win -cn %H;

The leading ';' will place all scripts following it to be delayed when executed. Sometimes you may want a specific

group of statements delayed, then you can put them inside {script} with a leading ';', for example:

// button to close this window

type "closing this window";

;{type "from delayed execution";win -cn %H;}

type "actual window closing code will be executed after this";

See Also: LabTalk System Variable @LT

4.2.3.4 Extending a Statement over Multiple Lines

Extending-a-stmt-over-Multiple-Lines

There are times when, for the sake of readability, you want to extend a single statement over more than one line.

One way to do this is with braces {}. When an "open brace", {, is encountered in a script file, Origin searches for

a "closed brace" , }, and executes the entire block of text as one statement. For example, the following macro

statement:

def openDialog {layer -s 1; axis x;};

can also be written:

def openDialog {

 layer -s 1;

 axis x;

https://www.originlab.com/doc/LabTalk/ref/sys-var-list

Language Fundamentals

35

 };

Both scripts are executed as a single statement, even though the second statement spans multiple lines.

Note: There is a limit to the length of script that can be included between a set of braces {}. The scripts between

the {} are translated internally and the translated scripts must be less than 1140 bytes (after substitution). In

place of long blocks of LabTalk code, programmers can use LabTalk macros or the run.section() and run.file()

object methods. To learn more, see Passing Arguments.

4.2.3.5 Comments

Comments

LabTalk script accepts two comment formats:

Use the "//" character to ignore all text from // to the end of the line. For example:

type "Hello World"; //Place comment text here.

Use the combination of "/*" and "*/" character pairs to begin and end, respectively, any block of code or text that

you do not want executed. For example:

type Hello /* Place comment text here,

 or a line of code:

 and even more ... */

World;

Note: Use the "#!" characters to begin debugging lines of script. The lines are only executed if system.debug

= 1.

4.2.3.6 Order of Evaluation in Statements

Order-of-Evaluation-in-stmts

When a script is executed, it is sent to the LabTalk interpreter and evaluated as follows:

The script is broken down into its component statements

Statements are identified by type using the following recognition order: assignment, macro, command, arithmetic,

and function. The interpreter first looks for an exposed (not hidden in parentheses or quotation marks)

assignment operator. If none is found, it looks to see if the first word is a macro name. It then checks if the first

word is a command name. The interpreter then looks for an arithmetic operation, and finally, the interpreter

checks whether the statement is a function.

The recognition order can have significant effect on script functions. For example, the following assignment

statement:

type = 1;

assigns the value 1 to the variable type. This occurs even though type is (also) a LabTalk command, since

assignments come before commands in recognition order. However, since commands precede arithmetic

expressions in recognition order, in the following statement:

https://www.originlab.com/doc/LabTalk/guide/Macro-stmts
https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/guide/From-Files
https://www.originlab.com/doc/LabTalk/guide/Debugging-Tools
https://www.originlab.com/doc/LabTalk/guide/Assignment-stmts
https://www.originlab.com/doc/LabTalk/guide/Macros
https://www.originlab.com/doc/LabTalk/guide/Command-stmts
https://www.originlab.com/doc/LabTalk/guide/Arithmetic-stmt
https://www.originlab.com/doc/LabTalk/guide/Function-stmts

LabTalk Scripting Guide

36

type + 1;

the command is carried out first, and the string, + 1, prints out.

The statements are executed in the order received, using the following evaluation priority

Assignment statements: String variables to the left of the assignment operator are not expressed unless

enclosed by parentheses. Otherwise, all string variables are expressed, and all special notation (%() and $()) is

substitution processed.

Macro statements: Macro arguments are substitution processed and passed.

Command statements: If a command is a raw string, it is not sent to the substitution processor. Otherwise, all

special notation is substitution processed.

Arithmetic statements: All expressions are substitution processed and expressed.

4.2.4 Operators

Operators

4.2.4.1 Introduction

LabTalk supports assignment, arithmetic, logical, relational, and conditional operators:

Arithmetic Operators + - * / ^ & |

String Concatenation +

Assignment Operators = += -= *= /= ^=

Logical and Relational Operators > >= < <= == != && ||

Conditional Operator ? :

These operations can be performed on scalars and in many cases they can also be performed on vectors

(datasets). Origin also provides a variety of built-in numeric, trigonometric, and statistical functions which can act

on datasets.

When evaluating an expression, Origin observes the following precedence rules:

Exposed assignment operators (not within brackets) are evaluated.

Operations within brackets are evaluated before those outside brackets.

https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/Macros
https://www.originlab.com/doc/LabTalk/ref/Function-Reference
https://www.originlab.com/doc/LabTalk/ref/Datasets

Language Fundamentals

37

Multiplication and division are performed before addition and subtraction.

The (>, >=, <, <=) relational operators are evaluated, then the (== and !=) operators.

The logical operators || is prior to &&.

Conditional expressions (?:) are evaluated.

4.2.4.2 Arithmetic Operators

Origin recognizes the following arithmetic operators:

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiate (X^Y raises X to the Yth power) (see note below)

& Bitwise And operator. Acts on the binary bits of a number.

| Bitwise Or operator. Acts on the binary bits of a number.

Note: For 0 raised to the power n (0^n), if n > 0, 0 is returned. If n < 0, a missing value is returned. If n = 0, then

1 is returned (if @ZZ = 1) or a missing value is returned (if @ZZ = 0).

These operations can be performed on scalars and on vectors (datasets). For more information on scalar and

vector calculations, see Performing Calculations below.

The following example illustrates the use of the exponentiate operator: Enter the following script in the Command

window:

1.3 ^ 4.7 =

After pressing ENTER, 3.43189 is printed in the Command window. The next example illustrates the use of the

bitwise and operator. Enter the following script in the Command window:

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window

LabTalk Scripting Guide

38

if (27&41 == 9)

{type "Yes!"}

After pressing ENTER, Yes! is displayed in the Command window.

Note: 27&41 == 9 because

27 = 0000000000011011

41 = 0000000000101001

with bitwise & yields:

0000000000001001 (which is equal to 9)

Note: Multiplication must be explicitly included in an expression. For example, 2*X must be used instead of 2X to

indicate the multiplication of the variable X by the constant 2.

4.2.4.2.1 Define a constant

We can also define global constants in the CONST.CNF file under User File Folder:

//Euler's number

const e = 2.718281828459045

4.2.4.2.2 A Note about Logarithmic Conversion

To convert a dataset to a logarithmic scale, use the following syntax:

col(c) = log(col(c));

To convert a dataset back to a linear scale, use the following syntax:

col(c) = 10^(col(c));

4.2.4.3 String Concatenation

Very often you need to concatenate two or more strings of either the string variable or string register type. All of

the code segments in this section return the string "Hello World."

The string concatenation operator is the plus-sign (+), and can be used to concatenate two strings:

aa$ ="Hello";

bb$="World";

cc$=aa$+" "+bb$;

cc$=;

To concatenate two string registers, you can simply place them together:

%J="Hello";

%k="World";

%L=%J %k;

%L=;

If you need to work with both a string variable and a string register, follow these examples utilizing %()

substitution:

aa$ ="Hello";

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/string-substitution

Language Fundamentals

39

%K="World";

dd$=%(aa$) %K;

dd$=;

dd$=%K;

dd$=aa$+" "+dd$;

dd$=;

%M=%(aa$) %K;

%M=;

4.2.4.4 Assignment Operators

Origin recognizes the following assignment operators:

Operator Use

= Simple assignment.

+= Addition assignment.

-= Subtraction assignment.

*= Multiplication assignment.

/= Division assignment.

^= Exponential assignment.

These operations can be performed on scalars and on vectors (datasets). For more information on scalar and

vector calculations, see Performing Calculations in this topic.

The following example illustrates the use of the -= operator.

In this example, 5 is subtracted from the value of A and the result is assigned to A:

A -= 5;

In the next example, each value in Book1_B is divided by the corresponding value in Book1_A, and the resulting

values are assigned to Book1_B.

Book1_B /= Book1_A;

In addition to these assignment operators, LabTalk also supports the increment and decrement operators for

scalar calculations (not vector).

https://www.originlab.com/doc/LabTalk/guide/Operators

LabTalk Scripting Guide

40

Operator Use

++ Add 1 to the variable contents and assign to the variable.

-- Subtract 1 from the variable contents and assign to the variable.

The following for loop expression illustrates a common use of the increment operator ++. The script prints the

data stored in the second column of the current worksheet to the Command window:

for (ii = 1; ii <= wks.maxrows; ii++)

 {type ($(col(2)[ii])); }

4.2.4.5 Logical and Relational Operators

Origin recognizes the following logical and relational operators:

Operator Use

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

&& And

|| Or

An expression involving logical or relational operators evaluates to either true (non-zero) or false (zero). Logical

operators are almost always found in the context of Conditional and Loop Structures.

https://www.originlab.com/doc/LabTalk/guide/Flow-of-Control
https://www.originlab.com/doc/LabTalk/guide/Flow-of-Control

Language Fundamentals

41

4.2.4.5.1 Numeric Comparison

The most common comparison is between two numeric values. Generally, at least one is a variable. For

instance:

if aa<3 type "aa<3";

Or, both items being compared can be variables:

if aa<=bb type "aa<=bb";

It is also possible, using parentheses, to make multiple comparisons in the same logical statement:

if (aa<3 && aa<bb) type "aa is lower";

4.2.4.5.2 String Comparison

You can use the == and != operators to compare two strings. String comparison (rather than numeric

comparison) is indicated by open and close double quotations (" ") either before, or after, the operator. The

following script determines if the %A string is empty:

if (%A == ""){type "empty"};

The following script compares if two strings are not the same

str1$ = "apple";

str2$ = "banana";

if (str1$!= str2$) {type "different fruits";}

The following script illustrates the use of the == operator:

x = 1; // variable x is set to 1

%a = x; // string a is set to "x"

if (%a == 1);

 type "yes";

else

 type "no";

The result will be yes, because Origin looks for the value of %a (the value of x), which is 1. In the following script:

x = 1; // variable x is set to 1

%a = x; // string a is set to "x"

if ("%a" == 1)

 type "yes";

else

 type "no";

The result will be no, because Origin finds the quotation marks around %a, and therefore treats it as a string,

which has a character x, rather than the value 1.

4.2.4.6 Conditional Operator (?:)

The ternary operator or conditional operator (?:) can be used in the form:

Expression1 ? Expression2 : Expression3

LabTalk Scripting Guide

42

This expression first evaluates Expression1. If Expression1 is true (non-zero), Expression2 is evaluated. The

value of Expression2 becomes the value for the conditional expression. If Expression1 is false (zero), then

Expression3 is evaluated and Expression3 becomes the value for the entire conditional expression. Note that

Expressions1 and Expressions2 can themselves be conditional operators. The following example assigns the

value which is greater (m or n), to variable:

m = 2;

n = 3;

variable = (m>n?m:n);

variable =

LabTalk returns: variable = 3

In this example, the script replaces all column A values between 5.5 and 5.9 with 5.6:

col(A) = col(A)>5.5&&col(A)<5.9?5.6:col(A);

Note: A Threshold Replace function tReplace(dataset, value1, value2 [, condition]) is also available for

reviewing values in a dataset and replacing them with other values based on a condition. In the

tReplace(dataset, value1, value2 [, condition]) function, each value in the dataset is compared to value1

according to the condition. When the comparison is true, the value may be replaced with Value2 or -Value2

depending on the value of condition. When the comparison is false, the value is retained or replaced with a

missing value depending on the value of condition. The treplace() function is much faster than the ternary

operator. See tReplace().

4.2.4.7 Performing Calculations

You can use LabTalk to perform both

scalar calculations (mathematical operations on a single variable), and

vector calculations (mathematical operations on entire datasets).

4.2.4.7.1 Scalar Calculations

You can use LabTalk to express a calculation and store the result in a numeric variable. For example, consider

the following script:

inputVal = 21;

myResult = 4 * 32 * inputVal;

The second line of this example performs a calculation and creates the variable, myResult. The value of the

calculation is stored in myResult.

When a variable is used as an operand, and will store a result, shorthand notation can be used. For example, the

following script:

B = B * 3;

could also be written:

https://www.originlab.com/doc/LabTalk/ref/TReplace-func

Language Fundamentals

43

B *= 3;

In this example, multiplication is performed with the result assigned to the variable B. Similarly, you can use +=, -

=, /=, and ^=. Using shorthand notation produces script that executes faster.

4.2.4.7.2 Vector Calculations

In addition to performing calculations and storing the result in a variable (scalar calculation), you can use LabTalk

to perform calculations on entire datasets as well.

Vector calculations can be performed in one of two ways: (1) strictly row-by-row, or (2) using linear interpolation.

4.2.4.7.2.1 Row-by-Row Calculations

Vector calculations are always performed row-by-row when you use the two general notations:

datasetB = scalarOrConstant <operator> datasetA;

datasetC = datasetA <operator> datasetB;

This is the case even if the datasets have a different numbers of elements. Suppose there are three empty

columns in your worksheet: A, B, and C. Run the following script:

col(a) = {1, 2, 3};

col(b) = {4, 5};

col(c) = col(a) + col(b);

The result in column C will be {5, 7, --}. That is, Origin outputs a missing value for rows in which one or both

datasets do not contain a value.

Vector calculations can also involve a scalar. In the above example, type:

col(c) = 2 * col(a);

Column A is multiplied by 2 and the results are put into the corresponding rows of column C.

Instead, execute the following script (assuming newData does not previously exist):

newData = 3 * Book1_A;

A temporary dataset called newData is created and assigned the result of the vector operation.

4.2.4.7.2.2 Calculations Using Interpolation

Origin supports interpolation through range notation and X-Functions such as interp1 and interp1xy. Please refer

to Interpolation for more details.

4.2.5 Conditional and Loop Structures

Flow-of-Control

The structure of the LabTalk language is similar to C. LabTalk supports:

https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/X-Function/ref/interp1
https://www.originlab.com/doc/X-Function/ref/interp1xy
https://www.originlab.com/doc/LabTalk/guide/Interpolation

LabTalk Scripting Guide

44

Loops, which allow the program to repetitively perform a set of actions.

Decision structures, which allow the program to perform different sets of actions depending on the

circumstances.

4.2.5.1 Loop Structures

All LabTalk loops take a script as an argument. These scripts are executed repetitively under specified

circumstances. LabTalk provides four loop commands:

Command Syntax

repeat repeat value {script};

loop loop (variable, startVal, endVal) {script};

doc -e doc -e object {script};

for for (expression1; expression2; expression3) {script};

The LabTalk for-loop is similar to the for loop in other languages. The repeat, loop, and doc -e loops are less

familiar, but are easy to use.

4.2.5.1.1 Repeat

The repeat loop is used when a set of actions must be repeated without any alterations.

Syntax: repeat value {script};

Execute script the number of times specified by value, or until an error occurs, or until the break command is

executed.

For example, the following script types the string three times:

repeat 3 { type "line of output"; };

4.2.5.1.2 Loop

The loop loop is used when a single variable is being incremented with each successive loop.

Syntax: loop (variable, startVal, endVal) {script};

https://www.originlab.com/doc/LabTalk/ref/Break-cmd

Language Fundamentals

45

A simple increment loop structure. Initializes variable with the value of starVal. Executes script. Increments

variable and tests if it is greater than endVal. If it is not, executes script and continues to loop.

For example, the following script outputs numbers from 1 to 4:

loop (ii, 1, 4) {type "$(ii)";};

Note: The loop command provides faster looping through a block of script than does the for command. The

enhanced speed is a result of not having to parse out a LabTalk expression for the condition required to stop the

loop.

4.2.5.1.3 Doc -e

The doc -e loop is used when a script is being executed to affect objects of a specific type, such as graph

windows. The doc -e loop tells Origin to execute the script for each instance of the specified object type.

Syntax: doc -e object {script};

The different object types are listed in the document command.

For example, the following script prints the windows title of all graph windows in the project:

doc -e P {%H=}

4.2.5.1.4 For

The for loop is used for all other situations.

Syntax: for (expression1; expression2; expression3) {script};

In the for statement, expression1 is evaluated. This specifies initialization for the loop. Second, expression2 is

evaluated and if true (non-zero), the script is executed. Third, expression3, often incrementing of a counter, is

executed. The process repeats at the second step. The loop terminates when expression2 is found to be false

(zero). Any expression can consist of multiple statements, each separated by a comma.

For example, the following script output numbers from 1 to 4:

for(ii=1; ii<=4; ii++)

{

 type "$(ii)";

}

Note: The loop command provides faster looping through a block of script.

4.2.5.2 Decision Structures

Decision structures allow the program to perform different sets of actions depending on the circumstances.

LabTalk provides three decision-making structures: if, if-else, and switch.

The if command is used when a script should be executed in a particular situation.

https://www.originlab.com/doc/LabTalk/ref/Document_Options_Others

LabTalk Scripting Guide

46

The if-else command is used when one script must be executed if a condition is true (non-zero), while another

script is executed if the condition is false (zero).

The switch command is used when more than two possibilities are included in a script.

4.2.5.2.1 If, If-Else

Syntax:

if (testCondition) sentence1; [else sentence2;]

if (testCondition) {script1} [else {script2}]

Evaluate testCondition and if true, execute script1. Expressions without conditional operators are considered true

if the result of the expression is non-zero.

If the optional else is present and testCondition is false (zero), then execute script2. There should be a space

after the else. Strings should be quoted and string comparisons are not case sensitive.

Single statement script arguments should end with a semicolon. Multiple statement script arguments must be

surrounded by braces {}. Each statement within the braces should end with a semicolon. It is not necessary to

follow the final brace of a script with a semicolon.

For example, the following script opens a message box displaying "Yes!":

%M = test;

if (%M == "TEST") type -b "Yes!";

else type -b "No!";

The next script finds the first point in column A that is greater than -1.95:

newbook;

col(1)=data(-2,2,0.01);

val = -1.95;

get col(A) -e numpoints;

for(ii = 1 ; ii <= numpoints ; ii++)

{

 // This will terminate the loop early if true

 if (Col(A)[ii] > val) break;

}

if(ii > numpoints - 1)

 ty -b No number exceeds $(val);

else

 type -b The index number of first value > $(val) is $(ii)

The value is $(col(a)[ii]);

It is possible to test more than one condition with a single if statement, for instance:

if(a>1 && a<3) b+=1; // If true, increment b by 1

The && (logical And) operator is one of several logical operators supported in LabTalk.

4.2.5.2.2 Switch

https://www.originlab.com/doc/LabTalk/guide/Operators

Language Fundamentals

47

The switch command is used when more than two possibilities are included in a script. For example, the

following script returns b:

ii=2;

switch (ii)

{

 case 1:

 type "a";

 break;

 case 2:

 type "b";

 break;

 case 3:

 type "c";

 break;

 default:

 type "none";

 break;

}

4.2.5.2.3 Break and Progress Bars

LabTalk provides a break command. When executed, this causes an exit from the loop and, optionally, the script.

This is often used with a decision structure inside a loop. It is used to protect against conditions which would

invalidate the loop test conditions. The break command can be used to display a progress status dialog box

(progress bar) to show the current progress through the loop.

4.2.5.2.4 Exit

The exit command prompts an exit from Origin unless a flag is previously set to prevent the exit.

4.2.5.2.5 Continue

The continue command can be used within loops. When executed, the remainder of the loop is ignored and the

interpreter jumps to the next iteration of the loop. This is often used with a decision structure inside a loop and

can exclude illegal values from being processed by the loop script.

For example, in the following for loop, continue skips the type statement when ii is less than zero.

for (ii = -10; ii <= 10; ii += 2)

{

 if (ii < 0)

 continue;

 type "$(sqrt(ii))";

}

4.2.5.3 Sections in a Script File

In addition to entering the script in the Label Control dialog, you can also save it as an Origin Script (OGS) file.

An Origin script file is an ASCII text file which consists of a series of one or more LabTalk statements. Often, you

https://www.originlab.com/doc/LabTalk/guide/From-Files

LabTalk Scripting Guide

48

can divide the statements into sections. A section is declared by a section name surrounded by square brackets

on its own line of text:

[SectionName]

Scripts under a section declaration belong to that section until another section declaration is met. A framework

for a script with sections will look like the following:

...

Scripts;

...

[Section 1]

...

Scripts;

...

[Section 2]

...

Scripts;

...

Scripts will be run in sequence until a new section flag is encountered, a return statement is executed or an error

occurs. To run a script in sections, you should use the

run.section(FileName, SectionName)

command. When filename is not included, the current running script file is assumed, for example:

run.section(, Init)

The following script illustrates how to call sections in an OGS file:

type "Hello, we will run section 2";

run.section(, section2);

[section1]

type "This is section 1, End the script.";

[section2]

type "This is section 2, run section 1.";

run.section(, section1);

To run the script, you can save it to your Origin user folder as test.ogs, and type the following in the command

window:

run.section(test);

If code in a section could cause an error condition which would prematurely terminate a section, you can use a

variable to test for that case, as in:

[Test]

SectionPassed = 0;

// Here is where code that could fail can be run

...

SectionPassed = 1;

https://www.originlab.com/doc/LabTalk/ref/Run-obj

Language Fundamentals

49

If the code failed, then SectionPassed will still have a value of 0. If the code succeeded, then SectionPassed will

have a value of 1.

4.2.6 Macros

Macros

4.2.6.1 Definition of the Macros

The command syntax,

define macroName {script}

defines a macro called macroName, and associates it with the given script. MacroName can then be used like a

command, and invokes the given script.

For example, the following script defines a macro that uses a loop to print a text string three times.

def hello

{

 loop (ii, 1, 3)

 { type "$(ii). Hello World"; }

};

Once the hello macro is defined, typing the word hello in the Script window results in the printout:

1. Hello World

2. Hello World

3. Hello World

Once a macro is defined, you can also see the script associated with it by typing

define macroName;

4.2.6.2 Passing Arguments to Macros

Macros can take up to five arguments. The %1-%5 syntax is used within the macro to access the value of each

argument. A macro can accept a number, string, variable, dataset, function, or script as an argument. Passing

arguments to a macro is similar to passing arguments to a script.

If arguments are passed to a macro, the macro can report the number of arguments using the macro.nArg object

property.

For example, the following script defines a macro named myDouble that expects a single numeric argument. The

given argument is then multiplied by 2, and the result is printed.

def myDouble { type "$(%1 * 2)"; };

If you define this macro and then type the following in the Script window:

myDouble 5

Origin outputs the result to the Script Window:

10

https://www.originlab.com/doc/LabTalk/guide/From-Files

LabTalk Scripting Guide

50

You could modify this macro to take two arguments:

def myDouble { type "$(%1 * %2)"; };

Now, if you type the following in the Script window:

myDouble 5 4

Origin outputs:

20

4.2.6.3 Macro Property

The macro object contains one property which stores the number of arguments passed to the macro.

Property Access Description

Macro.nArg
Read only,

numeric

This property stores the number of arguments passed to the

macro.

For example:

The following script defines a macro called TypeArgs. If three arguments are passed to the TypeArgs macro, the

macro types the three arguments to the Script window.

Def TypeArgs

{

 if (macro.narg != 3)

 {

 type "Error! You must pass 3 arguments!";

 }

 else

 {

 type "The first argument passed was %1.";

 type "The second argument passed was %2.";

 type "The third argument passed was %3.";

 }

};

If you define the TypeArgs macro as in the example, and then type the following in the Script window:

TypeArgs One;

Origin returns the following to the Script window:

Error! You must pass 3 arguments!

If you define the TypeArgs macro as in the example, and then type the following in the Script window:

TypeArgs One (This is argument Two) Three;

Origin returns the following to the Script window:

The first argument passed was One.

Language Fundamentals

51

The second argument passed was This is argument Two.

The third argument passed was Three.

4.2.7 Functions

Functions

Functions are the core of almost every programming language; the following introduces function syntax and use

in LabTalk.

4.2.7.1 Built-In Functions

LabTalk supports many operations through built-in functions, a listing and description of each can be found in

Function Reference. Functions are called with the following syntax:

outputVariable = FunctionName(Arg1, Arg2, ..., Arg N);

Below are a few examples of built-in functions in use.

The Count (Function) returns an integer count of the number of elements in a vector.

// Return the number of elements in Column A of the active worksheet:

int cc = count(col(A));

The Ave (Function) performs a group average on a dataset, returning the result as a range variable.

range ra = [Book1]Sheet1!Col(A);

range rb = [Book1]Sheet1!Col(B);

// Return the group-averaged values:

rb = ave(ra, 5); // 5 = group size

The Sin (Function) returns the sine of the input angle as type double (the units of the input angle are determined

by the value of system.math.angularunits):

system.math.angularunits=1; // 1 = input in degrees

double dd = sin(45); // ANS: DD = 0.7071

For functions that return type is a dataset or stringarray, you can use [index] to get the corresponding data in the

array and use it in expression.

The Unique (Function) returns a list of unique number or strings in specified dataset.

Col(B)=unique(col(A), 2); //get unique numbers in column A, descending, 2nd

arguement means descending

//2nd argument skipped so output will be ascending

//[index] - 1st value in output which is the smallest value

Col(C)[1]=unique(col(A))[1]; //column C row 1 will be filled the smallest

unique number found in A

//[0] is the last index so unique(Col(A))[0] will refer to biggest unique

number found in A

Col(D)=Col(A)-unique(col(A))[0];

4.2.7.2 User-Defined Functions

https://www.originlab.com/doc/LabTalk/ref/Function-Reference
https://www.originlab.com/doc/LabTalk/ref/Count-func
https://www.originlab.com/doc/LabTalk/ref/Ave-func
https://www.originlab.com/doc/LabTalk/ref/Sin-func
https://www.originlab.com/doc/LabTalk/ref/Unique-func

LabTalk Scripting Guide

52

Multi-argument user-defined functions has been supported in LabTalk since Origin 8.1. The syntax for user-

defined functions is:

function dataType funcName(Arg1, Arg2, ..., ArgN) {script;}

Minimum Origin Version Required: 8.6 SR0

Note:

The function name should be less than 42 characters.

Both arguments and return values support string, double, int, dataset, and tree data types. The default

argument type is double. The default return type is int.

By default, arguments of user-defined functions are passed by value, meaning that argument values inside the

function are NOT available outside of the function. However, passing arguments by reference, in which changes

in argument values inside the function WILL be available outside of the function, is possible with the keyword

REF.

Here are some simple cases of numeric functions:

// This function calculates the cube root of a number

function double dCubeRoot(double dVal)

{

 double xVal;

 if(dVal<0) xVal = -exp(ln(-dVal)/3);

 else xVal = exp(ln(dVal)/3);

 return xVal;

}

// As shown here

dcuberoot(-8)=;

The function below calculates the geometric mean of a dataset:

function double dGeoMean(dataset ds)

{

 double dG = ds[1];

 for(int ii = 2 ; ii <= ds.GetSize() ; ii++)

 dG *= ds[ii]; // All values in dataset multiplied together

 return exp(ln(dG)/ds.GetSize());

}

// Argument is anything returning a datset

dGeoMean(col("Raw Data"))=;

This example defines a function that accepts a range argument and returns the mean of the data in that range:

// Calculate the mean of a range

function double dsmean(range ra)

{

 stats ra;

 return stats.mean;

}

// Pass a range that specifies all columns ...

// in the first sheet of the active book:

Language Fundamentals

53

range rAll = 1!(1:end);

dsMean(rAll)=;

This example defines a function that counts the occurrences of a particular weekday in a Date dataset:

function int iCountDays(dataset ds, int iDay)

{

 int iCount = 0;

 for(int ii = 1 ; ii <= ds.GetSize() ; ii++)

 {

 if(weekday(ds[ii], 1) == iDay) iCount++;

 }

 return iCount;

}

// Here we count Fridays

iVal = iCountDays(col(1),6); // 6 is Friday in weekday(data, 1) sense

iVal=;

Functions can also return datasets ..

// Get only negative values from a dataset

function dataset dsSub(dataset ds1)

{

 dataset ds2;

 int iRow = 1;

 for(int ii = 1 ; ii <= ds1.GetSize() ; ii++)

 {

 if(ds1[ii] < 0)

 {

 ds2[iRow] = ds1[ii];

 iRow++;

 }

 }

 return ds2;

}

// Assign all negative values in column 1 to column 2

col(2) = dsSub(col(1));

or strings ..

// Get all values in a dataset where a substring occurs

function string strFind(dataset ds, string strVal)

{

 string strTest, strResult;

 for(int ii = 1 ; ii <= ds.GetSize() ; ii++)

 {

 strTest$ = ds[ii]$;

 if(strTest.Find(strVal$) > 0)

 {

 strResult$ = %(strResult$)%(CRLF)%(strTest$);

 }

 }

 return strResult$;

}

// Gather all instances in column 3 where "hadron" occurs

string MyResults$ = strFind(col(3),"hadron")$; // Note ending '$'

MyResults$=;

LabTalk Scripting Guide

54

4.2.7.2.1 Passing Arguments by Reference

 This example demonstrates a function that returns a tree node value as an int (one element of a tree variable).

In addition, passing by reference is illustrated using the REF keyword.

// Function definition:

Function int GetMinMax(range rr, ref double min, ref double max) {

 stats rr;

 //after running the stats XF, a LabTalk tree variable with the

 //same name is created/updated

 min = stats.min;

 max = stats.max;

 return stats.N;

}

// Call function GetMinMax to find min max for an entire worksheet:

double y1,y2;

int nn = getminmax(1:end,y1, y2);

type "Worksheet has $(nn) points, min=$(y1), max=$(y2)";

See this detailed example on using tree variables in LabTalk functions and passing variables by reference.

Another example of passing string argument by reference is given below that shows that the $ termination should

not be used in the function call:

//return range string of the 1st sheet

//actual new book shortname will be returned by Name$

Function string GetNewBook(int nSheets, ref string Name$)

{

 newbook sheet:= nSheets result:=Name$;

 string strRange$ = "[%(Name$)]1!";

 return strRange$;

}

When calling the above function, it is very important that the Name$ argument should not have the $, as shown

below:

string strName$;

string strR$ = GetNewBook(1, strName)$;

strName$=;

strR$=;

4.2.7.3 Dataset Functions

Origin also supports defining mathematical functions that accept arguments of type double and return type

double. The general syntax for such functions is:

funcName(X) = expressionInvolvingX.

We call these dataset functions because when they are defined, a dataset by that name is created. This dataset,

associated with the function, is then saved as part of the Origin project. Once defined, a dataset function can be

referred to by name and used as you would a built-in LabTalk function.

For example, enter the following script in the Script window to define a function named Salary:

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/examples/Curve-Fitting

Language Fundamentals

55

Salary(x) = 52 * x

Once defined, the function may be called anytime as in,

Salary(100)=

which yields the result Salary(100)=5200. In this case, the resulting dataset has only one element. But if a vector

(or dataset) were passed as an input argument, the output would be a dataset containing the same number of

elements as the input.

As with other datasets, user-defined dataset functions are listed in dialogs such as Plot Setup (and can be

plotted like any other dataset), and in the Available Data list in dialogs such as Layer n.

If a 2D graph layer is the active layer when a function is defined, then a dataset of 100 points is created using the

X axis scale as the X range and the function dataset is automatically added to the plot layer.

The Function Graph Template (FUNCTION.OTP, accessible from the Standard Toolbar or the File: New

menu) also creates and plots dataset functions.

Origin's Function Plots feature allows new dataset functions to be easily created from any combination of built-

in and user-defined functions. In addition, the newly created function is immediately plotted for your reference.

Access this feature in either of two ways:

Click on the New Function button in the Standard toolbar,

From the Origin drop-down menus, select File: New and select Function from the list of choices, and click OK.

From there, in the Function tab of the Plot Details dialog that opens, enter the function definition, such as, F1(x)

= 5*sin(x)+1 and press OK. The function will be plotted in the graph.

You may define another function by clicking on the New Function button in the graph and adding another

function in Plot Details. Press OK, and the new function plot will be added to the graph. Repeat if more functions

are desired.

4.2.7.4 Fitting Functions

In addition to supporting many common functions, Origin also allows you to create your own fitting functions to

be used in non-linear curve fitting. User-defined fitting functions can also be used to generate new datasets, but

calling them requires a special syntax:

nlf_FitFuncName(ds, p1, p2, ..., pn)

where the fitting function is named FitFuncName, ds is a dataset to be used as the independent variable, and

p1--pn are the parameters of the fitting function.

As a simple example, if you defined a simple straight-line fitting function called MyLine that expected a y-

intercept and slope as input parameters (in that order), and you wanted column C in the active worksheet to be

the independent variable (X), and column D to be used for the function output, enter:

LabTalk Scripting Guide

56

// Intercept = 0, Slope = 4

Col(D) = nlf_MyLine(Col(C), 0, 4)

4.2.7.5 Scope of Functions

As with user-defined variables, user-defined functions have a scope that can be controlled. User-defined

functions can be accessed from anywhere in the Origin project where LabTalk script is supported, provided the

scope of definition is applicable to such usage. Thus for example, a function defined with preceding assignment

@glob=1 that returns type double or dataset, can be used in the Set Values dialog Column Formula panel. For

more on scope, see Data Types and Variables.

You can associate functions with a project by defining them in the project's ProjectEvents.OGS file. Using

@glob=1, your function becomes available any time the project is opened (see this example, below).

The scope of a function can be expanded for general use any time that Origin runs by defining the function using

@glob=1, saving the function to an .ogs file in the User Files Folder (UFF), and calling the .ogs file from the

[Startup] section of Origin.ini (also in the UFF), as discussed here.

4.2.7.5.1 Examples: Scope of Functions

Using @glob=1 to call the function anywhere.

[Main]

 @glob=1; // promote the following function to session level

 function double dGeoMean(dataset ds)

 {

 double dG = ds[1];

 for(int ii = 2 ; ii <= ds.GetSize() ; ii++)

 dG *= ds[ii]; // All values in dataset multiplied together

 return exp(ln(dG)/ds.GetSize());

 }

 // can call the function in [main] section

 dGeoMean(col(1))=;

[section1]

 // the function can be called in this section too

 dGeoMean(col(1))=;

If the function is defined in a section of a *.ogs file without @glob=1, then it can only be called in its own section.

[Main]

 function double dGeoMean(dataset ds)

 {

 double dG = ds[1];

 for(int ii = 2 ; ii <= ds.GetSize() ; ii++)

 dG *= ds[ii]; // All values in dataset multiplied together

 return exp(ln(dG)/ds.GetSize());

 }

 // can call the function in [main] section

 dGeoMean(col(1))=;

[section1]

 // the function can NOT be called in this section

 dGeoMean(col(1))=; // an error: Unknown function

If the function is defined in a block without @glob=1, it can not be called outside this block.

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/ProjectEvents-Script
https://www.originlab.com/doc/Quick-Help/UserFilesFolder
https://www.originlab.com/doc/LabTalk/guide/On-Starting-Origin

Language Fundamentals

57

[Main]

{ // define the function between braces

 function double dGeoMean(dataset ds)

 {

 double dG = ds[1];

 for(int ii = 2 ; ii <= ds.GetSize() ; ii++)

 dG *= ds[ii]; // All values in dataset multiplied together

 return exp(ln(dG)/ds.GetSize());

 }

}

 // can Not call the function outside the braces

 dGeoMean(col(1))=; // an error: Unknown function

4.2.7.6 Tutorial: Using Multiple Function Features

The following mini tutorial shows how to add a user-defined function at the Origin project level and then use that

function to create function plots.

Start a new Project and use View: Code Builder menu item to open Code Builder.

Expand the Project branch on the left panel tree and double-click to open the

ProjectEvents.OGS file. This file exists by default in any new Project.

Under the [AfterOpenDoc] section, add the following lines of code:

@glob=1;

Function double myPeak(double x, double x0)

{

double y = 10*exp(-(x-x0)^2/4);

return y;

}

Save the file and close Code Builder.

In Origin, save the Project to a desired folder location. The OGS file is saved with the

Project, so the user-defined function is available for use in the Project.

Open the just saved project again. This will trigger the [AfterOpenDoc] section to be

executed and thus our myPeak function to be defined.

Click on the New 2D Plot toolbar button in the Standard toolbar or choose File: New:

Function Plot: 2D Function Plot... menu.

In the edit box after Y(x) =, enter myPeak(x, 3) and press Add. The function will be plotted

in a graph.

With the dialog still open, modify the function to be myPeak(x,4). Make sure the bottom

dropdown list shows Add to Active Graph. Click Add button. The modified function plot is

LabTalk Scripting Guide

58

added to the graph.

Save the project and share with others. Since the myPeak function is defined upon loading

the project, it is always accessible in the project.

4.3 Special Language Features

4.3.1 Special Language Features

Special-Language-Features

These pages contain information on implementing advanced features of the LabTalk scripting language. Some of

the concepts and features in this section are unique to Origin.

This section covers the following topics:

• Range Notation

• Substitution Notation

• LabTalk Objects

• Origin Objects

• X-Functions Introduction

4.3.2 Range Notation

Range-Notation

4.3.2.1 Introduction to Range

Inside your Origin Project, data are stored in four primary places: in worksheet, in matrix, in graph, or as loose

dataset. Data in graphs are actually references to columns, matrices or loose datasets in plot form. There is no

actual data stored in side graphs.

Before Origin 8.0, data were accessed via datasets as well as cell(), col(), and wcol() functions. But the functions

can only be used to access data in active sheet in active window.

Range data type is introduced since Origin 8.0 to provide a consistent way to access data in Origin projects. It

can be used to access both data in active window and inactive window.

This tutorial demonstrates the creation and use of range variables for data in different places in Origin.

https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/LabTalk-Substitution-Notation
https://www.originlab.com/doc/LabTalk/guide/LT-objs
https://www.originlab.com/doc/LabTalk/guide/Origin-objs
https://www.originlab.com/doc/LabTalk/guide/Brief-XF-Introduction
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/ref/Cell-func
https://www.originlab.com/doc/LabTalk/ref/Col-func
https://www.originlab.com/doc/LabTalk/ref/WCol-func

Language Fundamentals

59

Note : Not all X-Functions can handle complexities of ranges such as multiple columns or noncontiguous data.

Where logic or documentation does not indicate support, a little experimentation is in order.

Starting with Orgin 2023, range references to page names -- be they workbooks, matrices

or graphs -- should be double-quoted for page Long Name and NOT double-quoted for

page Short Name (double-quoting Long Name was previously required, double-quoting

Short Name was allowed, but discouraged). The prohibition on double-quoting of Short

Name extends to references by substitution (e.g. [%H] NOT ["%H"]). This change means

that page Long Name search will preferentially search the active folder for window Long

Name. This prohibition allows for more robust page references when duplicating folders or

appending projects. However, if you prefer the old behavior, you can roll back this change

using system variable @RQS.

4.3.2.1.1 Declaration and Syntax

Range variable must be declared before use. But there is also the following uniqueness of it.

It must be initialized together with declaration so Origin knows what data it's referring to.

If you want to assign it to some other data, need to declare and initialize again.

The syntax of declaration and initialization.

range [-option] RangeName = RangeString

The square brackets indicate that the option is optional.

For data in different places, the available option switches are different, please see the Types of Range Data

section below for details.

Range names follow Origin variable naming rules; please note that system variable names should be avoided.

The RangeString changes depending on what type of object the range points to. But has a consistent notation

of [Window]SheetorLayer!ColumnorPlot[subrange]. See details in Types of Range Data.

Range keyword is used exclusively to define range variables. It cannot be used as a

general notation for data access on either side of an expression.

4.3.2.1.2 Access Origin Object

Range variable can be assigned to the following types of Origin Objects:

column

https://www.originlab.com/doc/LabTalk/ref/sys-var-list
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/guide/Origin-objs
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj

LabTalk Scripting Guide

60

worksheet

page

graph layer

loose dataset

Once assigned, range variable will have all the properties and methods of the specified object. You can always

use rangeVariable.= and rangeVariable.() to dump all accessible properties and methods

range rA = [Book1]Sheet1!Col(A); //define range variable ra as column A in

Book1 Sheet1

rA.=; //dump all properties

rA.(); //dump all methods

rA.lname$=; //output long name

rA.nRows=; //output number of rows

rA.unit$="MM/DD/YYYY"; //set unit as "MM/DD/YYYY"

ra.setformat(4);//set column as Date

A range may consist of some subset or some combination of standard Origin Objects. Examples include:

column subrange

block of cells

XY range

XYZ range

composite range

4.3.2.2 Types of Range Data

4.3.2.2.1 Worksheet Data

For worksheet data, RangeString takes the form:

[WorkBookName]SheetNameOrIndex!ColumnNameOrIndex[CellIndex]

WorkBookName and SheetName part can be skipped if referring to active book or active sheet

WorkBookName and SheetName refer to the corresponding Short Name, since Short Name is the default

programming name.

To use Long Name in range notation for workbook or worksheet, you must put Long Name in double quotes as in

["MyBook"]"MySheet"!.

Conversely, DO NOT surround Short Name with double quotes (this includes in references like [%H]). Prior to

Origin 2023, this may have been accepted though it was not recommended. Starting with Origin 2023, double-

https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/String-registers

Language Fundamentals

61

quoting Short Name will likely fail. To roll back to previous behavior (allow double-quoted Short Name), see LT

system variable @RQS.

Following the change to disallow double-quoting of Short Name, page Long Name search will preferentially

search the active folder for window Long Name. This allows you to do such things as:

Duplicate folders and preserve within-folder operations such as those that rely on local variables defined in a

workbook.

Save a Project Explorer folder as a project then later append that project to another project. When doing so,

window Short Names are modified to avoid naming conflicts but operations that depend on window Long Names

will not be affected.

ColumnName (no quotes) can be either the column Long Name or the Short Name (if Long Name has spaces, it

must be double-quoted).

Since 2022b, column Long Name will be be case sensitive when @LNCS=1.

//Using long name

range rPage = ["My Book"]; //range variable for page

range rSheet = ["My Book"]"My Sheet"; //range variable for sheet

range rA = ["My Book"]"My Sheet"!"Amplitude"; //range variable for column

//Using shor tname

range rPage = [Book1]; //range variable for page

range rSheet = [Book1]Sheet1; //range variable for sheet

range rA = [Book1]Sheet1!B; //range variable for column

//Using index in sheet and column part

range rSheet = [Book1]1; //range variable for sheet

range rA = [Book1]1!2; //range variable for column

//Mix of long name, short name or index

range rSheet = ["My Book"]1; //long name for book, index for sheet

range rA = [Book1]"My Sheet"!2; //short name for book, long name for sheet,

index for column

range rB = [Book1]1!"Temparature"; //short name for book, index for sheet,

long name for column

//Other examples

range rPage =[%H]; //%H is current window

range rA=%C; //%C is current selection in sheet

range rSheet = [%H]1; //1st sheet in current window

range rA=rSheet!A; //build rA based on rSheet

In any RangeString, a span of continuous sheets, columns, or rows can be specified by providing pairs of sheet,

column, or row indices (respectively), separated by a colon, as in index1:index2. The keyword end can replace

index2 to indicate that Origin should pick up all of the indicated objects. For example:

range rs = [Book1]4:end! // Get sheets 4 through last

range rd = [Book2]Sheet3!5:10; // Get columns 5 through 10

https://www.originlab.com/doc/LabTalk/ref/sys-var-list
https://www.originlab.com/doc/LabTalk/ref/sys-var-list

LabTalk Scripting Guide

62

In the case of rows the indices must be surrounded by square brackets, so a full range assignment statement for

several rows of a worksheet column looks like:

range rc1 = [Book1]Sheet2!Col(3)[10:end]; // Get rows 10 through last row.

[10:0] also works

range rc2 = [Book1]Sheet2!Col(3)[10:20]; // Get rows 10 through 20

The old way of accessing cell contents, via the Cell function is still supported.

4.3.2.2.1.1 Column

When declaring a range variable for a column on the active worksheet, the book and sheet part can be dropped.

Column short name, index, long name or col() can be used for column part as long as it be identified,

range r1 = col(3); //3rd column of active sheet

range r2 = col(C); //column C of active sheet;

range r3 = col("Sensor Y") //column with long name "Sensor Y" of active sheet

range aa=1; // col(1) of active worksheet

range bb=B; // col(B) of active worksheet

range cc="Test A"; // col with Long Name "Test A" of active worksheet

An expression such as aa = 1! refers to the first sheet of the active book, while an

expression such as aa = "1!" refers to a column in the current sheet with a Long Name of

1!. See the system variable @RPQ to control preserving or discarding quotes for range

declaration.

Multiple range variables can be declared on the same line, separated by comma. The above example could also

have been written as:

range aa = 1, bb = B, cc = "Test A";

Or if you need to declare multiple range variables in same specified sheet, you can put book & sheet portion in

the front:

range ["MyBook"]Sheet3 aa=1, bb=B, cc="Test A"; //columns in Sheet3 of Book

with long name "MyBook"

Because Origin does not force a column's Long Name to be unique (i.e., multiple columns in a worksheet can

have the same Long Name), the Short Name and Long Name may be specified together to be more precise:

range dd = D"Test 4"; // Assign Col(D), Long Name 'Test 4', to a range

Origin 2024b can create range with discontinuous columns with a new option switch -s:

StringArray sa = {2,4,6,8};

range -s rr=sa;

del rr;

Once you have a column range, use it to access and change the properties of a column:

range rColumn = [Book1]1!2; // Range is a Column

https://www.originlab.com/doc/LabTalk/ref/Cell-func
https://www.originlab.com/doc/LabTalk/ref/sys-var-list

Language Fundamentals

63

rColumn.digitMode = 1; // Use Set Decimal Places for display

rColumn.digits = 2; // Use 2 decimal places

Or perform computations:

// Point to column 1 of sheets 1, 2, and 3 of the active workbook:

range aa = 1!col(1);

range bb = 2!col(1);

range cc = 3!col(1);

cc = aa+bb;

When assigning non-existing column to a range variable, the column will not show until value is assigned to it.

Same rule applies to column in non-existing sheet or book.

newbook; //start a new book, by default there are only two columns;

range aa=1, bb=2, cc=3; //assign 3 range variables 3 columns, 3rd column

doesn't exist

aa=data{0, 10, 0.5}; //assign values to aa

bb=sin(aa); //assign values to bb

cc=cos(bb); //assign values to cc, 3rd column shows

If you wish to access column label rows using range, please see Accessing Metadata and the Column Label

Row Reference Table.

When performing arithmetic on data in different sheets, you need to use range variables.

Direct references to range strings are not yet supported. For example, the script

Sheet3!col(1) = Sheet1!col(1) + Sheet2!col(1); will not work! If you really need to write in

a single line without having to declare range variables, then use Dataset Substitution.

4.3.2.2.1.2 Page and Sheet

Besides a single column of data, a range can be used to access page and sheet objects:

Use a range variable to access an entire workbook:

// 'rPage' points to the workbook named 'Book1'

range rPage = [Book1];

// Set the Long Name of 'Book1' to "My Analysis Worksheets"

rPage.LongName$ = My Analysis Worksheets;

rPage.nlayers=; //output number of sheets

rPage.active=3; //set 3rd sheet to be active sheet

Use a range variable to access a worksheet:

// 'rSheet' points to sheet with long name MySheet" in book with ong Name

MyBook

range rSheet = ["MyBook"]"MySheet"!;

rSheet.name$ = "Statistics"; // Rename sheet short name to

"Statistics".

page.xlcolname = 0; //Turn off Spreadsheet Cell Notation

firstly

rSheet.AddCol(StdDev); // Add a column named StdDev

https://www.originlab.com/doc/LabTalk/guide/Accessing-Metadata
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters

LabTalk Scripting Guide

64

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more information.

4.3.2.2.1.3 Column Subrange

Use a range variable to address a column subrange, such as

// A subrange of col(a) in MyBook (Long Name) sheet2

range cc = ["MyBook"]sheet2!col(a)[3:10];

Or if the desired workbook and worksheet are active, the shortened notation can be used:

// A subrange of col(a) in book1 sheet2

range cc = col(a)[3:10];

Create subrange of another range

range ra=[book1]Sheet1!A;

range subra=ra[10:20];

Perform computation or other operations on part of a column. For example:

range r1=1[5:10];

range r2=2[1:6];

r1 = r2; // copy values in row 1 to 6 of column 2 to rows 5 to 10 of column 1

r1[1]=;

// this should output value in row 5 of column 1, which equates to row 1 of

column 2

4.3.2.2.1.4 Block of Cells

Use a range to access a single cell or block of cells (may span many rows and columns) as in:

range aa = 1[2]; // (column 1, row 2), a cell

range bb = 1[1]:3[10]; // (column 1, row 1) to (column 3 row 10)

Note: A range variable representing a block of cells can be used as an X-Function argument only, direct

calculations are not supported.

Origin's join() function can be used to join multiple non-contiguous ranges into a single

dataset.

4.3.2.2.1.5 Option Switch -v

Minimum Origin Version: 9.1 SR0

For worksheet data, you can use the -v switch to define a single block as a range and store its values in a

temporary vector, so that the data assignment between blocks with same size but different block shape is

possible (e.g. assign values from a row to a column would be possible).

https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation
https://www.originlab.com/doc/LabTalk/ref/Join-func

Language Fundamentals

65

The following examples scales all entries in a particular row of columns in the workshet:

// Scale 1st element of all columns except the last column, by a factor

range -v r=1[1]:$(wks.ncols-1)[1];

r*=10;

// Scale 1st element of all columns

range -v r=1[1]:end[1];

r*=10;

The following example illustrates how this option switch can be used.

//Import a sample data into a new book

fname$=system.path.program$ + "\Samples\Statistics\automobile.dat";

newbook;

impasc;

//Define a block as column B to C,all rows

range -v r1 = B[1]:C[end];

// Create a new sheet

newsheet;

//Define a block as column A to B sized

range -v r2 = 1[1]:2[r1.GetSize()/2]; // size of block is 2 columns x rows

//Assign the values in the first block to the second block

r2 = r1;

The vector stores data in column order and fills the destination block regardless of the 'shape':

// Import sample data into a new book

fname$=system.path.program$ + "\Samples\Statistics\abrasion_raw.dat";

newbook;

impasc;

// Define a block as column A & B, all rows

range -v ra1 = 1[1]:2[end];

// Create a new sheet

newsheet;

// Define a block as one column, using the ra1 block size

range -v ra2 = 1[1:ra1.GetSize()];

// Assign the values in the first block to the second block

ra2 = ra1;

col(1)[L]$ = Combined;

Note: The columns defined by the target block must exist before the assignment is made.

4.3.2.2.2 Matrix Data

For matrix data, the RangeString is

[MatrixBookName]MatrixSheetNameOrIndex!MatrixObject

Note: The MatrixBookName andMatrixSheetName above used their corresponding Short Name since

Short Name is the default programming name. To use Long Name in range notation for matrixbook or

matrixsheet, you have to put Long Name in double quotes such as ["MyMatrixBook"]"MyMatrixSheet"!.

Variable assignment can be made using the follow syntax:

LabTalk Scripting Guide

66

// Second matrix object on MBook1, MSheet1

range mm = [MBook1]MSheet1!2;

// Matrix object with Long Name MatObject1 on matrixsheet MatSheet1 (Long

Name)

// on matrix book MatBook1 (Long Name)

range mo = ["MatBook1"]"MatSheet1"!Mat("MatObject1");

Access the cell contents of a matrix range using the notation RangeName[row, col]. For example:

range mm=[MBook1]1!1;

mm[2,3]=10;

If the matrix contains complex numbers, the string representing the complex number can be accessed as below:

string str$;

str$ = mm[3,4]$;

4.3.2.2.3 Graph Data

For graph data, the RangeString is

[GraphWindowName]LayerNameOrIndex!DataPlot

An example assignment looks like

range ll = [Graph1]Layer1!2; // Second curve on Graph1, Layer1

range mm = %C; //Get the current active plot or selected plot

4.3.2.2.3.1 Option Switches -w, -wx, -wy and -wz

For graph windows, you can use range -w and range -wx, range -wy, range -wz options to get the worksheet

column range of a plotted dataset.

range -w always gets the worksheet range of the most dependent variable - which is the Y value for 2D plots and

the Z value or matrix object for 3D plots. And since Origin 9.0 SR0, multiple ranges are supported for range -w.

range -wx, range -wy, and range -wz will get the worksheet range of the corresponding X, Y and Z values,

respectively.

range -wx, range -wz Require Version: 9.0 SR0

// Make a graph window the active window ...

// Get the worksheet range of the Y values of first dataplot:

range -w rW = 1;

type %(rw); //output the rangestring

// Get the worksheet range of the corresponding X-values:

range -wx rWx = 1;

//Get the worksheet range of the corresponding Y-values:

range -wy rWy = 1;

//Get the worksheet range of the corresponding Z-values:

range -wz rWz = 1;

Language Fundamentals

67

// Get the graph range of the first dataplot:

range rG = 1;

// Get the current selection (%C); will resolve data between markers.

range -w rC = %C;

Note that in the script above, rW = [Book1]Sheet1!B while rG = [Graph1]1!1.

4.3.2.2.3.2 Data Selector Ranges on a Graph

You can use the Data Selector tool to select one or more ranges on a graph and to refer to them from LabTalk.

For a single selected range, you can use the MKS1, MKS2 system variables. Starting with version 8.0 SR6, a

new X-Function, get_plot_sel, has been added to get the selected ranges into a string that you can then parse.

The following example shows how to select each range on the current graph:

string strRange;

get_plot_sel str:=strRange;

StringArray sa;

sa.Append(strRange$,"|"); // Tokenize it

int nNumRanges = sa.GetSize();

if(nNumRanges == 0)

{

 type "there is nothing selected";

 return;

}

type "Total of $(nNumRanges) ranges selected for %C";

for(int ii = 1; ii <= nNumRanges; ii++)

{

 range -w xy = sa.GetAt(ii)$;

 string strWks$ = "Temp$(ii)";

 create %(strWks$) -wdn 10 aa bb;

 range fitxy = [??]!(%(strWks$)_aa, %(strWks$)_bb);

 fitlr iy:=xy oy:=fitxy;

 plotxy fitxy p:=200 o:=<active> c:=color(red) rescale:=0 legend:=0;

 type "%(xy) fit linear gives slope=$(fitlr.b)";

}

// clear all the data markers when done

mark -r;

Additional documentation is available for the the Create (Command) (for creating loose datasets), the [??] range

notation (for creating a range from a loose dataset), the fitlr X-Function, and the StringArray (Object)

(specifically, the Append method, which was introduced in Origin 8.0 SR6).

4.3.2.2.4 Specifying Subrange Using X Values

When working with an XY range, you can specify a subrange using the X values. The syntax is as follows:

From Worksheet

[WorkBookName]SheetNameOrIndex!YColumnNameOrIndex[xX1:X2]

Example:

https://www.originlab.com/doc/LabTalk/ref/Create-cmd
https://www.originlab.com/doc/X-Function/ref/fitLR
https://www.originlab.com/doc/LabTalk/ref/StringArray-obj

LabTalk Scripting Guide

68

// Using Columns 1 and 2 for X and Y, specify subrange from x=0.15 to 0.2

range rxy = (1, 2)[x0.15:0.2];

From Graph

[GraphWindowName]LayerNameOrIndex!DataPlot[xX1:X2]

Example:

// XY subrange of the 2nd curve on Graph1, Layer1

range rxy2 = [Graph1]Layer1!2[x5:20];

The following example uses the plotxy X-Function to plot a graph, and then the smooth X-Function to smooth a

subrange of the data.

// Import data into a new book

newbook;

fname$ = system.path.program$ + "\Samples\Signal Processing\EMG

Recording.dat";

impasc;

// Define XY subrange, X from 5 to 5.5, and from 9.3 to 9.8

range rxy1 = (1, 2)[x5:5.5];

range rxy2 = 2[x9.3:9.8];

plotxy rxy1 plot:=200; // Plot line for the 1st XY subrange

smooth -r 2 rxy2 method:=le; // Smooth the 2nd XY subrange by Loess method

When specifying a subrange based on X values, the X data needs to be monotonic.

4.3.2.2.5 Loose Dataset

Loose Datasets are similar to columns in a worksheet but they don't have the overhead of the book-sheet-

column organization. They are typically created with the create command, or automatically created from an

assignment statement without Dataset declaration.

The RangeString for a loose dataset is:

[??]!LooseDatasetName

Assignment can be performed using the syntax:

range xx = [??]!tmpdata_a; // Loose dataset 'tmpdata_a'

To show how this works, we use the plotxy X-Function to plot a graph of a loose dataset.

// Create 2 loose datasets

create tmpdata -wd 50 a b;

tmpdata_a=data(50,1,-1);

tmpdata_b=normal(50);

// Declare the range and explicitly point to the loose dataset

range aa=[??]!(tmpdata_a, tmpdata_b);

// Make a scatter graph with it:

https://www.originlab.com/doc/X-Function/ref/plotxy
https://www.originlab.com/doc/X-Function/ref/smooth
https://www.originlab.com/doc/LabTalk/ref/Create-cmd
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/X-Function/ref/plotxy

Language Fundamentals

69

plotxy aa;

Loose datasets belong to a project, so they are different from a Dataset variable, which is

declared, and has either session or local scope. Dataset variables are also internally loose

datasets but they are limited to use in calculations only; they cannot be used in making

plots, for example.

4.3.2.3 Methods of Range

Once a range variable is created, the following methods can be used by this range

Method Description

range.getSize()

Return the size of the range. This method works for a dataset range, such

as column, matrix object, graph plot, block of cells, loose dataset, etc. Note

that, for a block of cells, it only returns the size of the first sub column

specified in the range declaration.

range.setSize()

Set the size of the range. This method works for a dataset range, such as

column, matrix object, graph plot, block of cells, loose dataset, etc. If the

range is block of cells, it only set the size for the first sub column specified

in the range declaration.

range.getLayer()

If the range has an attached layer (graph layer, worksheet, or matrix layer),

this method will return the uid of the layer, to get the name of the layer, you

need the $ sign after the method, such as "rng.getLayer()$ = ".

range.getPage()

If the range has an attached page (graph page, workbook, or matrixbook),

this method will return the uid of the page, to get the name of the page, you

need the $ sign after the method, such as "rng.getPage()$ = ".

range.getop()

If the range is a column in a worksheet or plot in a graph, this method will

return the uid of the operation attached to the range. If the range is a

worksheet (including hierarchical sheet), it will return the first operation's uid

attached to this sheet range.

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

LabTalk Scripting Guide

70

range.sub(name/index)

This method is used to get a subrange from a data range by either

specifying a name or index. This method is only useful for virtual matrix. For

example, with a virtual matrix named as ztitle, you could use such

expression ztitle.sub(y);(by name) or ztitle.sub(1); (by index) to return a

dataset for the Y values, in addition, you may use such expression

ztitle.sub(y)[3]=; or ztitle.sub(y)[3]$=; to return the 3rd value in this dataset.

range.reverse()

This method works for a dataset range, such as column, matrix object,

graph plot, block of cells, loose dataset, etc. It will reverse the data order of

the range. If the range is block of cells, it only reverses the data order of the

first sub column specified in the range declaration. The X-Function,

colReverse, will do the same thing.

range.empty()

This method works for the label area and the data area, such as column,

matrix object, block of cells, label rows, etc. It would clear the data and label

in the range. If the range is data area, the data in this range will be set to

the missing value. In GUI, you can also right click on the selected range and

then select Clear in the context menu.

4.3.2.4 Unique Uses of Range

4.3.2.4.1 Manipulating Range Data

A column range can be used to manipulate data directly. One major advantage of using a range rather than the

direct column name, is that you do not need to be concerned with which page or layer is active.

For example:

// Declare two range variables, v1 and v2:

range [Book1]Sheet1 r1=Col(A), r2=Col(B);

// Same as col(A)=data(1,30) if [book1]sheet1 is active:

r1 = data(1,30);

r2 = uniform(30);

// Plot creates new window so [Book1]Sheet1 is NOT active:

plotxy 2;

sec -p 1.5; // Delay

r2/=4; // But our range still works; col(A)/=4 does NOT!

sec -p 1.5; // Delay

r2+=.4;

sec -p 1.5; // Delay

r1=10+r1/3;

Direct calculations on a column range variable that addresses a range of cells is supported. For example:

https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix
https://www.originlab.com/doc/X-Function/ref/colreverse

Language Fundamentals

71

range aa = Col(A)[10:19]; // Row 10 to 19 of column A

aa += 10; // All elements in aa increase by 10

Support for sub ranges in a column has expanded.

// Range consisting of column 1, rows 7 to 13 and column 2, rows 3 to 4

// Note use of parentheses and comma separator:

range rs = (1[7:13], 2[3:4]);

del rs; // Supported since 8.0 SR6

// Copying between sub ranges

range r1 = 1[85:100];

range r2 = 2;

// Copy r1 to top of column 2

r2 = r1; // Supported in 8.1

// 8.1 also complete or incomplete copying to sub range

range r2 = 2[17:22];

r2 = r1; // Only copies 6 values from r1

range r2 = 3[50:200];

r2 = r1; // Copies only up to row 65 since source has only 16 values

4.3.2.4.2 Dynamic Range Assignment

Sometimes it is beneficial to be able to create a new range in an automated way, at runtime, using a variable

column number, or the name of another range variable.

4.3.2.4.2.1 Define a New Range Using an Expression for Column Index

The wcol() function is used to allow runtime resolution of actual column index, as in

int nn = 2;

range aa=wcol(2*nn +1);

4.3.2.4.2.2 Define a New Range Using an Existing Range

The following lines of script demonstrate how to create one range based on another range variable using the %(

) substitution notation and wks (object) methods. When the %() substitution is used on a range variable, it is

resolved to a rangestring. Sometimes %() can be skipped.

range rpage=[book1] //define range variable for page

range rwks = %(rpage)sheet1!; //define rwks based on %(rpage)

type %(rwks); //output rangestring [book1]sheet1!

range r1= rwks!A; //define r1 based on rwks, %() skipped though %(rwks)A also

works

type %(r1); //output rangestring [Book1]Sheet1!A

r1=data(0,100,2); //fill r1 with 0, 2, 4, ..., 100

range subr1=r1[10:20] //define subr1 based on r1, %() skipped

though %(r1)[10:20] also works

type %(subr1); //output rangestring [Book1]Sheet1!A[10:20]

This method of constructing new range based on higher level range is very useful for code centralization.

https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

72

rpage.longname$="My Book"; //rename page long name

rwks.addcol();//add a column to specified sheet

range r2 = rwks!wcol(rwks.ncols); //define r2 as last (rightmost) column in

rwks

r2=subr1; //fill r2 with subr1 values

4.3.2.4.2.3 Refer to the Last Row, Column and Sheet Using 0

The 0 notation refers to the last index(last row, last column or last sheet) of a range with dynamic end. For

example,

range rsheet=0!; //last sheet

range right = 0!0; //last(rightmost) column in last sheet

range sub = 0!0[10:0]; ///cells from row 0 to last row of last column in last

sheet

range r2 = [Book1]Sheet1!2[3]:0[0]; //from 2nd col, 3rd row to last column,

last row

4.3.2.4.3 X-Function Argument

Many X-functions use ranges as arguments. For example, the stats X-Function takes a vector as input and

calculates descriptive statistics on the specified range. So you can type rangestring:

stats [Book1]Sheet2!(1:end); // stats on the second sheet of book1

stats Col(2); // stats on column 2 of active worksheet

// stats on block of cells, col 1-2, row 5-10

stats 1[5]:2[10];

Or first define the range variable and then use range variable as argument

// Defines a range variable for cells from row 3 to row 5 of col(2) on 1st

and 2nd sheets,

range aa = (1,2)!col(2)[3:5];

//run statistics on the range;

stats aa;

The input vector argument for this X-Function is then specified by a range variable.

Some X-Functions use a special type of range called XYRange, which is essentially a composite range

containing X and Y as well as error bar ranges.

The general syntax for an XYRange is

(rangeX, rangeY)

but you can also skip the rangeX portion and use the standard range notation to specify an XYRange, in which

case the default X data is assumed.

The following two notations are identical for XYRange,

(, rangeY)

rangeY

For example, the integ1 X-Function takes both input and output XYRange,

// integrate col(1) as X and col(2) as Y,

Language Fundamentals

73

// and put integral curve into columns 3 as X and 4 as Y

integ1 iy:=(1,2) oy:=(3,4);

// same as above except result integral curve output to col(3) as Y,

// and sharing input's X of col(1):

integ1 iy:=2 oy:=3;

4.3.2.5 Listing, Deleting, and Converting Range Variables

4.3.2.5.1 Listing Range Variables

Use the list LabTalk command to print a list of names and their defined bodies of all session variables including

the range variables. For example:

list a; // List all session variables

If you issue this command in the Command Window, it prints a list such as:

Session:

 1 MYRANGE [book1]sheet1!col(b)

 2 MYSTR "abc"

 3 PI 3.1415926535898

As of Origin 8.1, more switches have been added (given below) to list particular session variables:

Option What Gets Listed Option What Gets Listed

a All session variables aa String arrays (session)

ac Constants (session) af Local Function (session)

afc
Local Function Full Content

(session)
afp

Local Function Prototype

(session)

ag Graphic objects (session) ar Range variables (session)

as String variables (session) at Tree variables (session)

av Numeric variables (session) -- --

4.3.2.5.2 Deleting Range Variables

To delete a range variable, use the del LabTalk command with the -ra switch. For example:

https://www.originlab.com/doc/LabTalk/guide/Command-stmts

LabTalk Scripting Guide

74

range aa=1; // aa = Col(1) of the active worksheet

range ab=2; // ab = Col(2) of the active worksheet

range ac=3; // ac = Col(3) of the active worksheet

range bb=4; // bb = Col(4) of the active worksheet

list a; // list all session variables; will include aa, ab, ac, bb

del -ra a*; // delete all range variables beginning with the letter "a"

// The last command will delete aa, ab, and ac.

The table below lists options for deleting variables.

Option What Gets Deleted/Cleared Option What Gets Deleted/Cleared

ra Any Local/Session variable al same as -ra

rar Range variable ras String variable

rav Numeric variable rac Constant

rat Tree variable raa String array

rag Graphic object raf Local/Session Function

4.3.2.5.3 Converting Range to UID

Each Origin Object has a short name, long name, and universal identifier (UID). You can convert between range

variables and their UIDs as well as obtain the names of pages and layers using the functions range2uid,

uid2name, and uid2range. See LabTalk Objects for examples of use.

4.3.2.6 Special Notations for Range

4.3.2.6.1 Specifying Multiple Sheets

When referring to multiple sheets, use the general form of the worksheet data range string, combined with

commas and colons to specify the range.

[Workbook](SheetA,SheetN:SheetM)!colBegin[rowIndex]:colEnd[rowIndex]

// Basic combination of three ranges:

(range1, range2, range3)

// Common column ranges from multiple sheets:

(sheet1,sheet2,sheet3)!range1

https://www.originlab.com/doc/LabTalk/guide/LT-objs

Language Fundamentals

75

(sheet1,sheet3:5)!range1

// Common column ranges from a range of sheets

(sheet1:sheetn)!range1

For example:

// plot A(X)B(Y) from two sheets into the same graph.

plotxy (1:2)!(1,2);

// Activate workbook again and add more sheets and fill them with data.

// Plot A(X)B(Y) from all sheets between row2 and row10:

plotxy (1:end)!(1,2)[2:10];

// Appends every worksheet in the active workbook into a new sheet in the

book.

wappend irng:=(1:end)!;

A more general discussion of Composite Range is given below.

4.3.2.6.2 XY and XYZ Range

Designed as inputs to particular X-Functions, an XY Range is an ordered pair designating two worksheet

columns as XY data. And the XY subrange is able to be specified by using X values. Similarly, an (XYZ Range)

is an ordered triple containing three worksheet columns representing XYZ data.

For instance, the fitpoly X-Function takes an XY range for both input and output:

// Fit a 2nd order polynomial to the XY data in columns 1 and 2;

// Put the coefficients into column 3 and the XY fit data in cols 4 and 5:

fitpoly iy:=(1,2) polyorder:=2 coef:=3 oy:=(4,5);

4.3.2.6.3 XY Range using # and ? for X

There are two special characters '?' and '#' introduced in (8.0 SR3) for range as an X-Function argument. '?'

indicates that the range is forced to use worksheet designation, and will fail if the range designation does not

satisfy the requirement. '#' means that the range ignores designations and uses row number as the X

designation. However, if the Y column has even sampling information, that sampling information will be used to

provide X.

For example:

plotxy (?, 5); // if col(5) happens to be X column call fails

plotxy (#, 3); // plot col(3) as Y and use row number as X

These notations are particularly handy in the plotxy X-Function, as demonstrated here:

// Plot all columns in worksheet using their column designations:

plotxy (?,1:end);

4.3.2.6.4 Tag Notations in Range Output

https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/X-Function/ref/fitpoly
https://www.originlab.com/doc/X-Function/ref/plotxy

LabTalk Scripting Guide

76

Many X-Functions have an output range that can be modified with tags, including template, name, and index.

Here is an example that can be used by the Discrete Frequency X-Function, discfreqs

discfreqs irng:=1 freq:=1 rd:="[Result]<new template:=table.otw index:=3>";

The output is directed to a Workbook named Result by loading a template named TABLE.OTW as the third

sheet in the Result book.

Support of tag notation depends on the particular X-Function, so verify tag notation is supported before including

in production code.

4.3.2.6.5 Composite Range

A Composite Range is a range consisting of multiple subranges. You can construct composite ranges using the

following syntax:

// Basic combination of three ranges:

(range1, range2, range3)

// Common column ranges from multiple sheets:

(sheet1,sheet2,sheet3)!range1

(1，2，3)!range1

// Common column ranges from a range of sheets

(sheet1:sheet3)!range1

(1:3)!!range1

To show how this works, we will use the wcellcolor X-Function to show range and plotxy to show XYRange.

Assuming we are working on the active book/sheet, with at least four columns filled with numeric data:

// color several different blocks with blue color

wcellcolor (1[1]:2[3], 1[5]:2[5], 2[7]) color(blue);

// set font color as red on some of them

wcellcolor (1[3]:4[5], 2[6]:3[7]) color(red) font;

To try plotxy, we will put some numbers into the first sheet, add a new sheet, and put more numbers into the

second sheet.

// plot A(X)B(Y) from both sheets into the same graph.

plotxy (1:2)!(1,2);

// Activate workbook again and add more sheets and fill them with data.

// Plot A(X)B(Y) from all sheets between row2 and row10:

plotxy (1:end)!(1,2)[2:10];

Note: There exists an inherent ambiguity between a composite range, composed of ranges r1 and r2 as in

(r1,r2), and an XY range composed of columns named r1 and r2, i.e., (r1,r2). Therefore, it is important that one

keep in mind what type of object is assigned to a given range variable!

4.3.3 Substitution Notation

4.3.3.1 Substitution Notation

https://www.originlab.com/doc/X-Function/ref/discfreqs
https://www.originlab.com/doc/X-Function/ref/wcellcolor
https://www.originlab.com/doc/X-Function/ref/plotxy

Language Fundamentals

77

LabTalk-Substitution-Notation

The substitution of LabTalk variables and expressions occurs routinely in Origin. Since the value of the

substituted string is unknown until the statement is actually executed, it's called run-time string substitution. It is

also the cornerstone of any repetitive batch operation (import, analysis, graphing and graph export).

The substitution notations are preceded with % or $ and are not limited to LabTalk Script only. It also happens in

labels in various windows, including axis title, legend, tick labels or regular text, column & cell display format,

column & cell formula, etc. When it is found, Origin will replace it with the interpreted string.

4.3.3.1.1 Types of Substitution

There are four types of run-time substitutions:

String Register Substitution %A - %Z, etc.

%() String Substitution, a powerful notation to resolve %(str$), %(range), worksheet info and column dataset

names, worksheet cells, legends, etc.

$() Substitution, - convert the numeric variable or expression and formats the result as a string.

%n Macro and Script substitution of the form %n, where arguments are passed to a macro or a script.

4.3.3.1.2 Examples

Various substitution notations are used in the following script to demonstrate its usage. such as

 %H is a reserved string register for current window name

 %1, %2 are arguments of macro

$(ii,##) is used to convert ii into 2 digit string with zero padding, e.g. 1 will turn into 01

$(ii) is used in wks.col$(ii) to create worksheet column object wks.coln

 %(1, @WS) is used to create string with 1st's plot's worksheet name

Please start a new project to try this.

//define a macro with two argument %1 and %2

define import_plot

{

 for(ii = %1; ii <=%2 ; ii++)

 {

 if (!isEmpty(col(A))) newsheet;

 //create fn$ string variable with concatenated strings

 string fn$=system.path.program$ + "Samples\curve

fitting\step$(ii, ##).dat";

 impasc fname:=fn$;

 delete col(A);

https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/macro-script-substitution

LabTalk Scripting Guide

78

 if (exist(%H)==2) //if current window type is worksheet

 {

 //set every odd other column as X

 for(jj = 1 ; jj <= wks.ncols ; jj+=2)

 {

 wks.col$(jj).type = 4; //wks.col1 refers to 1st

column

 }

 }

 }

 page.active$=1; //activate 1st sheet

 doc -e LB //loop through all sheets

 {

 //plot all columms as scatter with XY column designation

 plotxy iy:=(?,1:end) plot:=202;

 xb.text$="X"; //set X axis title as X

 yl.text$=%(1, @WS); //Set Y axis title as worksheet name

 }

};

//execute the macro with two arguments 1 and 5, 1 and 5 will be passed to %1

and %2

import_plot 1 5; //import step01.dat to step05.dat and plot all data

As mentioned at the beginning, such substitution notations are used not only in LabTalk Script but also in various

places in Origin. E.g.

customize legend. See Legend Substitution Notation

build RangeString of range variable. See Range Notation

4.3.3.2 String Registers and String Register Substitution

String-registers

4.3.3.2.1 Introduction

String Registers are one means of handling string data in Origin. Before Version 8.0, they were the only way and,

as such, current versions of Origin continue to support the use of string registers. However, users are now

encouraged to migrate their string processing routines toward the use of proper string variables, see String

Processing for comparative use.

Long-time LabTalk scripters know string register names to be comprised of a %-character followed by a single

alphabetic character (a letter from A to Z). Of these original 26 string registers, i.e., %A--%Z, some are reserved

as system string registers (listed in the table, below).

Starting with Origin 2016 SR2, "%@N" read-only system string registers are being added. You will find those

listed in a second table below the original "%N" string registers.

https://www.originlab.com/doc/LabTalk/ref/Legend-Substitution-Notation
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/String-Processing
https://www.originlab.com/doc/LabTalk/guide/String-Processing

Language Fundamentals

79

String registers are of global scope; this means that they can be changed by any script at

any time. Sometimes this is useful, other times it is dangerous, as one script could change

the value in a string register that is being used by another script with erroneous and

confusing results.

Some string registers are reserved for use as system variables, and attempting to assign

values to them could result in errors in your script. They are grouped in the ranges %C--%I,

and %X--%Z, or are preceded by a %@ (e.g. %@A = Apps root folder). Consult the tables

below.

4.3.3.2.2 String Registers as System Variables

String registers hold up to 260 characters (%Z holds up to 6290). String register names are comprised of a %-

character (or %@), followed by a single alphabetic character (a letter from A to Z); for this reason, string registers

are also known as % variables.

4.3.3.2.2.1 % String Registers

Of the 26 possible string registers, those listed in this table are reserved as system variables that have a special

meaning, and they should not be reassigned in your scripts. It is often helpful, however, to have access to (or

operate on) the values they store.

 %

Variable
Description

 %C The name of the current active dataset.

 %D Current Working Directory, as set by the cd command. (Since Origin 8)

 %E The name of the window containing the latest worksheet selection.

 %F The name of the dataset currently in the fitting session.

https://www.originlab.com/doc/X-Function/ref/cd

LabTalk Scripting Guide

80

 %G The current project name.

 %H The current active window title.

 %I The current baseline dataset.

 %X The path of the current project.

 %Y

The full path name to the User Files folder, where the user .INI files as well as other user-

customizable files are located. %Y can be different for each user depending on the

location they selected when Origin was started for the first time.

Prior to Origin 7.5, the path to the various user .INI files was the same as it was to the

Origin .EXE. Beginning with Origin 7.5, we added multi-user-on-single-workstation support

by creating a separate "User Files" folder.

To get the Origin .EXE path(program path), use the following LabTalk statement:

%a = system.path.program$

In Origin C, pass the appropriate argument to the GetAppPath() function (to return the INI

path or the EXE path).

 %Z A long string for temporary storage. (maximumn 6290 characters)

String registers containing system variables can be used anywhere a name can be used. While you should not

reassign values to system string registers, it is often helpful to have access to (or operate on) the system values

they store, for instance...

// Deletes the current active dataset:

del %C;

4.3.3.2.2.2 %@ String Registers

A second set of read-only system string registers comprised of %@-characters followed by a single alphabetic

character was added in Origin 2016 SR2.

 %@ Description

https://www.originlab.com/doc/Origin-Help/UserFilesFolder

Language Fundamentals

81

Variable

 %@A The Apps root installation folder.

 %@B The OriginLab AppData folder.

 %@C The Computer Name.

 %@D The ProgramData folder where data and configuration for Origin operations are stored.

 %@E
The Group Folder Path of the Group Leader Machine. See Set Group Folder Location

Dialog.

 %@F The name of the active Project Explorer folder.

 %@G
The graph page short name of the active graph sheet (graph added to workbook as

sheet). Empty if not this type of sheet or no contained graph.

 %@H The book name that contains the active embedded graph or matrix page.

 %@I The last active window short name.

 %@J The path of the Origin EXE folder (see %@O, below).

 %@L OriginLab software license owner name.

 %@M Newly appended file path, including extension.

 %@N
Name of the most recently created window, whether shown, hidden or deleted. Contrast

with %H, which stores the name of the active window.

https://www.originlab.com/doc/Origin-Help/FileShare-GroupFolder-Location
https://www.originlab.com/doc/Origin-Help/FileShare-GroupFolder-Location

LabTalk Scripting Guide

82

 %@O The full path of the Origin EXE, including the name of the EXE.

 %@P The full Project Explorer path of the active folder.

 %@Q Current Origin Project file extension (lower-case opj or opju).

 %@R

The ProgramData root folder where Origin downloads patch files (\Updates) and Help

files (\Localization) are stored. Opens with the menu command Help: Open Folder:

Program Data Folder.

 %@S User Name entered in the Origin Setup dialog box during installation.

 %@T

The title (short name + long name if it exists) of the active graph sheet (graph added to

workbook as sheet). Empty if not this type of sheet or no contained graph. Can

equal %@G if graph does not have a long name.

 %@U The project Unsaved Files path.

 %@V The Temp Save folder. This folder is used to save the files during the project saving.

 %@W Company Name entered in the Origin Setup dialog box during installation.

 %@X Currently executing Apps folder.

 %@Y
User AppData Root folder. This folder stores the xml file that lists installed apps and their

version number.

4.3.3.2.3 String Registers as String Variables

Using a string register -- in which the content of the string register is substituted during script execution -- is the

simplest form of substitution. String registers were used exclusively in older scripts, before the introduction of

string variables (Origin 8). With the exception of the system string registers listed above, you can use string

registers as string variables, as demonstrated in the following examples:

https://www.originlab.com/doc/LabTalk/guide/String-vars-and-String-Registers

Language Fundamentals

83

4.3.3.2.3.1 Assigning Values to a String Variable

Entering the following assignment statement in the Script window:

%A = John

defines the contents of the string variable %A to be John.

String variables can also be used in substitution notation. Using substitution notation, enter the following

assignment statement in the Script window:

%B = %A F Smith

This sets %B equal to John F Smith. Thus, the string variable to the right of the assignment operator is

expressed, and the result is assigned to the identifier on the left of the assignment operator.

As with numeric variables, if you enter the following assignment statement in the Script window:

%B =

Origin returns the value of the variable:

John F Smith

4.3.3.2.3.2 Expressing the Variable Before Assignment

By using parentheses, the string variable on the left of the assignment operator can be expressed before the

assignment is made. For example, enter the following assignment statement in the Script window:

%B = Book1_A

This statement assigns to the string register %B, the value Book1_A. If Book1_A is a dataset name, then

entering the following assignment statement in the Script window:

(%B) = 2*%B

results in the dataset being multiplied by 2. String register %B, however, still contains the string Book1_A.

4.3.3.2.3.3 String Comparison

When comparing string registers, use the "equal to" operator (==).

If string registers are surrounded by quotation marks (as in, "%A"), Origin literally compares the string characters

that make up each variable name. For example:

aaa = 4;

bbb = 4;

%A = aaa;

%B = bbb;

if ("%A" == "%B")

 type "YES";

else

 type "NO";

The result will be NO, because in this case aaa != bbb.

LabTalk Scripting Guide

84

If string registers are not surrounded by quotation marks (as in, %A), Origin compares the values of the variables

stored in the string registers. For example:

aaa = 4;

bbb = 4;

%A = aaa;

%B = bbb;

if (%A == %B)

 type "YES";

else

 type "NO"

The result will be YES, because in this case the values of the strings (rather than the characters) are compared,

and aaa == bbb == 4.

4.3.3.2.3.4 Substring Notation

Substring notation %[string, [argument1], [argument2]] returns string length if no arguments or a substring

specified by argument1 and argument2.

To do this: Arguments Enter this script: Return value:

Returns length of string. If no

quote around the string, space

on both sides will be ignored

NA

%A=" hello

";

type %[%A];

%B= hello

 ;

type %[%B];

15

5

Search for a character and

return all text to the left of the

character.

'<char>'

%A = "Results

from Data2_Test";

%B = %[%A, '_'];

%B =

Results from

Data2

Search for a character and

return all text to the right of the

character.

>'<char>'

%A = "Results

from Data2_Test";

%B = %[%A, >'_'];

%B =

Test

Return all text to the left of the n

th character position.
n

%A = "Results

from Data2_Test";

%B = %[%A, 8]; %B

=

Results

Return all text between two

specified character positions

n:m (inclusive).

14:18

%A = "Results

from Data2_Test";

%B = %[%A,

14:18]; %B =

Data2

Language Fundamentals

85

Return the #n token, counting

from the left.
#n

%A = "Results

from Data2_Test";

%B = %[%A, #2];

%B =

from

Return the @n line @n

%A = "First line

second line";

%Z = %[%A, @2];

%Z=;

Assign the 2nd

line of %A string

into %Z

Returns a substring based on

taken and specified separator.

#n ,

<separator>

%A = 123

 342

 456;

for (ii = 1; ii

<= 3; ii++)

{

 Book1_A[ii] =

%[%A, #ii,\t]

};

Book1's column

A will be filled

with

123

342

456

A Note on Tokens

A token can be a word surrounded by white space (spaces or TABS), or a group of words enclosed in any kind of

brackets. For example, if:

%A = These (are all) "different tokens"

then entering the following in the Script window:

Scripts Returns

%B = %[%A, #1]; %B=
These

%B = %[%A, #2]; %B=
are all

%B = %[%A, #3]; %B=
different tokens

4.3.3.3 %() Substitution - String Substitution

string-substitution

4.3.3.3.1 String Expression Substitution

%(str$)

LabTalk Scripting Guide

86

Pass String to Command

LabTalk command accepts both numeric argument and string arguments. Numeric variable or expression can be

passed directly e.g. worksheet -a 2*2 will add 4 new columns. While string argument must be surrounded by %()

to pass the real-time resolved string to the command. E.g.

string name$ = "Book1";

//Make some other window in Origin active, then run the following to activate

Book1

win -a name$; //not work since it's trying to active a window named

"bookname$"

win -a %(name$) //works

Concatenate Strings within " "

Use %(str$) substitution when concatenating multiple strings with in " ".

Suppose current window is Book1 with Sheet1 active

string name$ = "wks.name$ in page.name$";

name$=; //dumps exactly "wks.name$ in page.name$"

string name$ = "%(wks.name$) in %(page.name$)";

name$=; //dumps Sheet1 in Book1

//no need to add %() if it's not in " "

string name$ =wks.name$ + " in " +page.name$;

name$=; //dumps Sheet1 in Book1

Convert String to Number

For string that contains number only, use %(str$) to convert it to number. This is the reverse of $() which

converts number to string

// Convert the string "456" to number 456

string myString$ = "456";

int myNum=%(myString$);

4.3.3.3.2 Range Expression Substitution

%(rangeVariable)

When the %() substitution is used on a range variable, it always resolves it to a rangestring.

range rA=[Book1]Sheet1!A;

type %(rA); //output the rangestring

Because of this, ser can construct new range based on existing range variable, which helps to centralize code.

range rwks = sheet1!; //rwks points to sheet1 of current book

range r1= %(rwks)col(a); //r1 points to column A on the sheet

r1=data(0,100); //fill r1 with 0, 1, ..., 100;

rwks.addcol(); //add a column to the sheet

range r2 = %(rwks)wcol(rwks.ncols); //r2 points to the newly added col,

last column

r2=r1/10; calculated r2 based on r1, 0, 0.1, ..., 10

Language Fundamentals

87

4.3.3.3.3 Worksheet Column and Cell Substitution
4.3.3.3.3.1 Dataset Substitution

%(workbookName, column) or %([workbookName]sheet, column)

where

workbookname is workbook shortname

sheet can be either sheet name, label or index

column can be either column short name, long name or index

Two syntaxes are supported because before Origin 8, there is only one sheet per workbook, therefore you only

need to specify workbookName in 1st argument. Newer versions support multiple worksheets so both book and

sheet should be specified in the 1st argument. If you are referring to column on active sheet, you can still use the

1st syntax.

Syntax Description Examples

%(workbookName,

column)

column on

active sheet

of book

%(Book1, B) //using column short

name

%(%H,""Average Temp") //using

column long name

winName$="Book1"; %(%(winName$),

2); //using column index

%([workbookName]sheet,

column)

column on

specified

sheet of

book

%([Book1]Sheet1, B) //using sheet

name and column short name

%([%H]"test result",""Average

Temp") //using sheet label and

column long name

winName$="Book1"; %([%(str$)]3,

2); //using sheet and column index

For example: the name of column on right side will be substituted and assigned to %A and %B. In the second

case, if the named book or sheet does not exist, no error occurs but the substitution will be invalid.

%A = %(%H, B); // Column B of active sheet of active book

type %A; //return column name, if active sheet is 2nd, will return Book1_B@2

type $(%A) //return column values

%B = %([Book1]Sheet3,2); // Column 2 of Book1, Sheet3

type %B; //return column name e.g. Book1_B@3

type $(%B) //return column values

Note: You can use parentheses to force assignment to be performed on the dataset whose name is contained in

a string register variable instead of performing the assignment on the string register variable itself.

%A = %(Book1,2); // Assign column 2 dataset name to %A

(%A) = %(Book1,1); // Copy column 1 data to column 2

Column Calculation with Column Substitution

LabTalk Scripting Guide

88

The ability to get a dataset name from any book or sheet can be very useful in doing calculations involving

columns in different sheets, like:

// Sum col(1) from sheet2 and 3 and place the result into col(1) of the

active sheet

col(1)=%([%H]sheet2, 1) + %([%H]sheet3, 1);

// subtract by col "signal" in the 1st sheet of book2 and

// put result into the active book's sheet3, "calibrated" col

%([%H]sheet3, "calibrated")=col(signal) - %([Book2]1,signal);

The column name should be quoted if using long name. If not quoted, then Origin will first assume short name, if

not found, then it will try using long name. So in the example above,

%([%H]sheet3, "calibrated")

will force a long name search, while

%([Book2]1,signal)

will use long name only if there is no column with such a short name.

4.3.3.3.3.2 Cell Contents

%(workbookName, column,row[,format]) or %([workbookName]sheetName, column,row[,format])

workbookname is workbook shortname

sheet can be either sheet name, label or index

column can be either column short name, long name or index

row is row index

format, optional, introduced in Origin 8.1

no format - full precision

W = WYSIWYG based on cell format or column format

custom format (see Origin Formats)

Note: Another variation of the cell substitution syntax %([workbookName]sheetName, @WL,

column[row][,format]) is supported to get value from a cell. It can't be used to assign a value to a cell.

Syntax Description Examples

%(workbookName, column,
cell on

active

%(Book1, B, 4) //using column short

name

%(%H,""Average Temp", 4) //using

https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

Language Fundamentals

89

row) sheet in

the named

book, full

precicion

column long name

winName$="Book1"; %(%(winName$), 2,

4); //using column index

%([workbookname]sheetname,

column, row)

cell on

specifies

book and

sheet, full

precicion

//using sheet name and column short

name

%([Book1]Sheet1, B, 4)

//using sheet label and column long

name

%([%H]"test result",""Average

Temp", 4)

//using sheet and column index

winName$="Book1"; %([%(winName$)]3,

2, 4);

%(workbookName, column,

row, format)

cell on

active

sheet in

the named

book, with

format

//using column short name, WYSIWYG

%(Book1, B, 4, W)

//using column long name, 2 decimal

places

%(%H,""Average Temp", 4, .2)

//using column index, 3 significant

digits

winName$="Book1"; %(%(winName$), 2,

4, *3);

%([workbookname]sheetname,

column, row, format)

cell on

specifies

book and

sheet, with

format

//using sheet name and column short

name, WYSIWYG

%([Book1]Sheet1, B, 4, W)

//using sheet label and column long

name, 2 decimal places

%([%H]"test result",""Average

Temp", .2)

//using sheet and column index, 3

significant digits

winName$="Book1"; %([%(winName$)]3,

2, *3);

For example, if the third cell in the fourth column in the active worksheet of Book1 contains the value 25, then

entering the following statement in the Script window will set A to 25 and put double that value into column 1, row

4 of the sheet named "Results" in the same book.

value = %(Book1, 4, 3);

%([Book1]Results, 1, 4) = 2 * value;

%([Book1]Results, 1, 4)=;

To return the contents of a text cell, use a string variable:

type %(Book1, 2, 5); //no $ needed at the end

LabTalk Scripting Guide

90

string strVar$ = %(Book1, 2, 5); //no $ needed at the end

strVar$ = ;

If the name of the workbook/worksheet you are referring to is stored in a worksheet cell, e.g., if the reference

workbook name is in column A, 1st cell of current worksheet, you can use following cell formula

=[Book%(col(A)[i]$)]1!A1

to set value of B1 cell to A1 cell in the 1st sheet of reference book.

However, if you want to use “A1” in %() substitution notation, please use double equal sign syntax with string

concatenation,

=="[Book" + A1$ + "]1!A1"

Please note that autofill and formula update will also work for such notation.

Assume Book1, Sheet1, column B, row 3, has a numeric value of 12.3456789, but only 2 decimal places are

displayed in the worksheet (e.g. (e.g. as set in the Column Properties dialog)).

//Return value with current column format

type "Displayed value: %([Book1]Sheet1,B,3,W)";

//Return full precision value

type "Full precision: %([Book1]Sheet1,B,3)";

//Return custom Origin format

type "3 decimal places: %([Book1]Sheet1,B,3, .3)";

//Or use another expression with @WL option to keep the display format

type "Displayed value with @WL syntax: %([Book1]Sheet1, @WL, B[3],W)";

The format character W was introduced in Origin 9.1 to replace the usage of "C" in previous

versions (i.e. %([workbookName]sheetName, column, row,C)). The "C" format parameter is

no longer supported.

4.3.3.3.4 Workbook Information Substitution

As with the Worksheet Column and Worksheet Cell Substitution notation described above, there are two

syntaxes for worksheet information substitution since one is for old one-sheet workbook/active sheet in book,

while the other is for specified sheet in book.

4.3.3.3.4.1 Column Label Row Information

%(workbookName, @option, columnNumber]) or %([workbookName]worksheetName, @option, columnNumber)

This notation allows access to column label row information.

Syntax Description

https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-Properties-Tab

Language Fundamentals

91

%(workbookName, @option, columnNumber)
column info. of the active sheet in the

named book

%([workbookName]worksheetName, @option,

columnNumber)
column info. of specified book and sheet

Those column label row related options from List of "@" Options are used.

Option Description

@C Returns column short name

@D Returns column dataset name

@L Returns column long name

@LA Returns column long name. Returns short name if no long name

@LCn Returns column comments (nth row). Returns 1st line comment if n is skipped

@LDn Returns contents of column's nth user-defined parameter. n=1 if skipped

@LD"paraname" Returns contents of column's user-defined parameter with name "paraname"

@LG Returns column long name (unit). Returns short name and unit if no long name

@LPn Returns contents of column's nth system parameter. n=1 if skipped

@LS Returns column short name. same as @C

@LU Returns column unit

https://www.originlab.com/doc/LabTalk/ref/Options-Substitution-Notation

LabTalk Scripting Guide

92

@Fn Returns nth row of column Filter information. Return full filter info. if n is skipped

@T
Returns column type. 1 = Y , 2 = disregarded, 3 = Y error, 4 = X , 5 = label, 6 = Z,

and 7 = X error.

@U
Returns column long name (unit). Returns short name and unit if no long name.

Same as @LG,

Examples

The script below returns the column name of the first column in the current selection range (for information on

the selc1 numeric system variable, see System Variables):

%N = %(%H, @C, selc1); %N =;

The script below returns the column type for the fourth column in Book 2, Sheet 3:

type %([Book2]Sheet3, @T, 4);

4.3.3.3.4.2 Worksheet Information

%(workbookName, @option [,argument]) or %([workbookName]worksheetName, @option[, argument])

This notation allows access to worksheet info and metadata.

Syntax Description

%(workbookName, @option[,argument])
worksheet info. of the active sheet in the

specified book

%([workbookName]worksheetName[, @option,

argument])

worksheet info. of specified book and

sheet

Available options are listed below, including a few from List of "@" Options.

Option Argument Description

@# Not needed Returns the total number of columns in worksheet.

https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/Options-Substitution-Notation

Language Fundamentals

93

@CS columnNumber
Returns the column index of the first selected column to the right of

(and including) nth column. Return 0 if not found

@E# Optional

If argument = 1, returns the number of Y error columns in the

worksheet. If argument = 2, returns the number of Y error columns in

the current selection range. If argument is omitted, it's assumed to be

1.

@H# Optional

If argument = 1, returns the number of X error columns in the

worksheet. If argument = 2, returns the number of X error columns in

the current selection range. If argument is omitted, it's assumed to be

1.

@OY columnNumber
Returns the offset from the 1st selected Y column to the nth Y

column to its right in selection. The nth Y must be in selection as well.

@OYX columnNumber

Returns the offset from the left-most selected Y column to the n+1th

selected X column to its right in selection. The nth X must be in

selection as well.

@OYY columnNumber

Returns the offset from the 1st selected Y column to the nth Y

column to its right in selection. The nth Y must be in selection as well.

Equivalent to @OY

@SCn Not needed
Returns the nth row of worksheet comments. If n is skipped, it's the

1st row of comments

@SN Not needed Returns worksheet name

@SNL Not needed Returns worksheet label

@X Not needed Returns the column index of the first X column in worksheet,

LabTalk Scripting Guide

94

@Xn Not needed Returns the column short name of the first X column in worksheet.

@Y- Needed
Returns the column index of the closest Y column to the left of nth

column. Returns 0 if not found.

@Y# Optional

If argument = 1, returns the number of Y columns in the worksheet. If

argument = 2, returns the number of Y columns in the current

selection range. If argument is omitted, it's is assumed to be 1.

@Y+ Needed
Returns the column index of the closest Y column to the right of nth

column. Returns 0 if not found.

@YS Needed
Returns the column index of the first Y column in selection range to

the right of (and including) the nth column.

@Z# Optional

If argument = 1, returns the number of Z columns in the worksheet. If

argument = 2, returns the number of Z columns in the current

selection range. If argument is omitted, it'ss assumed to be 1.

Examples

The script below returns the worksheet display name

type %(%H, @SN);

In Book2, Sheet3, set some column as YError bars. Select several columns, including some YError bar columns.

The script below will return the number of YError columns in selection

type %([Book2]Sheet3, @E#, 2);

If the currently active worksheet window has six columns (XYXYXY) and columns 2, 4, and 5 are selected, then

the following script shows the number of the first selected Y column to the right of (and including) the iith column

(the third argument):

loop(ii,1,wks.ncols)

{

 type -l %(%H, @YS, ii),;

}

This outputs:

 2,2,4,4,0,0,

Language Fundamentals

95

4.3.3.3.4.3 Workbook Information

%(workbookName, @option) %([workbookName], @option)

This notation allows access to workbook info and metadata.

Syntax Description

%(workbookName, @option) Workbook info of named book

It's OK to have [workbookName]Sheet!Column in 1st argument. e.g. [%H]Sheet1!A. Sheet and column part will

be ignored.

Available options are listed below, including a few from List of "@" Options..

Option Description

@PN Returns workbook window short name.

@PL Returns workbook window long name.

@PCn Returns the nth line of workbook window comments. @PC for all comments

Examples

The script below returns the workbook short name

type %(%H, @PN);

4.3.3.3.4.4 Information Storage and Imported File Information

%([workbookName]Sheet!Column, @Woption, varOrNodeName,[format]) where

Sheet can be sheet short name, long name or index.

Column can be column short name, long name or index.

format is optional (see Origin Formats)

Access metadata stored within Origin workbooks, worksheets, or columns, as well as information stored about

imported files.

https://www.originlab.com/doc/LabTalk/ref/Options-Substitution-Notation
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

LabTalk Scripting Guide

96

Syntax Description

%([workbookName]sheet!column, @Woption,

varOrNodeName)

Return variable or Node information

without format

%([workbookName]sheet!column, @Woption,

varOrNodeName, [format])

Return variable or Node information with

format

@Woptions explanation

Option Return Value

@W
Returns the information in varOrNodeName under page.info or User Tree in the Workbook

Organizer. No need to specify Sheet!Column.

@WFn
Returns the information in varOrNodeName under the nth Imported Files in the Workbook

Organizer. No need to specify Sheet!Column.

@WS
Returns the information in varOrNodeName of the nth sheet under Data Sheets in the

Workbook Organizer. No need to specify Column.

@WC
Returns the information in varOrNodeName of User Tree at the column level, which can be

seen in the Column Properties dialog.

One way to see this syntax at work is to import a file into a workbook, then use the Text tool to

start a text label in the gray space to the right of the worksheet columns. Right-click and choose

Insert Info Variable. Click the Info tab, expand a node under SYSTEM.IMPORT, choose a

https://www.originlab.com/doc/Origin-Help/Wkbk-Organizer
https://www.originlab.com/doc/Origin-Help/Wkbk-Organizer
https://www.originlab.com/doc/Origin-Help/Wkbk-Organizer
https://www.originlab.com/doc/Origin-Help/Wkbk-Organizer
https://www.originlab.com/doc/Origin-Help/Wkbk-Organizer
https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-UserTree-Tab

Language Fundamentals

97

variable and click Insert. Here, you'll be able to see the "@W" option in use, as well as the

information stored in varOrNodeName. When you close the Insert Variables dialog and click

outside the label, the notation is resolved to create a text label that displays workbook metadata.

Examples The following example shows how to access imported file information, extracted variable during

import, and user-trees stored on page (book), sheet and column levels.

Use Data: Import from File: Import Wizard.... Pick the 3 S*.dat under \Samples\Import and Export\, and

choose Import Mode to Start New Sheets to import 3 files into Book1. These files will be imported into workbook

with some user variable extracted. Expand Workbook Organizer.

page.info node: only contains last imported file related information and variable. @W

User Tree node: Add User Tree and node on page(book) level. Access by @W

Imported Files: Add variable on Imported files level. Access by @WFn

Data Sheets: Add User Tree and node on sheet level. Access by @WS

Access file and extracted variable info. of last imported files

//Returns last imported filename

type %(%H,@W,system.import.filename$);

//Returns last imported filedate using mm/dd/yyyy format

type %(Book1, @W,system.import.filedate, D0);

//Return the BatchNo variable extracted in the last imported file

type %(Book1, @W,user.variables.batchno);

//Return the Sample variable extracted in the last imported file

type %(Book1, @W,user.variables.sampleID$);

In Workbook Organizer, right click User Tree node on the left, choose Add Tree to add a tree named Cate.

Select User Tree -> Cate on the left. Add two nodes. a numeric node with name Depth. a text node with name

LabTalk Scripting Guide

98

"Direction". Please don't enter Label for tree and nodes since otherwise that label shows in Workbook Organizer

instead of name, which will be confusing to user. Set Depth value to be 127.2, set Direction value as East

//Returns Depth and Direction info under User Tree -> Cate

type %(%H,@W,tree.cate.depth, .0); //format to no decimal places

type %(%H,@W,tree.cate.direction$); //use $ at the end for string

In Workbook Organizer, go to Imported Files -> S21-235-07.dat (2nd one) to take a look of trees and nodes of

the file.

//Returns file information and extracted variable of 2nd imported file

//Don't add $ at the end of variable or node name

type %(%H,@WF2,info.filename); //get 2nd imported file name

type %(%H,@WF2,header); //don't add $ for string varible

type %(%H,@WF2,Variables.Header.noofpoints); //get extracted varible No. of

points info

type %(%H,@WF2,Variables.FileName.SampleID$); //get extracted varible

SampleID

In Workbook Organizer, go to Data Sheets -> Trial Run2 (2nd sheet) Right click User Tree node and add a tree

named Condition. Add a numeric node named Temp and value 98.6. Add a text node called Result with value

Failed

//Returns Depth and Direction info under User Tree -> Cate

type %("Trial Run 2"!,@WS,tree.condition.temp); //skipped book info. if it's

current book

type %([%H]2!,@WS,tree.condition.result$); //using sheet index, add $ at the

end for string

Create User Tree on column level and access by @WC

With Trial Run 1 worksheet active, double click column D header to open Column Properties dialog. Go to

User Tree tab. Right click to add a tree namedMachine. Add a numeric node named Speed and value 42.65.

Add a text node called Type with value MD4

//Return Type info under Column User Tree

type %([%H]"Trial Run 1"!"Position",@WC,tree.Machine.type$); //using long

name of sheet and column

//If Position not quoted, first search column short name, if not found,

search long name

type %([%H]1!Position,@WC,tree.Machine.type$);

//Return Speed info under Column User Tree

//Using sheet and column index, skip book info. if it's current book

type %(1!4,@WC,tree.Machine.speed)

//using sheet index and column short name, format to show 0 decimal places

type %(1!D,@WC,tree.Machine.speed, .0)

4.3.3.3.5 Legend and Axis Title Substitution

Language Fundamentals

99

%(PlotSpecifier[, @option, argument1, argument2, ...])

The first argument must start with number or ? to differentiate it from the other %() notations, e.g. worksheet

substitution notation, where the 1st argument is usually a workbook&worksheet specifier.

PlotSpecifier Description Example

<plotIndex>

nth plot in current layer,

Y info for 2D and Z info

for 3D

 %(3) //current

layer, 3rd plot's Y

info

[layerIndex.]<plotIndex>

nth plot in specified

layer, Y info for 2D and

Z info for 3D

 %(2.3) // 2nd

layer, 3rd plot's Y

info.

<plotindex><plotdesignation>
X, Y or Z of nth plot in

current layer.

 %(1X) //current

layer, 1st plot's X

info

[layerIndex.]<plotindex><plotdesignation>
X, Y or Z of nth plot in

specified layer.

 %(2.1X) //2nd

layer, 1st plot's X

info

?<plotdesignation>

X, Y or Z of auto

assigned plot index in

current layer

 %(?Y) //current

layer, 1st plot Y

info by default,

e.g. see Y axis title

[layerIndex.]?<plotdesignation>

X, Y or Z of auto

assigned plot index in

specified layer

 %(2.?Y) //2nd

layer, 1st plot Y

info by default

All plot related options from List of "@" Options can be used. Some examples:

@Option Arguments Description Example

https://www.originlab.com/doc/LabTalk/ref/Options-Substitution-Notation

LabTalk Scripting Guide

100

@C NA
Column Short Name.

Equivalent to @LS.
%(1,@C)

@GF NA Graph's filter condition. %(1,@GF)

@GFN NA
Graph's filter condition

with column name.
%(1,@GFN)

@LD"name" NA

The user-defined

parameter of specified

name.

%(1,@LD"RunNo")

@LG NA

Long Name (if not

available then Short

Name) and Units (if

present). Equivalent to

@U.

%(1,@LG)

@V RowIndex

The data value at

specified row index in

plot's Y data

 %(1Y, @V, 2)

the 1st plot's Y data's

2nd row value

@WT
ColIndex/ColName,

RowIndex[, format]

The sheet cell value

specified by the column

index (or short name)

and row index, with

optional format (see

Origin Formats).

%(1, @WT, 2, 3)

the cell value at column

2, row 3 in the source

sheet (worksheet,

matrix) of the 1st data

plot.

$(%(1, @WT, 2, 3,.4)

* 100, .2)

Because it's numeric,

get column 2, row 3

value, keep 4 decimal

https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

Language Fundamentals

101

places, times by 100,

then format to show 2

decimal places

%(1, @WT, B, 3)

the cell value at column

B, row 3 in the source

worksheet of the 1st

data plot.

%(1, @WT, B, 3, .0)

the cell value at column

B, row 3 in the source

worksheet of the 1st

data plot, show 0

decimal places.

@WT

ColIndex/ColName,

ColLabelRowCharacter[,

format]

The worksheet cell

value specified by the

column index (or short

name) and column

label row character,

with optional format for

numeric value (see

Origin Formats).

%(1, @WT, B, C)

Similar to B[C]$, this

will get the Comment

from column B, in the

source worksheet of

the 1st data plot.

%(1, @WT, 2, D1, *3)

get 1st user-defined

parameter info. from

2nd column, in the

source worksheet of

1st data plot. Suppose

it's numeric value,

format to show 3

significant digits

Examples

// Display 1st user parameter info. of 1st plot (Y data for 2d by default)

legend.text$ = \l(1) %(1, @LD1); //Ok to skip quotes on right if LHS ends

with $

https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters

LabTalk Scripting Guide

102

//Display 1st plot's Y dataset long name vs X dataset long name

legend.text$ = "\l(1) %(1Y, @LA) vs %(1X, @LA)";

//Suppose 3 plots are from different sheets,

//Display worksheet name for each plot

legend.text$="\l(1) %(1,@WS)

\l(2) %(2,@WS)

\l(3) %(3,@WS)"

There is drawback to last script above since all legends must be included in the

legend.text$. The legendupdate X-Function provides an easier and more comprehensive

way to modify or redraw a legend from Script! E.g.

legendupdate mode:=custom custom:=@WS

The %(?Y) for Axis title is a special syntax that allows the text label to default to a pre-specified data plot index

(which can be set in Plot Details: Legends/Titles: Data Plot Index for Auto Axis Titles), instead of an index

(1, 2, ... n) that you supply. To display Y data long name followed by units in <> as left Y axis title, use:

yl.text$ = %(?Y,@(@LL<@LU>));

For more in-depth discussions of graph legends, see the LabTalk Reference page:

Legend Substitution Notation

4.3.3.3.6 Keyword Substitution

The %() substitution notation is also used to insert non-printing characters (also called control characters), such

as tabs or carriage returns into strings. Use LabTalk keywords to access these non-printing characters. For

example,

// Insert a carriage-return, line-feed (CRLF) into a string:

string ss$ = "Hello%(CRLF)Goodbye";

ss$=; // ANS: 'Hello', 'Goodbye' printed on separate lines

// Can be typed directly

type ss$;

// But use %() substitution when mixed with literals

ty I say %(ss$)%(CRLF)to you;

Show legends horizontally, separated by Tab

legend.text$="\l(1) %(1)%(TAB)\l(2) %(2)%(TAB)\l(3) %(3)";

4.3.3.4 $() Substitution - Numeric to String Conversion

numeric-string-conversion

4.3.3.4.1 Syntax

The $() notation is used for numeric to string conversion. This notation evaluates the given expression at run-

time, converts the result to a numeric string, and then substitutes the string for itself.

https://www.originlab.com/doc/LabTalk/guide/Creating-and-Accessing-Graphical-objs
https://www.originlab.com/doc/Origin-Help/PD-Dialog-LegendTitles-Tab
https://www.originlab.com/doc/LabTalk/ref/Legend-Substitution-Notation
https://www.originlab.com/doc/LabTalk/ref/LT-Keywords

Language Fundamentals

103

The notation has the following form:

$(expression [, format])

where the format is optional or can be Origin format, C-language format, or combined Origin and C-Language

format as described in the following sections.

Expression can be one of the following:

Expression Format Example Description

number NA type $(4.567); //ANS:

4.567

Display the number with up to

14 significant digits

numeric

variable
.3

xx=1.2345678;

type $(xx, .3); //ANS:

1.235

Display the variable xx with 3

decimal places

numeric object

property
NA

//if a 2-column

workbook is active

type "there are

$(wks.ncols) columns";

//ANS: there are 2

columns

Display wks.ncols value

dataset

variable
NA

dataset ds1={2,4,6};

//dataset variable

type $(ds1); //ANS: 2 4

6

Display ds1 with space

separated list

range variable *3

//fill column A with

0.00012345, 6.789, 20.2

range ra=col(A);

//range variable

type $(ra, *3); //ANS:

1.23E-4 6.79, 20.2

Display ra with 3 significant

digits

math

expression
.0,

xx = 1234.5678;

type $(xx*4, .0,);

//ANS: 4,938

Display expression result with

0 decimal places and comma

separator

4.3.3.4.2 Format

We use type command to show effect of all formats.

4.3.3.4.2.1 Default Format

LabTalk Scripting Guide

104

The square brackets indicate that format is an optional argument for the $() substitution notation. No no format is

specified, Origin will carry expression to the number of decimal digits or significant digits specified by the @SD

system variable (which default value is 14). For example:

double aa = 3.14159265358979323846;

type $(aa); // ANS: 3.1415926535898

4.3.3.4.2.2 Origin Formats

Origin supports custom formatting of numeric values in the worksheet or in text labels. For a full list of numeric

format options, see Reference Tables: Origin Formats.

Format Description Example

*n Display n significant digits
xx=1.23456;

type "xx = $(xx, *2)";

//ANS: xx=1.2

.n Display n decimal places
xx=1.23456;

type "xx = $(xx, .2)";

//ANS: xx=1.23

n
Display n significant digits,

truncating trailing zeros

xx = 1.10001;

type "xx = $(xx,

4)"; //ANS: xx=1.1

.n,
Display n decimal places, using

comma separator (US, UK, etc.)

xx = 1234.5678;

type "xx = $(xx,

.2,)"; //ANS:

xx=1,234.57

xx= 10000;

type "$(xx, .0,)";

//ANS: 10,000

E.n
Display n decimal places, in

engineering format

xx=203465987;

type "xx = $(xx,

E*3)"; //ANS: xx=203M

S*n
Display n significant digits in

scientific notation of the form 1E3

xx=203465987;

type "xx = $(xx,

S*3)"; //ANS:

xx=2.03E+08

D<format>

Display in custom date format,

where <format> is either the

index number (counting from 0) of

type

"$(date(7/20/2009),

D1)"; // ANS: Monday,

July 20, 2009

https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/
https://www.originlab.com/doc/Origin-Help/LinkVar-TextLabel
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

Language Fundamentals

105

the format, starting from the top of

the Column Properties Display

list; or a string built using these

date and time format specifiers.

type

"$(date(7/20/2009),

Dyyyy'-'MM'-'dd)";

//ANS: 2009-07-20

DT=2459858.6946202;

//assign a julian date

to DT

type "DT = $(DT, D1)";

// ANS: DT = Thursday,

October 6, 2022

type "Now= $(@D, DMM-

dd-yyyy h:mm:ss tt)";

// @D: current

date&time

T<format>

Display in custom time format,

where <format> is either the

index number (counting from 0) of

the format, starting from the top of

the Column Properties Display

list; or a string built using these

time format specifiers.

type

"$(time(14:31:04),

T4)"; //ANS: 02 PM

type

"$(time(14:31:04),

Thh'.'mm'.'ss)";

//ANS: 02.31.04

DT=2459858.6946202;

type "DT = $(DT, T0)";

// ANS: DT = 16:40

type "Now = $(@D,

THH:mm:ss.##)"; // @D:

current date&time

C<format>

Display month or day of week in

Calendar format. <format> is

either M# (month), or D#=day of

the week. # can be 0 (3

characters), 1 (full characters) or

2 (1 character)

type "$(12, CM0)"; //

ANS: Dec

type "$(3, CD1)"; //

ANS: Wednesday

#n or ##

Display an integer to n places,

zero padding where necessary.

Or use n number of #'s to refer to

nth places

xx=45;

type "xx=$(xx, #5)";

//ANS: 00045

type "xx=$(xx, ###)";

//AnS: 045

<prefix>##<sep>###<suffix>

Display a number by specifying a

separator (<sep>) between digits

and optionally add

prefix(<prefix>) and/or suffix

(<suffix>). One # symbol

xx=56000;

type "xx=$(xx,

##+###)"; //ANS:

xx=56+000

xx=4000;

type "xx=$(xx,

##+##M)"; //ANS:

https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-Properties-Tab
https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-Properties-Tab
https://www.originlab.com/doc/LabTalk/ref/Date-and-Time-Format-Specifiers
https://www.originlab.com/doc/LabTalk/ref/Date-and-Time-Format-Specifiers
https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-Properties-Tab
https://www.originlab.com/doc/Origin-Help/ColProperties-Dialog-Properties-Tab
https://www.originlab.com/doc/LabTalk/ref/Date-and-Time-Format-Specifiers
https://www.originlab.com/doc/LabTalk/ref/Date-and-Time-Format-Specifiers

LabTalk Scripting Guide

106

indicates one digit. The last # in

this expression always refers to

the unit digit. The numbers of # in

both first and second parts can be

varied.

xx=40+00M

#/n

Round and display a number as a

fraction with specified n as

denominator. The numerator and

denominator are separated by a

forward slash /. The number of

digits of numerator is adjusted

accordingly.

AA = 0.334;

type "AA = $(AA, #

##/##)"; //ANS: AA =

1/3

type "AA = $(AA, #

#/8)"; //ANS: AA = 3/8

D[<space>]M[S][F][n]

Display a degree number in the

format of Degree° Minute'

Second", where 1 degree = 60

minutes, and 1 minute = 60

seconds. Space can be inserted

to separate each part. n indicates

decimal places for fractions. F

displays degree number without

symbols and inserting spaces as

separator.

DD = 37.34255;

type "DD = $(DD,

DMS)"; //ANS: DD =

37°20'33"

type "DD = $(DD, D

MS)"; //ANS: DD = 37°

20' 33"

type "DD = $(DD,

DMSF)"; //ANS: DD = 37

20 33

type "DD = $(DD,

DMF1)"; //ANS: DD = 37

20.6

4.3.3.4.2.3 C-Language Formats

The format portion of the $() notation also supports C-language formatting statements.

Option Un/Signed Output
Input

Range
Example

d, i SIGNED

Integer values (of

decimal or integer

value)

-2^31 --

2^31 -1

double nn = -247.56;

type "Value:

$(nn,%d)"; // ANS: -

247

Language Fundamentals

107

f, e, E,

g, G
SIGNED

Decimal, scientific,

decimal-or-scientific

+/-1e290

-- +/-1e-

290

double nn =

1.23456e5;

type "Values:

$(nn, %9.4f),

$(nn, %9.4E),

$(nn, %g)";

// ANS: 123456.0000,

1.2346E+005, 123456

double nn =

1.23456e6;

type "Values:

$(nn, %9.4f),

$(nn, %9.4E),

$(nn, %g)";

// ANS: 123456.0000,

1.2346E+006,

1.23456e+006

o, u, x,

X
UNSIGNED

Octal, Integer,

hexadecimal,

HEXADECIMAL

-2^31 --

2^32 - 1

double nn = 65551;

type "Values:

$(nn, %o),

$(nn, %u),

$(nn, %X)";

// ANS: 200017,

65551, 1000F

Note: In the last category, negative values will be expressed as two's complement.

4.3.3.4.2.4 Combining Origin and C-language Formats

Origin supports the use of formats E and S along with C-language format specifiers. For example:

xx = 1e6;

type "xx = $(xx, E%4.2f)"; // ANS: 1.00M

4.3.3.4.3 Display Negative Values

Most of Origin's LabTalk command statements take options and options are always preceded by the dash "-"

character. Therefore the following command will not work

k=-5;

type $(k); //intepret as type -5 and think -5 is an option of ''type''

command

Therefore you must protect the - by enclosing the substitution in quotes or parentheses. For example:

K = -5;

type "$(K)"; // This works

type ($(K)); // This works

4.3.3.4.4 Variable Naming with $()

In assignment statements, the $() notation is substitution-processed and resolved to a value regardless of which

side of the assignment operator it is located.

LabTalk Scripting Guide

108

//create variable A with value 2

A = 2; //Define variable A with value 2.

//Create a variable A2 with the value 3

A$(A) = 3; $(A) is resolved first so LHS is A2

//verify the result

A2=;

A$(A)=;

Also when variable names are used for range or dataset type argument in functions, $() substitution is needed to

resolve it first.

//fill column 1 to 5 with values

col(1)=data(1,100);

int nn = 5;

loop(ii,2,nn)

{

 wcol(ii)=normal(100);

}

//Example of using variable in X Function smooth

loop(ii,2,nn)

{

 //smooth on the iith column $(ii)

 smooth $(ii) method:=aav npts:=10;

}

//Example of using variable in LabTalk function sum()

lastcolumn=wks.ncols;

//add a column after last one and set the value to be sum of last column

col($(lastcolumn+1))= sum($(lastcolumn));

col($(lastcolumn+1))[L]$= sum; //set long name of column

--- For more examples of $() substitution, see Numeric to String conversion.

4.3.3.5 %n Macro and Script Substitution

macro-script-substitution

Substitutions of the form %n, where n is an integer 1-5 (up to five arguments can be passed to a macro or a

script), are used for arguments passed into macros or sections of script.

In the following example, the script defines a macro that takes two arguments (%1 and %2), adds them, and

outputs the sum to a dialog box:

def add {type -b "(%1 + %2) = $(%1 + %2)"}

Once defined, the macro can be run by typing:

add -13 27;

https://www.originlab.com/doc/LabTalk/guide/Converting-to-String
https://www.originlab.com/doc/LabTalk/guide/Macros
https://www.originlab.com/doc/LabTalk/guide/From-Files
https://www.originlab.com/doc/LabTalk/guide/Macros

Language Fundamentals

109

The output string reads:

(-13 + 27) = 14

since the expression $(%1 + %2) resolves to 14.

4.3.3.6 Notations and syntax used in labeling plotted data

PlotLabel-LTNotation

In their simplest form, plot data labels might display unmodified coordinate values taken directly from the source

worksheet cell. However, plot labels can be customized to show, for instance, coordinate values in some

alternate numeric format or to display some bit of metadata associated with the data plot.

Custom plot labels are created by combining fixed strings with formatting syntax and notations, and entering this

into Format String edit box in the Label tab of the Plot Details dialog. These custom labeling instructions can

apply to specified points only; or to every point in a plot.

4.3.3.6.1 Predefined characters

These characters are used to represent the currently selected point(s). They can be used alone (e.g. Label

Form = (X,Y)) or can be elements in more complex expressions (e.g. Label Form = Custom and Format String

= $(wcol(n)[i],.4)).

Characters Description

n, i column and row indices in the source worksheet

x, y, z data point's X, Y, Z coordinates respectively

ix, iy data point's column and row indices when the plot is created from a matrix.

zh data point's Zh coordinate in the 3D ternary

wcol and col are used to refer to a certain column. wcol(n) takes numeric expression as

argument and n is the dynamic variable that represents the current column index.

4.3.3.6.2 Syntax for formatting of Numeric and Date-Time data

https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab
https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab
https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab

LabTalk Scripting Guide

110

By default, labels on data points will display in the format of the source workbook data. However, the internally-

stored numeric value in the workbook can be modified to display in any number of ways on the data plot.

The following image shows use of a custom Format String (the Label tab of Plot Details), to apply a different

date-time format than that used in the source book.

4.3.3.6.2.1 Formatting Numeric data

For Custom formats that can be applied to numeric data, see the following links:

Significant Digits, Decimal Places, Scientific and Engineering Formats

Fractions

Percentages

pi

Degrees, Minutes, Seconds

Hexadecimal

Other Prefix and Suffix Units

4.3.3.6.2.2 Formatting Date-Time data

For Custom formats that can be applied to date-time data, see the following links:

Date and Time

4.3.3.6.3 Labeling Plots with Metadata (Column Label Row Data)

https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

Language Fundamentals

111

In some instances, you may prefer to use plot metadata to label only the last data point in one or more curves, as

an alternative to a default graph legend.

When labeling a curve in the Label tab of Plot Details, there are two syntaxes that you can use.

You can use the %(wcol(n)[]$) syntax with these column label row characters.

You can use the %(?,@) legend syntax with these legend @options

Taking the following worksheet as an example:

Column Label Row
 %(wcol(n)[]$)

syntax

 %(?,@) legend

syntax
What is returned

Short Name %(wcol(n)[G]$) %(?,@LS) B

Long Name %(wcol(n)[L]$) %(?,@LL)
Delta

Temperature

Units %(wcol(n)[U]$) %(?,@LU) K

Comments %(wcol(n)[C]$) %(?,@LC) YBCO milled

https://www.originlab.com/doc/Quick-Help/label-line-plot-legend-entry
https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Legend-Substitution-Notation

LabTalk Scripting Guide

112

System Parameter %(wcol(n)[P1]$) %(?,@LP1) Version 2.1

User-defined

Parameters

%(wcol(n)[D1]$)

%(wcol(n)[Time]$)
%(?,@LD1) 03:00:39 PM

Note that system parameters are always named as Parameters, Parameters 2, etc.

whereas user-defined parameters can have assigned names such as UserDefined,

UserDefined1 or custom names such as Time, RunNo, etc.

4.3.3.6.4 Plot Labeling Examples

When you use Plot Details Label tab controls to label your plots, set the Label Form to Custom and choose or

enter a Format String into the accompanying combo box.

For help with Numeric and Date-Time formats, see Origin Formats.

Example Format Strings and their application:

Format String Application

$(wcol(n)[i],*4)
Use the numeric value in ith row of the current Y column

as label. The value shows in 4 significant digits.

My Label:

$(col(Pressure)[i],.3)

Literal text "My Label:" followed by value in ith row of

Pressure column will be used as label. The value shows

in 3 decimal places.

$(col(1)[i],D2) Use the date value in ith row of the first column as label.

https://www.originlab.com/doc/Origin-Help/PD-Dialog-Label2-Tab
https://www.originlab.com/doc/LabTalk/ref/Origin-Formats

Language Fundamentals

113

The date value is displayed in the 3rd format of Display

drop down list when you select Date to Format in the

Format Cells dialog.

$(col(2)[i], T15)

Use the time value in ith row of the second column as

label. The Time value is displayed in the 16rd format of

Display drop down list when you select Time to Format

in the Format Cells dialog.

 %(wcol(n+1)[i]$) %(x$)
Use the text in ith row of n+1th column combined with the

text of X value as label. n is the current Y column index.

 %(book2,iy,ix)

When you create a graph from a matrix, ix and iy refers to

the current data point's X and Y indices in the source

matrixbook. You can put the labels into a workbook,

book2 in this example. %(book2,iy,ix) will use the value in

cell of iy column and ix row in book2, sheet1 as current

data point's label.

 %([book1]sheet2,iy,ix)
Similar to %(book2,iy,ix) above. But you can specify the

worksheet in this example.

 %(MBook2,ix,iy)

Use value in cell (ix, iy) of matrixbook MBook2 (the 1st

sheet and 1st object) as label. ix and iy are the data

point's X and Y indices in the source matrix.

$(Y)%(CRLF)$(p,0)%

When you create a stacked graph, you can use this string

to display Y value and the corresponding percentile as

label. "%(CRLF)" is used to separated the label into two

rows. The percentile is shown in integer.

 %(?,@LL) Use current Y column's LongName as label.

$(Y*100, .1)% Show decimal Y values as percentages, to 1 decimal

LabTalk Scripting Guide

114

place.

4.3.4 LabTalk Objects

LT-objs

LabTalk script programming provides access to various objects and their properties & methods. These objects

include components of the Origin project that are visible in the graphical interface, such as worksheets columns

and data plots in graphs. Such objects are referred to as Origin Objects, and are the subject of the next section,

Origin Objects.

The collection of objects also includes other objects that are not visible in the interface, such as the INI object or

the System object. The entire set of objects accessible from LabTalk script is found in Alphabetical Listing of

Objects.

In general, every object has properties that describe it, and methods that operate on it. What those properties

and methods are depend on the particular object. For instance, a data column will have different properties than

a graph, and the operations you perform on each will be different as well. In either case, we need a general

syntax for accessing an object's properties and calling it's methods. These are summarized below.

Also, because objects can be renamed, and objects of different scope may even share a name, object names

can at times be ambiguous identifiers. For that reason, each object is assigned a unique universal identifier (UID)

by Origin and functions are provided to go back and forth between an object's name and it's UID.

4.3.4.1 Properties

A property either sets or returns a number or a text string associated with an object with the following syntax:

objName.property (For numeric properties)

objName.property$ (For text properties)

Where objName is the name of the object; property is a valid property for the type of object. When accessing text

objects, you should add the $ symbol after property.

For example, you can set object properties in the following way:

// Set the number of columns on the active worksheet to 10

wks.ncols = 10;

// Rename the active worksheet 'MySheet'

wks.name$ = MySheet;

Or you can get property values:

pn$ = page.name$; // Get that active page name

layer.x.from = ; // Get and display the start value of the x-axis

4.3.4.2 Methods

https://www.originlab.com/doc/LabTalk/guide/Origin-objs
https://www.originlab.com/doc/LabTalk/ref/Alphabetical-Listing-of-objs
https://www.originlab.com/doc/LabTalk/ref/Alphabetical-Listing-of-objs
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

Language Fundamentals

115

Methods are a form of immediate command. When executed, they carry out a function related to the object and

return a value. Object methods use the following syntax:

objName.method(arguments)

Where objName is the name of the object; method is a valid method for the type of object; and arguments

determine how the method functions. Some arguments are optional and some methods do not require any

arguments. However, the parentheses "()" must be included in every object method statement, even if their

contents are empty.

For example, the following code uses the section method of the run object to call the Main section within a

script named computeCircle, and passes it three arguments:

double RR = 4.5;

string PA$ = "Perimeter and Area";

run.section(computeCircle, Main, PA$ 3.14 R);

4.3.4.3 Object Name and Universal Identifier (UID)

Each object has a short name, a long name, and most objects also have a universal identifier (UID). Both the

short name and long name can be changed, but an object's UID will stay the same within a project (also known

as an OPJ file). An object's UID can change if you append one project to another one, at which time all object

UID's will go through a refresh process to ensure the uniquness of each object in the newly combined project.

Since many LabTalk functions require the name of an object as argument, and since an object can be renamed,

the following functions are provided to convert between the two:

nVal = range2uid(rangeName$)

str$ = uid2name(nVal)$

str$ = uid2range(nVal)$

A related function is NameOf(range$) with the general syntax:

str$ = nameof(rangeName$)

Its use is demonstrated in the following example:

// Establish a range variable for column 1 (in Book1, Sheet1)

range ra=[Book1]1!1;

// Get the internal name associated with that range

string na$ = NameOf(ra)$;

// na$ will be 'Book1_A'

na$ =;

// Get the UID given the internal name

int nDataSetUID = range2uid(na$);

Besides a range name, the UID can be recovered from the names of columns, sheets, or books themselves:

// Return the UID of column 2

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/NameOf-func

LabTalk Scripting Guide

116

int nColUID = range2uid(col(2));

// Return the UID of a sheet or layer

int nLayerUID = range2uid([book2]Sheet3!);

// Return the UID of the active sheet or layer

nLayerUID =range2uid(!);

// Return the UID of sheet3 of the active workbook

nLayerUID =range2uid(sheet3!);

// Return the UID of the column with index 'jj' within a specific sheet

nColUID = range2uid([Book1]sheet2!wcol(jj));

Additionally, the range2uid function works with the system variable %C, which holds the name of the active data

plot or data column:

// Return the UID of the active data plot or selected column

nDataSetUID = range2uid(%C);

4.3.4.3.1 Getting Page and Layer from a Range Variable

Given a range variable, you can get its corresponding Page and Layer UID. The following code shows how to

make a hidden plot from XY data in the current sheet and to obtain the hidden plot's graph page name:

plotxy (1,2) hide:=1; // plot A(x)B(y) to a new hidden plot

range aa=plotxy.ogl$;

int uid=aa.GetPage();

string str$=uid2Name(uid)$;

type "Resulting graph name is %(str$)";

4.3.4.3.2 Getting Book And Sheet from a Plot

You can also get a data plot's related workbook and worksheet as range variables. The following code (requires

Origin 8 SR2) shows how to get the Active plot (%C) as a column range and then retrieve from it the

corresponding worksheet and book variables allowing complete access to the plot data:

// col range for active plot, -w switch default to get the Y column

range -w aa=%C;

// wks range for the sheet the column belongs to

range ss = uid2range(aa.GetLayer())$;

// show sheet name

ss.name$=;

// book range from that col

range bb = uid2range(aa.GetPage())$;

// show book name

bb.name$=;

There is also a simpler way to directly use the range string return from GetLayer and GetPage in string form:

// col range for active plot, -w switch default to get the Y column

range -w aa=%C;

// sheet range string for the sheet the column belongs to

range ss = aa.GetLayer()$;

// show sheet name

ss.name$=;

// book range string from that col

range bb = aa.GetPage()$;

// show book name

https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/guide/String-registers

Language Fundamentals

117

bb.name$=;

When you create a range mapped to a page, the range variable has the properties of a PAGE (Object).

When you create a range mapped to a graph layer, the range variable has the properties of a LAYER (Object).

When you create a range mapped to a workbook layer (a worksheet or matrixsheet), the range variable has the

properties of a WKS (Object).

4.3.5 Origin Objects

Origin-objs

There is a set of LabTalk Objects that is so integral to scripting in Origin that we give them a separate name:

Origin Objects. These objects are visible in the graphical interface, and will be saved in an Origin project file

(.OPJ). Origin Objects are the primary components of your Origin Project. They are the following:

Page (Workbook/Graph Window/Matrix Book) Object

Worksheet Object

Column Object

Layer Object

Matrix Object

Dataset Object

Graphic Object

Except loose datasets, Origin objects can be organized into three hierarchies:

Workbook -> Worksheet -> Column

Matrix Book -> Matrix Sheet -> Matrix Object

Graph Window -> Layer -> Dataplot

4.3.6 X-Functions Introduction

Brief-XF-Introduction

The X-Function is a new feature, introduced in Origin 8, that provides a framework for building Origin tools. Most

X-Functions can be accessed from LabTalk script to perform tasks like object manipulation or data analysis.

The general syntax for issuing an X-Function command from script is as follows, where square-brackets []

indicate optional statements:

xfname [-options] arg1:=value arg2:=value ... argN:=value;

https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/LabTalk/ref/Mat-obj
https://www.originlab.com/doc/LabTalk/ref/Datasets
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs

LabTalk Scripting Guide

118

Note that when running X-Functions, Origin uses a combined colon-equal symbol, ":=", to assign argument

values. For example, to perform a simple linear fit, the fitlr X-Function is used:

// Data to be fit, Col(A) and Col(B) of the active worksheet,

// is assigned, using :=, to the input variable 'iy'

fitlr iy:=(col(a), col(b));

Also note that, while most X-Functions have optional arguments, it is often possible to call an X-Function with no

arguments, in which case Origin uses default values and settings. For example, to create a new workbook, call

the newbook X-Function:

newbook;

Since X-Functions are easy and useful to run, we will use many of them in the following script examples. Details

on the options (including getting help, opening the dialog and creating auto-update output) and arguments for

running X-Functions are discussed in the Calling X-Functions and Origin C Functions section.

4.4 LabTalk Script Precedence

LT-Script-Precedence

Now that we know that there are several objects, like Macros, Origin C functions, X-Functions, OGS files, etc.

So, we should be careful to avoid naming conflicts between these objects, which could cause confusion and lead

to incorrect results. If duplicate names are unavoidable, LabTalk will run objects according to set of precedence

rules. The following list of LabTalk objects are arranged top to bottom in descending precedence.

Macros

OGS Files

X-Functions

LT object methods, like run.file(FileName)

LT callable Origin C functions

LT commands (can be abbreviated)

https://www.originlab.com/doc/X-Function/ref/fitLR
https://www.originlab.com/doc/X-Function/ref/newbook
https://www.originlab.com/doc/LabTalk/guide/Calling-XFs-and-OC-Functions

119

5 Calling X-Functions and Origin C Functions

5.1 Calling X-Functions and Origin C Functions

Calling-XFs-and-OC-Functions

This chapter covers how to call X-Functions and Origin C functions from LabTalk.

• X-Functions

• Origin C Functions

5.2 X-Functions

5.2.1 X-Functions

XFs

X-Functions are a primary tool for executing tasks and tapping into Origin features from your LabTalk scripts.

The following sections outline the details that will help you recognize, understand, and utilize X-Functions in

LabTalk.

This chapter covers the following topics:

• X-Functions Overview

• X-Function Input and Output

• X-Function Execution Options

• X-Function Exception Handling

5.2.2 X-Functions Overview

XFs-Overview

X-Functions provide a uniform way to access nearly all of Origin's capabilities from your LabTalk scripts. The

best way to get started using X-Functions is to follow the many examples that use them, and then browse the

lists of X-Functions accessible from script provided in the LabTalk-Supported X-Functions section.

5.2.2.1 Syntax

You can recognize X-Functions in script examples from their unique syntax

https://www.originlab.com/doc/LabTalk/guide/XFs
https://www.originlab.com/doc/LabTalk/guide/OC-Functions
https://www.originlab.com/doc/LabTalk/guide/XFs-Overview
https://www.originlab.com/doc/LabTalk/guide/XF-Input-and-Output
https://www.originlab.com/doc/LabTalk/guide/XF-Execution-Options
https://www.originlab.com/doc/LabTalk/guide/XF-Exception-Handling
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs

LabTalk Scripting Guide

120

xFunctionName [argument1:=<range,name or value> argument2:=<range,name or value> ...][-switch];

Or run lx XFunctionName to check if it's an X-Function, e.g. lx impASC

General Notes:

The arguments can be input, output or parameters needed

There can be multiple inputs, outputs, and parameters

X-Function can be called with subset of arguments since usually there are default value for each argument

Notes on X-Function Argument Order:

By default, X-Functions expect their input and output arguments to appear in a particular order. Run X-Function

-h to view the Help

If the arguments are supplied in the order specified by Origin, there is no need to type out the argument names.

If the argument names are explicitly typed, arguments can be supplied in any order.

You can mix handling of arguments as long as omitted arguments come first in the specified order, followed by

explicitly typed arguments in any order.

The argument name can be shortened by trimming characters from the end of the argument name, but the

shortened name needs to be unique.

The following examples use the fitpoly X-Function to illustrate these points.

5.2.2.2 Examples

Run xfunctionname -hv to check the arguments and orders

fitpoly -hv; //will dump all variables

Variables:

 iy: [in]

 polyorder: [in]

 fixint: [in]

 intercept: [in]

 coef: [out]

 oy: [out]

 N: [out]

 AdjRSq: [out]

 RSqCOD: [out]

 err: [out]

Origin would expect the arguments listed in Variables section when calling fitpoly

fitpoly iy:=XYrange polyorder:=int fixint:=int intercept:=double coef:=vector oy:=XYRange N:=int adjRSq:=double

RSqCOD:=double err:=vector;

Calling X-Functions and Origin C Functions

121

5.2.2.2.1 Follow the argument order and explicitly write argument names

fitpoly iy:=(1,2) polyorder:=4 fixint:=0 intercept:=0 coef:=3 oy:=(4,5)

N:=100 AdjRSq:=adjr2 RSqCOD:=cod err:=6;

tells Origin to

iy:=(1,2) - fit XY data (x in column 1 and y in column 2 in active sheet),

polyorder:=4 - with 4th order,

fixint:=0 - intercept not fixed,

intercept:=0 - initial intercept value 0,

coef:=3 - put coordinates in 3rd column in active sheet,

oy:=(4,5) - put XY data after fit (x in column 4 and y in column 5 in active sheet),

N:=100 - number of points in output XY data is 100

AdjRSq:=adjr2 - put calculated AdjRSq value to variable adjr2,

RSqCOD:=cod - put calculated RSqCOD value to variable cod,

err:=6 - put Polynomial Coefficients Errors in column 6 in active sheet

5.2.2.2.2 Argument names can be skipped if following the argument order

fitpoly (1,2) 4 0 0 3 (4,5) 100 adjr2 cod 6;

The values will be assigned to corresponding arguments. E.g. (1,2) will be assigned to iy, 4 will be assigned to

polyorder, and so on. values in parenthesis, e.g. (1,2) will be assigned to one argument.

5.2.2.2.3 Explicitly write argument names so no need to follow argument order

fitpoly coef:=3 N:=100 polyorder:=4 oy:=(4,5) iy:=(1,2);

for arguments not listed, will use default value, default values in X-Function definition will be used, e.g .

intercept not fixed and starts with 0

AdjRSq, RSqCOD, and Polynomial Coefficients Errors not output

5.2.2.2.4 Partly follow argument order

fitpoly (1,2) 4 oy:=(4,5) N:=100 coef:=3;

Beginning 2 arguments following definition order so argument names are skipped. Then explicitly writ argument

names in random order. If an argument is not listed, default value is used.

5.2.2.2.5 Argument names shortened as long as it's unique in the argument list

LabTalk Scripting Guide

122

The following will work since poly is short for polyorder, co for coef, and o for oy. They are all unique.

fitpoly iy:=(1,2) poly:=4 co:=3 o:=(4,5) N:=100;

The following will produce an error since there are two argument names (iy and intercept) that begin with letter

i. Origin cannot tell which argument i refers to.

fitpoly i:=(1,2) poly:=4 co:=3 o:=(4,5) N:=100;

5.2.2.2.6 Write the X-Function call in multi-lines

fitpoly

coef:=3

N:=100

polyorder:=4

oy:=(4,5)

iy:=(1,2);

The X-Function call can be written in multi-lines as long as the argument names are explicitly typed out.

5.2.2.3 Option Switches

Option switches such as -h or -d allow you to access alternate modes of executing X-functions from your scripts.

They can be used with or without other arguments. The option switch (and its value, where applicable) can be

placed anywhere in the argument list. This table summarizes the primary X-Function option switches:

Name Function

-h Prints the contents of the help file to the Script window.

-e Show the X-Function in X-Function Builder dialog to see how it's defined

-d Brings up a graphical user interface dialog to input parameters.

-s Runs in silent mode; results not sent to Results log.

-t <themeName> Uses a pre-set theme.

-r <value> Sets recalculate mode so output manual/auto update if input changes.

For more on option switches, see the section X-Function Execution Options.

https://www.originlab.com/doc/LabTalk/guide/XF-Execution-Options

Calling X-Functions and Origin C Functions

123

5.2.2.4 Generate Script from Dialog Settings

The easiest way to call an X-Function is with the -d option and then configures its settings using the graphical

user interface (GUI).

In the GUI, once the dialog settings are done, you can generate the corresponding LabTalk script for the

configuration by selecting the Generate Script item in the dialog theme fly-out menu. Then a script which

matches the current GUI settings will be output to script window and you can copy and paste it into a batch OGS

file or some other project for use.

Note: The Dialog Theme box and corresponding Generate Script fly-out menu item are not available from all X-

Function dialogs that you open with the -d option (for instance, compare fitpoly -d with rnormalize -d).

The amount of information that is displayed using the Generate Script feature is controlled

by a System Variable @GAS. By default, @GAS = 0 but this value may be changed via

System Variables... in the Preferences menu.

5.2.3 X-Function Input and Output

XF-Input-and-Output

5.2.3.1 X-Function Variables

 X-Functions accept LabTalk variable types such as int, double, string, etc. (except StringArray) as arguments.

Example: Using string and integer input

https://www.originlab.com/doc/LabTalk/ref/sys-var-list
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

LabTalk Scripting Guide

124

//Start a new workbook with specified book name and 3 sheets

newbook name:="Sensor Analysis" sheet:=2;

//Import one sample data to 1st sheet using direct path with %@JSamples

impasc path:="%@JSamples\Curve Fitting\sensor01.dat"

options.names.FNameToBk:=0;

// Active 2nd sheet and input another data, combining system.path.program$

and literal text as string input

page.active = 2;

impasc fname:="%(system.path.program$)Samples\Curve Fitting\sensor02.dat"

options.names.FNameToBk:=0;

In addition to LabTalk variables, X-Functions also use special variable types for more complicated data

structures.

These special variable types work only as arguments to X-Functions, and are listed in the table below (Please

see the Special Keywords for Range section below for more details about available key words.):

Variable

Type
Description Sample Constructions Comment

XYRange
A combination of X, Y, and

optional Y Error Bar data

(1,2)

<new>

(1,2:end)

(<input>,<new>)

[book2]sheet3!<new>

For graph,

use index

directly to

indicate plot

range

(1,2) means

1st and 2nd

plots on

graph

XYZRange
A combination of X, Y, and

Z data

(1,2,3)

<new>

[book2]sheet3!(1,<new>,<new>)

ReportTree

A Tree based object for a

Hierarchical Report

Must be associated with a

<new>

[<input>]<new>

Calling X-Functions and Origin C Functions

125

worksheet range or a

LabTalk Tree variable

[book2]sheet3

ReportData

A Tree based object for a

collection of vectors

Must be associated with a

worksheet range or a

LabTalk Tree variable.

Unlike ReportTree,

ReportData outputs to a

regular worksheet and thus

can be used to append to

the end of existing data in a

worksheet. All the columns

in a ReportData object

must be grouped together.

<new>

[<input>]<new>

[book2]sheet3

[<input>]<input>!<new>

To understand these variable types better, please refer to the real examples in the ReportData Output section

below, which have shown some concrete usages.

5.2.3.2 Special Keywords for Range

<new>

Adding/Creating a new object

<active>

Use the active object

<input>

Same as the input range in the same X-Function

<same>

Same as the previous variable in the X-Function

<optional>

Indicate the object is optional in input or output

<none>

LabTalk Scripting Guide

126

No object will be created

5.2.3.3 ReportData Output

Many X-Functions generate multiple output vectors in the form of a ReportData object. Typically, a ReportData

object is associated with a worksheet. Usually by default, it's the new sheet of same workbook as input data.

5.2.3.3.1 Sending ReportData to Worksheet

If the output is set to a range, either the above special range, or regular worksheet or column range, or mix of

both, the ReportData will output to a worksheet.

The following script puts ReportData output to worksheets E.g.

//To Sheet2 of Book2

//If the sheet doesn't exist, create it,

//If the sheet already exists, output from the 1st empty column

fft1 rd:=[book2]sheet3!;

// To new sheet of Book2

fft1 rd:=[book2]<new>!;

// To column 4 of active sheet in active book

fft1 rd:=[<active>]<active>!Col(4);

// To a new sheet in input data's workbook

fft1 rd:=[<input>]<new>!;

Subsequent access to the data is more complicated, as you will need to write additional code to find these new

columns.

Realize that output of the ReportData type will contain different amounts (columns) of data

depending on the specific X-Function being used. If you are sending the results to an

existing sheet, be careful not to overwrite existing data with the ReportData columns that

are generated.

5.2.3.3.2 Sending ReportData to Tree Variable

Send ReportData to a Tree variable can avoid overhead of creating an worksheet to hold such output.

If the output is not one of the following range specification forms: [Book]Sheet!, <new>, or <active>, then it's

automatically considered to be a LabTalk Tree name.

E.g. the avecurves X-Function contains a ReportData output with two leaves: aveX and aveY.

The script below does average on data in worksheet and output ReportData to a tree variable. The tree variable

contains two vector leaves. Assign these two leaves to dataset variables and then plot the dataset variables as

line graph. No extra worksheet or columns are created for output the average result.

col(1)=data(1,20); //fill col 1 with 1, 2, ... 20

int nn = 5;

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/X-Function/ref/avecurves

Calling X-Functions and Origin C Functions

127

loop(i,2,nn){wcol(i)=normal(20);}; //fill column 2 to 5 with normalized data

//do average curves of columns from 2 to 5. Put output to a Tree variable tr

avecurves (1,2:$(nn)) rd:=tr;

tr.=; // to see the tree structure with contents, aveX and aveY are vectors

//assign tree leaves to a temporary dataset variables

dataset avX = tr.Result.aveX;

dataset avY = tr.Result.aveY;

// Plot col2 to 5 as scatter plot, using the default-X column in worksheet

plotxy (?,2:nn) p:=201;

//Add line plot with dataset variable avX as X and avY as Y to active graph

plotxy (avX, avY) o:=<active> p:=200;

5.2.3.4 Assigning Literal Strings to X-function Input

<[< and >]> are introduced to assign labtalk literal string to input variables of x-function. It is useful if the input

strings include string registers or special characters, such as ', " or $ etc.

The scripts below show the difference of using <[< and >]> or not in x-function variables

%A = "Mysplit";

wsplit mode:=ref ref:=[Book1]Sheet1!A"Fish" name:="%A"; //Result sheet name

is Mysplit

wsplit mode:=ref ref:=[Book1]Sheet1!A"Fish" name:=<[<%A>]>; //Result sheet

name is Fish

//the name is set as %A, which is a predefined variable as the name of

reference column in XF

The example below shows the usage of using "" in x-function input

patternT text:=<[<"Sample A" "Sample B" "Sample C">]>;

5.2.4 X-Function Execution Options

XF-Execution-Options

5.2.4.1 X-Function Option Switches

The following option switches are useful when accessing X-Functions from script:

Switch Full Name Function

-cf --
Copy column format of the input range, and apply it to the

output range.

-d -dialog
Brings up a dialog to set X-Function parameters and

generate script.

LabTalk Scripting Guide

128

-db --
Variation of dialog; Brings up the X-Function dialog as a

panel in the current window.

-dc IsCancel --

Variation of dialog; Brings up a dialog to select X-Function

parameters. Set IsCancel to 0 if click the OK button, set to 1

if click the Cancel button. When clicking the Cancel button,

no error message like #User Abort! dumps to Script Window

and the script after X-Function can be executed.

-e --
Open the X-Function in the X-Function Builder. This works

the same as the edit -x command.

-h -help Prints the contents of the help file to the Script window.

-he -- Prints the contents of script example to the Script window.

-hn --

Loads and compiles the X-Function without doing anything

else. If the X-Function has already been compiled and

loaded, it will do nothing.

-hs -- Variation of -h; Prints only the Script Usage Examples.

-ht --
Variation of -h; Prints only the Treenode information, if any

exists.

-hv -- Variation of -h; Prints only the Variable list.

-hx -- Variation of -h; Prints only the related X-Function information.

-r <option> -recalculate

Specify the recalculate mode: 0 = none; 1 = auto; 2 =

manual:Example. Recalculate is not supported when output

is the same as <input>.

https://www.originlab.com/doc/LabTalk/ref/Edit-cmd

Calling X-Functions and Origin C Functions

129

-s -silent Runs in silent mode; results are not sent to Results log.

-sa -- Variation of -s; silent all messages

-sb --
Variation of -s; suppresses error messages and Results log

output.

-se --
Variation of -s; suppresses error messages, does not

suppress Results log output.

-sl -silent Same as -s.

-sr

(Origin 2016 SR1)

--
Variation of -s; suppresses result messages to the script

window.

-ss --
Variation of -s; suppresses info messages to the script

window.

-sw

(Origin 2016 SR1)

--
Variation of -s; suppresses warning messages to the script

window.

-t <Name> -theme Uses the designated preset theme.

-u

(Origin 2024b)

-undo
Specify whether the operation can be undone when running

from script.

For options with an existing Full Name, either the shortened switch name or the full name may be used in script.

For instance, for the X-Function smooth,

smooth -h

is the same as

smooth -help

LabTalk Scripting Guide

130

5.2.4.2 Examples

5.2.4.2.1 Open X-Function Dialog

Use -d switch to open X-Function dialog so that user can inter interactively supply input and parameters

The following script fills column 1 & 2 with data, use the -d switch to open the smooth X-Function dialog, where

user can preview result, adjust settings, etc. Upon clicking OK, the script will continue to plot column 2 and 3 as

line graph.

col(1)=data(1,100); //fill column 1 with row numbers.

col(2)=normal(100); //fill column 2 with normalized data

//open dialog with input, method and number of points loaded.

//Play with settings in the dialog and click OK

smooth (1,2) method:=2 npts:=25 -d;

//plot Y columns (column 2 and 3) against X column in sheet (column 1) as

line graph

plotxy (?,2:3) p:=200;

5.2.4.2.2 Using a Theme

Use the -t switch to execute the x-function with saved dialog theme. Dialog theme is basically the settings of X-

Function dialog, parameters and output. Usually input is excluded in theme file.

The following steps shows how to save a dialog theme file and then use the -t switch to use it.

Select column 2 created after above script. Run the following script to open smooth dialog. Or u can choose

Analysis: Signal Processing: Smoothing: Open dialog... menu

smooth -d;

Set the Method as Adjacent-Averaging and Points of Window as 5.

Click the > button next to Dialog Theme on the top and choose Save As.... Save the dialog settings as

FivePtAdjAve.

Cancel the dialog.

Activate the workbook with data in previous script.

Run the X-Function with -t switch to perform a smoothing with XY data in column 1 and 2 using the theme named

FivePtAdjAve, which means Method as Adjacent-Averaging and Points of Window as 5

smooth (1,2) -t FivePtAdjAve;

Note: No need to specify the theme file path since Origin automatically saves and retrieves your themes from

User Files\Themes\AnalysisAndReportTable\. You can share the theme file with others. They can drag and drop

the theme file into Origin workspace to install it. Themes saved in one project (*.OPJ) will be available for use in

other projects as well. Start from Origin 2024, Origin will first look for your themes from current project

folder. If not found, then from User File Folder.

https://www.originlab.com/doc/X-Function/ref/smooth

Calling X-Functions and Origin C Functions

131

5.2.4.2.3 Setting Recalculate Mode

Use the -r switch to set recalculate mode of output.

Multiple switches can be used together. Two switches: -t FivePtAdjAve are used below to smooth with

FivePtAdjAve theme and -r 1 to set recalculate mode to auto

smooth (1,2) -t FivePtAdjAve -r 1;

The following script runs the freqcounts X-Function with -r 1 to automatically recalculate when data in the input

column changes.

newbook;

col(1)=uniform(100)*50; //generate uniformly distributed random data from 0

to 50.

//do frequency count with increment 5, recalculate mode set to auto

freqcounts irng:=col(1) min:=0 max:=50 stepby:=increment inc:=5

 end:=0 count:=1 center:=1 cumulcount:=0 rd:=col(4) -r 1;

5.2.4.2.4 Open X-Function Builder

Help file dumped by -h switch can be overwhelming and hard to read, while other -he, -hv is too limited.

So instead, user can use the -e switch to open the X-Function in X-Function Builder so that user can see all

parameter in table view with full info.: input/output, data type, default value, etc, etc. This is also the dialog for

advanced users to learn the code of built-in X-Functions. By clicking Edit X-Function in Code Builder button in

the dialog. the X-Function code shows in Code Builder.

smooth -e;

5.2.4.2.5 Copy Format from Input to Output

Use the -cf switch to format the output data to match that of the input data:

By default, all analysis results are output as datatype double. The following script makes the output data format

to be short(2), which is the input data format.

// Import a *.wav file; imported *.wav data format is short(2).

fname$ = system.path.program$ + "Samples\Signal Processing\sample.wav";

newbook s:=0;

newsheet col:=1;

impWav options.SparkLines:=0;

//Perform lowpass fft_filter on col 1 of 1st sheet in current book with

cutoff freq = 2000

fft_filters -cf [%H]1!col(1) cutoff:=2000

oy:=(<input>,<new name:="Lowpass Sound Frequency">);

5.2.4.2.6 Undo the Operation

Use the -u switch to support undo the x-function operation when running from scripts.

https://www.originlab.com/doc/X-Function/ref/freqcounts

LabTalk Scripting Guide

132

If a x-function is run from the dialog, by default the operation can be undone. But if it is run from scripts, we

should use -u switch to support undo. The following scripts transpose the active worksheet and output the results

to a new workbook and then undo the operation.

wtranspose -u ow:=<new>;

undo;

5.2.4.2.7 Suppress pe_dir Output

string strNames;

pe_dir oname:=strNames -sa;

5.2.5 X-Function Exception Handling

XF-Exception-Handling

The example below illustrates trapping an X-Function error with LabTalk, so that an X-Function call that is likely

to generate an error does not break your entire script.

For X-Functions that do not return an error code, two functions exist to check for errors in the last executed X-

Function: xf_get_last_error_code() and xf_get_last_error_message()$. These functions should be used in

situations where the potential exists that a particular X-Function could fail.

In this example, the user is given the option of selecting a file for import, but if that import fails (e.g. user picked

file type inappropriate for the import) we need to handle the remaining code.

dlgfile gr:=*.txt; // Get the file name and path from user

impasc -se; // Need to use -se switch for execution to continue, see note

below

if(0 != xf_get_last_error_code())

{

 strError$ = "XFunction Failed: " + xf_get_last_error_message()$;

 type strError$;

 break 1; // Stop execution

}

// Data import probably succeeded, so our script can continue

type continuing...;

Note the use of the general X-Function option -se to suppress error messages. You can also use -sl to suppress

error logging and -sb to suppress both. It is necessary to use one of these options in order for script execution to

continue to the next line when the X-Function call fails.

5.2.5.1 Looping Over to Find Peaks

In the following example, we loop over all columns in a worksheet to find peaks. If no peak is found in a particular

column, the script continues with the rest of the columns. It is assumed here that a worksheet with suitable data

is active.

//import data

newbook;

Calling X-Functions and Origin C Functions

133

string fn$=system.path.program$ + "Samples\curve fitting\Asymmetric

Gaussian.dat";

impasc fname:=fn$;

//loop over all columns

for(int ii=1; ii<=wks.ncols; ii++)

{

 // Find peak in current column, suppress error message from XF

 Dataset mypeaks;

 pkfind $(ii) ocenter:=mypeaks -se; // Need to use -se for execution to

continue

 // Check to see if XF failed

 if(0 != xf_get_last_error_code())

 {

 type "Failed on column $(ii): %(xf_get_last_error_message()$)";

 }

 else

 {

 type Found $(mypeaks.getsize()) peaks in column $(ii);

 }

}

5.3 Origin C Functions

5.3.1 Origin C Functions

OC-Functions

The following subsections detail how to call Origin C functions from your LabTalk scripts.

This chapter covers the following topics:

• Loading and Compiling Origin C Functions

• Passing Variables To and From Origin C Functions

• Updating an Existing Origin C File

• Using Origin C Functions

5.3.2 Loading and Compiling Origin C Functions

Loading-and-Compiling-OC-Function

5.3.2.1 Loading and Compiling Origin C Function or Workspace

Before you call Origin C function from Origin, the function must be compiled and linked in the current Origin

session.

https://www.originlab.com/doc/LabTalk/guide/Loading-and-Compiling-OC-Function
https://www.originlab.com/doc/LabTalk/guide/Passing-LT-vars-and-vals-To-and-From-OC-Function
https://www.originlab.com/doc/LabTalk/guide/Updating-an-Existing-OC-File
https://www.originlab.com/doc/LabTalk/guide/Using-OC-Functions

LabTalk Scripting Guide

134

To manually compile and link a source file, go to Code Builder first. Right click User node (or Project, etc. node

when applies) on left panel to add the .c or .cpp file. Then use the toolbar buttons or menus to compile and build

the it.

To programmatically compile and link a source file, or to programmatically build a workspace from a LabTalk

script use the run.loadOC method of the LabTalk run object.

 err = run.LoadOC("myFile",[option]);

5.3.2.1.1 Example

Use option to scan the .h files in the OC file being loaded, and all other dependent OC files are also loaded

automatically:

// Load and compile Origin C function in the file iw_filter.c

// with the option=16, so to also load all dependent Orign C

// files by scanning for .h files included in iw_filter.c

if(run.LoadOC(OriginLab\iw_filter.c, 16) != 0)

{

 type "Failed to load iw_filter.c!";

 return 0;

}

Now, open Code Builder by menu View: Code Builder, and in the Workspace panel (if not see this panel,

open by View: Workspace menu item in Code Builder) of Code Builder, you can see the iw_filter.c file is under

the Temporary folder.

5.3.2.2 Adding Origin C Source Files to System Folder

Once a file has been opened in Code Builder, one can simply drag and drop the file to the System branch of the

Code Builder workspace. This will then ensure that the file will be loaded and compiled in each new Origin

session. For more details, please refer to Code Builder documentation.

You can programmatically add a source file to the system folder so that it will be available anytime Origin is run.

run.addOC(C:\Program Files\Originlab\Source Code\MyFunctions.c);

This can be useful when distributing tools to users or making permanently available functions that have been

designed to work with Set Column Values.

5.3.2.3 Adding Origin C Files to Project (OPJ)

Origin C files (or files with any extension/type) can also be appended to the Origin project (OPJ) file itself. The

file will then be saved with the OPJ and extracted when the project is opened. In case of Origin C files, the file is

then also compiled and linked, and functions within the file are available for access. To append a file to the

project, simply drag and drop the file to the Project branch of Code Builder or right-click on Project branch and

add the file. For more details, please refer to Code Builder documentation.

5.3.3 Passing Variables To and From Origin C Functions

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/Origin-Help/Code-Builder-Open
https://www.originlab.com/doc/Origin-Help/Wks-SetColVal-UserDefFunc
https://www.originlab.com/doc/Origin-Help/Code-Builder-Open

Calling X-Functions and Origin C Functions

135

Passing-LT-vars-and-vals-To-and-From-OC-Function

When calling a function of any type it is often necessary to pass variables to that function and likewise receive

variables output by the function. The following summarizes the syntax and characteristics of passing LabTalk

variables to Origin C functions.

5.3.3.1 Sytnax for calling Origin C Function from LabTalk

Origin C functions are called from LabTalk with sytnax such as:

// separate parameters by commas (,) if more than one

int iret = myfunc(par1, par2....);

// no need for parentheses and comma if there is no assignment

myfunc par1;

// function returns no value, and no parameter, parentheses optional

myfunc;

5.3.3.2 Variable Types Supported for Passing To and From LabTalk

The following table lists Origin C variable types that can be passed to and from LabTalk when calling an Origin C

Function:

Variable Type Argument to OC Function Return from OC Function

double Yes Yes

int Yes Yes

bool (true or

false)

No, pass int instead, 0 for false, and other

integer for true.

No, return int instead, 0 for

false, 1 for true.

string Yes Yes

int, double

array
Yes Yes

string array Yes, but cannot pass by reference Yes

DataRange Yes, but only for column level range, other No

https://www.originlab.com/doc/OriginC/examples/Calling-Origin-C-Functions-in-Labtalk-Script
https://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables

LabTalk Scripting Guide

136

range can be passed by string

Tree Yes Yes

Note:

The maximum number of arguments that Origin C function can have to call from LabTalk is 80.

LabTalk variables can be passed to Origin C numeric function by reference.

5.3.4 Updating an Existing Origin C File

Updating-an-Existing-OC-File

5.3.4.1 Introduction

There are cases where a group leader or a developer wants to release a new version of an Origin C file to other

Origin users. In such cases, if the end users have already installed an older version of the Origin C file, they will

have a corresponding .OCB file in their User Files Folder (UFF). It is possible that the time stamp of the new

Origin C file is older than the time stamp of the .OCB file. When this happens Origin will think the .OCB file is

already updated and will not recompile the new Origin C file. To avoid this possible scenario it is best to delete

the .OCB file when the new Origin C file is installed. Once deleted, Origin will be forced to remake the .OCB file

and will do so by compiling the new Origin C file.

5.3.4.2 Manually Deleting OCB Files

The OCB file corresponding to the Origin C file in question, can be manually deleted from the OCTEMP folder in

the Users Files Folder on the end user's computer. Depending on the location of the Origin C file, it is possible

for the OCB file to be in nested subfolders within the OCTemp folder. Once located, the end user can delete the

OCB file and rebuild their workspace to create an updated OCB file.

5.3.4.3 Programmatically Deleting OCB Files

A group leader or developer can programmatically delete the corresponding OCB files using LabTalk's Delete

command with the OCB option. This is very useful when distributing Origin C files in an Origin package and it is

not acceptable to have the end user manually delete the .OCB files.

Below are some examples of how to call LabTalk's Delete command with the OCB option:

del -ocb filepathname1.c

del -ocb filepathname1.ocw

del -ocb filepathname1.c filepathname2.c // delete multiple files

del -ocb %YOCTEMP\filename.c // use %Y to get to the Users Files Folder

5.3.5 Using Origin C Functions

Using-OC-Functions

Calling X-Functions and Origin C Functions

137

Besides define LabTalk function, you can also define an Origin C function (see Creating and Using Origin C

Code for details) which returns a single value, and call the function from command window. For example,

Open Code Builder by menu View: Code Builder.

In Code Builder, create a new *.c file by menu File: New. In the New File dialog, give a file name, MyFuncs for

example, and click OK.

Start a new line at the end of this new file, and add the following code.

double MyFunc (double x)

{

 return sin(x) + cos(x);

}

Click menu item Build: Build to compile and link the file.

If no error, the function defined above is now available in LabTalk. Run the following script in the Command

Window.

newbook; // create a new workbook

col(A) = data(1, 32); // fill row number

col(B) = MyFunc(col(A)); // call the Origin C function, result is put

to column B

https://www.originlab.com/doc/OriginC/guide/Creating-and-Using-Origin-C-Code
https://www.originlab.com/doc/OriginC/guide/Creating-and-Using-Origin-C-Code

139

6 Running and Debugging LabTalk Scripts

6.1 Running and Debugging LabTalk Scripts

Running-and-Debugging-LT-Scripts

This chapter covers the following topics:

• LT Running Scripts

• LT Debugging Scripts

Origin provides several options for executing and storing LabTalk scripts. The first part of this chapter profiles

these options. The second part of the chapter outlines the script debugging features supported by Origin.

6.2 Running Scripts

6.2.1 Running Scripts

Running-Scripts

 The following sections document various ways to execute and/or store LabTalk scripts. We begin by examining

the relationship between scripts and the objects they work on.

This section covers the following topics:

• From Script and Command Window

• From Files

• From Set Values Dialog

• From Worksheet Script

• From Script Panel

• From Graphical Objects

• ProjectEvents Script

• From Import Wizard

• From Nonlinear Fitter

https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/LabTalk/guide/Debugging-Scripts
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window
https://www.originlab.com/doc/LabTalk/guide/From-Files
https://www.originlab.com/doc/LabTalk/guide/From-Set-vals-Dialog
https://www.originlab.com/doc/LabTalk/guide/From-Worksheet-Script
https://www.originlab.com/doc/LabTalk/guide/From-Script-Panel
https://www.originlab.com/doc/LabTalk/guide/From-Graphical-objs
https://www.originlab.com/doc/LabTalk/guide/ProjectEvents-Script
https://www.originlab.com/doc/LabTalk/guide/From-Import-Wizard
https://www.originlab.com/doc/LabTalk/guide/From-Nonlinear-Fitter

LabTalk Scripting Guide

140

• From an External Application

• From Console

• On A Timer

• On Starting or Exiting Origin

• From a Custom Menu Item

• From a Toolbar Button

• From Worksheet Cell

Active Window Default

When working on an Origin Object, like a workbook or graph page, a script always operates on the active

window by default. If the window is inactive, you may use win -a to activate it.

win -a book2; // Activate the window named book2

col(b) = {1:10}; // Fill 1 to 10 on column B of book2

However, working on active windows with win -a may not be stable. In the execution sequence of the script,

switching active windows or layers may have delay and may lead to unpredictable outcome.

It is preferable to always use win -o winName {script} to enclose the script, then Origin will temporarily set the

window you specified as the active window (internally) and execute the enclosed script exclusively on that

window. For example, the following code will create a new project, fill the default book with some data, and make

a plot and then go back to add a new sheet into that book and make a second plot with the data from the second

sheet:

doc -s;doc -n;//new project with default worksheet

string bk$=%H;//save its book short name

//fill some data and make new plot

wks.ncols=2;col(1)=data(1,10);col(2)=normal(10);

plotxy (1,2) o:=<new>;

//now the newly created graph is the active window

//but we want to run some script on the original workbook

win -o bk$ {

 newsheet xy:="XYY";

 col(1)=data(0,1,0.1);col(2)=col(1)*2;col(3)=col(1)*3;

 plotxy (1,2:3) plot:=200 o:=<new>;

}

Please note that win -o is the only LabTalk command that allows a string variable to be used. As seen above, we

did not have to write

win -o %(bk$)

https://www.originlab.com/doc/LabTalk/guide/From-an-External-Application
https://www.originlab.com/doc/LabTalk/guide/From-Console
https://www.originlab.com/doc/LabTalk/guide/On-A-Timer
https://www.originlab.com/doc/LabTalk/guide/On-Starting-Origin
https://www.originlab.com/doc/LabTalk/guide/From-a-Custom-Menu-Item
https://www.originlab.com/doc/LabTalk/guide/From-a-Toolbar-Button
https://www.originlab.com/doc/LabTalk/guide/From-Worksheet-Cell
https://www.originlab.com/doc/LabTalk/guide/Origin-objs
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Activate
https://www.originlab.com/doc/LabTalk/ref/Window_Options_Other

Running and Debugging LabTalk Scripts

141

as this particular command is used so often that it has been modified since Origin 8.0 to allow string variables. In

all other places you must use the %() substitution notation if a string variable is used as an argument to a

LabTalk command.

Where to Run LabTalk Scripts

While there are many places in Origin that scripts can be stored and run, they are not all equally likely. The

following sub-sections have been arranged in an assumed order of prevalence based on typical use.

The first two, on (1) Running Scripts from the Script and Command Windows and (2) Running Scripts from Files,

will be used much more often than the others for those who primarily script. If you only read two sub-sections in

this chapter, it should be those. The others can be read on an as-needed basis.

6.2.2 From Script and Command Window

From-Script-and-Command-Window

Two Windows exist for direct execution of LabTalk: the (older) Script Window and the (newer) Command

Window. Each window can execute single or multiple lines of script.

The Command Window has a prompt and will execute all code entered at the prompt.

The Script Window has only a cursor and will execute highlighted code or code at the current cursor position

when you press Enter.

Both windows accept Ctrl+Enter without executing. When using Ctrl+Enter to add additional lines, you must

include a semicolon (;) at the end of the statement for multiple-line execution.

In the Script Window, you can use the menu item Edit: Insert newline to insert a new line; You can also turn

Script Execution off or on in the Edit menu by checking or unchecking Script Execution.

Both the Script Window and Command Window support Intellisense for auto-completion of X-Functions; only the

Command Window includes a command history and recall of line history (Up and Down Arrows).

The Script Window allows for easier editing of multiline commands and longer scripts.

Origin 2023 added a Scintilla-based Script Window with support for Unicode, auto-

completion, syntax-coloring, font-size control (zoom using Ctrl + mouse). The change

should improve usability, particularly for those with 4k monitors. Roll back to the original

Script Window by setting @NSW=0.

Below is an example script that expects a worksheet with data in the form of one X column and multiple Y

columns. The code finds the highest and lowest Y values from all the Y data, then normalizes all the Y's to that

range.

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window
https://www.originlab.com/doc/LabTalk/guide/From-Files
https://www.originlab.com/doc/LabTalk/ref/sys-var-list

LabTalk Scripting Guide

142

// Find the lowest minimum and the highest maximun

double absMin = 1E300;

double absMax = -1E300;

loop(ii,2,wks.ncols)

{

 stats $(ii);

 if(absMin > stats.min) absMin = stats.min;

 if(absMax < stats.max) absMax = stats.max;

}

// Now normalize each column to that range

loop(ii,2,wks.ncols)

{

 stats $(ii);

 wcol(ii)-=stats.min; // Shift to minimum of zero

 wcol(ii)/=(stats.max - stats.min); // Normalize to 1

 wcol(ii)*=(absMax - absMin); // Normalize to range

 wcol(ii)+=absMin; // Shift to minimum

}

To execute in the Script Window, paste the code, then select all the code with the cursor (selected text will be

highlighted), and press Enter.

To execute the script in the Command Window, paste the code then press Enter. Note that if there were a

mistake in the code, you would have it all available for editing in the Script Window, whereas the Command

Window history is not editable and the line history does not recall the entire script.

Origin also has a native script editor, Code Builder, which is designed for editing and

debugging both LabTalk and Origin C code. To access Code Builder, enter ed.open() into

the script or command window, or select the button from the Standard Toolbar.

The font in Script Window can be customized in this way:

Open the Origin.ini file in User Files Folder, search for the [font] section: paste the contents

below in [font] section.

Restart the Origin and check the Script Window again, the font and size both changed.

ScriptWindowFontHeight=24

ScriptWindowCharset=0

ScriptWindowFaceName=Times New Roman

For more charset value, see http://msdn.microsoft.com/en-us/library/cc250412.aspx

6.2.3 From Files

From-Files

http://msdn.microsoft.com/en-us/library/cc250412.aspx

Running and Debugging LabTalk Scripts

143

LabTalk script usually requires an Origin Object and are thus restricted to an open project. Scripts can also be

saved to a file on disk to be called from any project. Script files can be called with up to five arguments. This

section outlines the use of LabTalk scripts saved to a file.

6.2.3.1 Creating and Saving Script Files

LabTalk scripts can be created and saved from any text editor, including Origin's Code Builder. To access Code

Builder, select the icon from the Standard Toolbar. Create a new document of type LabTalk Script File and

type or paste your code into the editor window and then save with a desired filename and path (use the default

OGS file extension).

6.2.3.2 The OGS File Extension

LabTalk scripts can be saved to files and given any extension, but for maximum flexibility they are given the OGS

file extension, and are therefore also known as OGS files. You may save script files to any accessible folder in

your file system, but specific locations may provide additional advantages. If an OGS file is located in your User

Files Folder, you will not have to provide a path when running your script.

An OGS file can also be attached to the Origin Project (OPJ) rather than saving it to disk.

The file can be added to the Project node in Code Builder and will then be saved with the

project. Drag the filename from the User folder and drop into the Project folder. Script

sections in such attached OGS files can be called using the run.section() object method

similar to calling sections in a file saved on disk. Only the file name needs to be specified,

as Origin will first look for the file in the project itself and execute the code if filename and

section are found as attachments to the project.

6.2.3.3 Sections in an OGS File

Script execution is easier to follow and debug when the code is written in a modular way. To support modular

scripting, LabTalk script files can be divided into sections, which are declared by placing the desired section

name in square brackets [] on its own line:

[SectionName]

Lines of script under the section declaration belong to that section. Execution of LabTalk in a section ends when

another section declaration is met, when a return statement is executed or when a Command Error occurs. The

framework of a typical multi-section OGS file might look like the following:

[Main]

// Script Lines

ty In section Main;

[Section 1]

// Script Lines

ty In section 1;

https://www.originlab.com/doc/LabTalk/ref/Run-obj

LabTalk Scripting Guide

144

[Section 2]

// Script Lines

ty In section 2;

Note here that ty issues the type command, which is possible since no other commands in Origin begin with the

letters 'ty'.

6.2.3.4 Running an OGS File

Use the run object to execute script files.

run.section(OGSFileName, SectionName[,arg1 arg2 ... arg5])

run.file(OGSFileName)

Important Note:

Because they are more robust, it is strongly suggested that you use run.file() or run.section() methods to

execute LabTalk OGS files, rather than the older command object or run command methods.

When using the run object, if the OGS file is in the User Files Folder, you do not need to specify a path to

the file. If it is in a subfolder of the UFF, use a relative path. If it is outside the UFF, use a full path to the

file.

Thus, if you save a file called test.ogs to your Origin User Files folder:

// Runs test.ogs with run.file() syntax:

run.file(test)

// Runs only section1 of test.ogs with run.section() syntax:

run.section(test, section1)

if the file test.ogs is saved under D:\OgsFiles:

// Runs test.ogs with run.file() syntax:

run.file(D:\OgsFiles\test)

// Runs only section1 of test.ogs with run.section() syntax:

run.section(D:\OgsFiles\test, section1)

Note: A different means to run an OGS file is to recognize it as an object. After saving the OGS file, you need to

run the cd X-Function (cd 1;) to change to the folder where the file was saved or use dir to list files in the

current working folder - if that is where the file is. Otherwise, Origin does not detect the file and will not see it as a

runnable command.

After Origin recognizes an OGS filename as an object, run the OGS file by entering its name or

name.sectionname into the Script Window or Command Window. If either the file name or section name contains

a space quotes must surround both. For example:

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/OGSFileName-cmd
https://www.originlab.com/doc/LabTalk/ref/Run-cmd
https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/X-Function/ref/cd

Running and Debugging LabTalk Scripts

145

// Run a LabTalk Script named 'My Script.ogs' located in the folder

//'D:\OgsFiles'.

// Change the current directory to 'D:\OgsFiles'

cd D:\OgsFiles; // This causes Origin to scan that folder for OGS files

// This runs the code in section 'Beta Test' of 'My Scripts.ogs'

// passing three arguments separated by spaces (protected by quotes where

needed)

"My Scripts.Beta Test" "Redundant Test" 5 "Output Averages";

There are many examples in Origin's Samples\LabTalk Script Examples folder which can be accessed by

executing:

cd 2;

6.2.3.5 Passing Arguments in Scripts

When you use the run.section() object method to call a script file (or one of its sections) or a macro, you can

pass arguments with the call. Arguments can be literal text, numbers, numeric variables, or string variables.

When passing arguments to script file sections or to macros:

The section call or the macro call must include a space between each argument being passed. When using

run.section, a comma must separate the section name from the first argument only.

When you pass literal text or string variables as arguments, each argument must be surrounded by quotation

marks (in case the argument contains more than one word, or is a negative value). Passing numbers or numeric

variables doesn't require quotation mark protection, except when passing negative values.

You can pass up to five arguments, separated by Space, to script file sections or macros. In the script file section

or macro definition, argument placeholders receive the passed arguments. These placeholders

are %1, %2, %3, %4, and %5. The placeholder for the first passed argument is %1, the second is %2, etc. These

placeholders work like string variables in that they are substituted prior to execution of the command in which

they are embedded. The number of arguments passed is contained in macro.narg.

As an example of passing literal text as an argument that is received by %1, %2, etc., Suppose a TEST.OGS file

includes the following section:

[output]

type "%1 %2 %3";

and you execute the following script:

run.section(test.ogs, output, "Hello World" from LabTalk);

Here, %1 holds "Hello World", %2 holds "from", and %3 holds "LabTalk". After string substitution, Origin outputs

Hello World from LabTalk

to the Script window. If you had omitted the quotation marks from the script file section call, then %1 would hold

"Hello", %2 would hold "World", and %3 would hold "from". Origin would then output

Hello World from

https://www.originlab.com/doc/LabTalk/ref/Run-obj

LabTalk Scripting Guide

146

6.2.3.5.1 Passing Numeric Variables by Reference

Passing numeric variable arguments by reference allows the code in the script file section or macro to change

the value of the variable.

For example, suppose your application used the variable LastRow to hold the row number of the last row in

column B that contains a value. Furthermore, suppose that the current value of LastRow is 10. If you pass the

variable LastRow to a script file section whose code appends five values to column B (starting at the current last

row), after appending the values, the script file section could increment the value of the LastRow variable so that

the updated value of LastRow is 15.

See example:

If a TEST.OGS file includes the following section:

[adddata]

 loop (n, 1, 5)

 {

 %1[%2 + n] = 100;

 };

 %2 = %2 + (n - 1);

 return 0;

And you execute the following script:

col(b) = data(1, 10); // fill data1_b with values

get col(b) -e lastrow; // store last row of values in lastrow

run.section(test.ogs, adddata, col(b) lastrow);

lastrow = ;

Then LastRow is passed by reference and then updated to hold the value 15.

6.2.3.5.2 Passing Numeric Variables by Value

Passing numeric variable arguments by value is accomplished by using the $() substitution notation. This

notation forces the interpreter to evaluate the argument before sending it to the script file section or macro. This

technique is useful for sending the value of a calculation for future use. If the calculation were sent by reference,

the entire expression would require calculation each time it was interpreted.

In the following script file example, numeric variable var is passed by reference and by value. %1 will hold the

argument that is passed by reference and %2 will hold the argument that is passed by value. Additionally, a

string variable (%A) consisting of two words is sent by value as a single argument to %3.

[typing]

 type -b "The value of %1 = %2 %3";

 return 0;

Save the section to Test.OGS and run the following script on command window:

var = 22;

%A = "degrees Celsius";

run.section(test.ogs, typing, var $(var) "%A");

https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion

Running and Debugging LabTalk Scripts

147

Then a dialog box pop-up and says: "The value of var = 22 degrees Celsius".

6.2.3.6 Guidelines for Naming OGS Files and Sections

Naming rules for OGS script files differ based on how they will be called. The section above discusses the two

primary methods: calling using the run.section() method or the command method which entails calling directly

from the Script or Command window (not recommended).

6.2.3.6.1 When Using the Run.section() Method

There is no restriction on the length or type of characters used to name the OGS file.

Specifying the filename extension is optional for files with the OGS extension.

When using run.section() inside an OGS file to call another section of that same OGS file, the filename may be

omitted, for instance:

[main]

run.section(, calculate);

[calculate]

cc = aa + bb;

6.2.3.6.2 When Using the Command Method

The name of the OGS file must conform to the restrictions on command names: 25 characters or fewer, must not

begin with a number or special character, must not contain spaces or underscore characters.

The filename extension must be OGS and must not be specified.

6.2.3.6.3 Section Name Rules (When Using Either Method)

When SectionName is omitted,

Origin looks for a section named [Main] and executes it if found

If no [Main] section is found, but code without a section name exists at the beginning of the file, then that code is

executed.

Otherwise Origin does nothing and does not report an error.

Do not give an OGS file the same name as an existing Origin function or X-Function!

6.2.3.7 Setting the Path

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/LabTalk/ref/Alphabetical-Listing-of-Functions
https://www.originlab.com/doc/X-Function/ref/Function-List

LabTalk Scripting Guide

148

In Origin 7.5, script files (*.OGS) could be run from both the Origin System and User Files folders, and these

are the current working directory by default. If your script file resides there, there is no need to change the path. If

the script file was not located in either of these two folders, the full path needed to be specified in the

run.section() object method. Since Origin 8, the idea of the Current Working Folder (CWF) was introduced,

allowing you to run your own script files and X-Functions located in the CWF you have specified.

Per MS-DOS convention, Origin uses the cd X-Function to display the CWF:

// Entering this command displays the current working folder

// in the Script Window.

cd

and unless it has been changed, the output is similar to:

current working directory:

C:\Documents and Settings\User\My Documents\OriginLab\Origin8.1\User Files\

However, if you write many scripts, you will want to organize them into folders, and call these scripts from where

they reside. Also, Origin provides sample scripts that you may want to run from their respective directories.

In the case or run.section() scripts can reside in subfolders of the User Files Folder and you can use relative

referencing such as:

run.section(subfolder1\scriptA,main); // ScriptA.ogs is in subfolder1

run.section(subfolder2\scriptA,main); // ScriptA.ogs is in subfolder2

You can set the Current Working Folder from script. For example, to run an OGS file named ave_curves.ogs,

located in the Origin system sub-folder Samples\LabTalk Script Examples, enter the following:

// Create a string variable to hold the complete path to the desired

//script file

// by appending folder path to Origin system path:

path$ = system.path.program$ + "Samples\LabTalk Script Examples\";

// Make the desired path the current directory.

cd path$;

// Call the function

ave_curves;

You can create a set of pre-defined paths. The cdset X-Function is used to list all the pre-defined paths and

add/change the CWF. By typing

// The 'cdset' command displays pre-defined paths

//in the Script Window.

cdset

you should see three paths like below if you have not changed them yet.

1 = C:\Documents and Settings\User\My Documents\OriginLab\Origin8.1\User

Files\

2 = C:\Program Files\OriginLab\Origin81\Samples\LabTalk Script Examples\

3 = C:\Program Files\OriginLab\Origin81\

If you want to set the second path above to be the CWF, just type:

https://www.originlab.com/doc/LabTalk/ref/Run-obj
https://www.originlab.com/doc/X-Function/ref/cd
https://www.originlab.com/doc/X-Function/ref/cdset

Running and Debugging LabTalk Scripts

149

// Changes the CWF to the folder path specified

// by pre-defined path #2.

cd 2

To add a new path to pre-defined folder set, first change to the new path, making it the CWF, then add it to the

set by using cdset X-Function with the specified index. For example:

cd D:\Files\Filetype\Script; // Set this new path as CWF

// Add this path to pre-defined folder list, to the 4th postion (index 4)

// If there already is a path with index 4, it will be over-written

cdset 4;

// If the CWF is changed manually, it can now be reset to

// 'D:\Files\Filetype\Script\' by entering 'cd 4'.

A few tips for working with the cdset command:

Folder paths added to the pre-defined set in one project are saved for use with other

projects.

To see the current paths displayed to the Script Window, enter 'cdset' by itself on a line in

the Script Window.

Up to 9 pre-defined paths are supported.

Indices can be assigned out of order.

A new path, assigned to an index for which a current path exists, will overwrite the current

path.

As the three default pre-defined paths show above, the second one contains several sample script files (with the

OGS extension). Similar to DOS, you can go to this folder by cd 2, then see the valid OGS using the dir X-

Function, and then run any available script file in this folder, such as:

// Set 2nd folder as the CWF

cd 2;

// List all ogs and X-Function in the CWF

dir;

// Run a script file

// Note that the file extension is not needed when calling it

autofit;

You can also load the script file in the CWF into Code Builder by using ed.open() method. Such as:

// In this case, the OGS extension on the filename is required!

ed.open(pick_bad_data.ogs)

6.2.3.8 Running LabTalk from Origin C

Besides running .OGS files directly, LabTalk commands and scripts can also be run from Origin C. For more

information, please refer to LabTalk Interface global function of Origin C help document.

6.2.4 From Set Values Dialog

https://www.originlab.com/doc/X-Function/ref/dir
https://www.originlab.com/doc/LabTalk/ref/Ed-obj
https://www.originlab.com/doc/OriginC/ref/LabTalk-Interface

LabTalk Scripting Guide

150

From-Set-vals-Dialog

The Set Values Dialog is useful when calculations on a column of data are based on functions that may include

references to other datasets.

The column designated by Set Values is filled with the result of an expression that you enter (the expression

returns a dataset). The expression can be made to update automatically (Auto), when requested by the user

(Manual), or not at all (None).

For more complex calculations, where a single expression is not adequate, a Before Formula Scripts panel in the

dialog can include any LabTalk script.

Auto and Manual updates create lock icons, and respectively, at the top of the column. A green lock

indicates updated data; A yellow lock indicates pending update; A red lock indicates broken functionality.

In cases where the code is self-referencial (i.e. the column to be set is included in the calculation) the Auto and

Manual options are reset to None.

Below are two examples of script specifically for the Set Values Dialog. Typically short scripts are entered in this

dialog.

6.2.4.1.1 Expression using another column

While limited to expressions (the right side of an equation) as in:

// In column 3

// Scale a column - useful for fitting where very large

//or very small numbers are problematic

col(2)*1e6;

the conditional expression can be useful in some situations:

// Set negative values to zero

col(2)<0?0:col(2);

6.2.4.1.2 Using Before Formula Scripts Section

In the Before Formula Scripts section of the Set Column Values dialog, a script can be entered that will be

executed by Origin just before the formula itself is executed. This feature is useful for carrying out operations that

properly setup the formula itself. The following example demonstrates the use of such a script:

// In column BaseNormal

// In the expression section ..

BN

// In the Before Formula Scripts section ..

range raR = col(Reading); // The signal

range raB = col(Baseline); // The Baseline

dataset BN;

BN = raR - raB; // Subtract the baseline from the signal

stats BN; // Get statistics of the result

Running and Debugging LabTalk Scripts

151

BN /= (stats.max / 100); // Normalize to maximum value of 100

The following image is a screenshot of the code above entered into the Set Column Values dialog:

6.2.5 From Worksheet Script

From-Worksheet-Script

The Worksheet Script dialog is provided for backward compatibility with older versions of Origin that did not have

the Auto Update feature in the Set Values dialog and/or did not have import filters where scripts could be set to

run after import. Given that it predates many newer batch features such as Analysis Templates and recalculation,

it should only be used for post processing of imported data (e.g. when importing data via Data Connector).

Scripts can be saved in a Worksheet (so workbooks have separate Worksheet Scripts for each sheet) and set to

run after either importing into this Worksheet and/or changes in a particular dataset (including datasets not in this

Worksheet).

Here is a script that is attached to Sheet3 which is set to run on Import (into Sheet3) or when the A column of

Sheet2 changes.

range ra1 = Sheet1!1;

range ra2 = Sheet1!2;

https://www.originlab.com/doc/Origin-Help/Analysis-Templates
https://www.originlab.com/doc/Origin-Help/AnalyDialog-Recalculate
https://www.originlab.com/doc/Origin-Help/Data-Connector

LabTalk Scripting Guide

152

range ra3 = Sheet2!A; // Our 'Change in Range' column

range ra4 = 3!2; // Import could change the sheet name ..

range ra5 = 3!3; // .. so we use numeric sheet references

ra5 = ra3 * ra2 / ra1 * ra4;

6.2.6 From Script Panel

From-Script-Panel

The Script Panel (accessed via the context menu of a Workbook's title bar) is a hybrid of the Script Window and

Command Window.

Like the Script Window, it can hold multiple lines and you can highlight select lines and press Enter to execute.

Like the Command Window, there is a history of what has been executed.

Unlike the Script window, whose content is not saved when Origin closes, these scripts are saved in the project.

// Scale column 2 by 10

col(2)*=10;

// Shift minimum value of 'mV' column to zero

stats col(mV);

col(mV)-=stats.min;

// Set column 3 to column 2 normalized to 1

stats 2;

col(3) = col(2)/stats.max;

6.2.7 From Graphical Objects

From-Graphical-objs

Graphic Objects (text, lines and shapes) can be tied to events and contain script that runs on those events or by

using the run method for those objects. Since graphical objects are attached to a page, they are saved in

Templates, Window files and Project files.

6.2.7.1 Buttons

Some of your scripts may be used so often that you would like to automate their execution by assigning one or

more of them to a button on the Origin project's graphical-user interface (GUI). To do so, follow the steps below:

From a new open Origin project:

Select the Text tool from the Tools toolbar to the left side of the project window.

Click on an open space on your graph or worksheet (on a worksheet, click in the gray area to the right of the last

column). This will put you into edit mode. Type "Hello" in the text object and click outside the object. You have

now created a label for the button.

Running and Debugging LabTalk Scripts

153

Hold down the ALT key while double-clicking on the text object that you just created. The object dialog opens to

the Programming tab.

Note that there is an object Name in the upper left of the dialog. Change this to Greeting.

In the lower text box, enter this script:

type -b "Hello World";

From the Script Run After drop-down list, select Button Up, and click OK.

You have now created a button that, when pressed, executes your script and prints "Hello World" in a pop-up

window.

Unlike a text script that exists only in the Script Window, this button and the script that it runs will be saved

when you save your Origin project.

The script behind any graphic object can be run using its name and the run method. Open the Script Window

(Window: Script Window) and type:

greeting.run()

and press Enter.

To delete the button, there are two ways:

Hold down the Alt key while double-clicking on the button to open the Programming tab of

Text Object dialog. Change Button up back to None. Click OK. The button will change

back into a regular text. Delete it.

Choose Edit: Edit Mode to turn on the edit mode of all text and graphic object, including

legend, axis titles will be in edit mode. Select to the created button object and delete it.

Note!!! After the change, make sure choose Edit: Edit Mode button again to quit the edit

mode.

6.2.7.2 Lines

Here is a script that creates a vertical line on a graph that can be moved to report the interpolated value of your

data at the X position represented by the line:

// Create a vertical line on our graph

draw -n MyCursor -l -v $(x1+(x2-x1)/2);

MyCursor.HMOVE = 1; // Allow horizontal movement

MyCursor.color = color(orange); // Change color to orange

MyCursor.linewidth = 3; // Make line thicker

// Add a label to the graph

label -sl -a $(MyCursor.x) $(Y2+0.05*(Y2-Y1)) -n MyLabel $(%C(MyCursor.x));

// Assign a script to the line ..

MyCursor.script$="MyLabel.x = MyCursor.x;

LabTalk Scripting Guide

154

MyLabel.y = Y2 + MyLabel.dy;

doc -uw;";

// .. and make the script run after the line is moved

MyCursor.Script = 2;

6.2.7.3 Other Objects

Any Graphical Object (text, lines and shapes) can have an attached script that runs when an event occurs.

In this example, a rectangle (named RECT) on a graph is set to have a script run when the rectangle is either

Moved or Sized.

Use the Rectangle tool on the Tools toolbar to draw a rectangle on a graph.

Use the Back(data) tool on the Object Edit toolbar to push the rectangle behind the data.

Hold down the Alt key and double-click on the rectangle to open Programming Control. Note that the objects

name is Rect.

Enter the following script:

%B = %C;

%A = xof(%B);

dataset dsRect;

dsRect = ((%A >= rect.x1) && (%A <= rect.x2) &&

 (%B >= rect.y3) && (%B <= rect.y1))?%B:0/0;

stats dsRect;

delete dsRect;

type -a Mean of $(stats.mean);

Choose the Moved or Sized event in the Script, Run After drop down list.

Click OK.

When you Move or Resize this rectangle, the script calculates the mean of all the points within the rectangle and

types the result to the Script Window. You can also define a Graphic Object range and run the script like:

GObject gobj = [Graph1]1!rect;

gobj.run();

6.2.8 ProjectEvents Script

ProjectEvents-Script

 You may want to define functions, perform routine tasks, or execute a set of commands, upon opening, closing,

or saving your Origin project. In Origin, this is facilitated by a file named ProjectEvents.ogs that is attached to the

Origin Project (OPJ) by default.

A template version of this file is shipped with Origin and is located in the EXE folder. This template file is

attached to each new project. The file can be viewed and edited by opening Code Builder and expanding the

Project node in the left panel.

Running and Debugging LabTalk Scripts

155

6.2.8.1 Sections of ProjectEvents.ogs

The ProjectEvents.ogs file, by default, contains three sections that correspond to three distinct events

associated with the project:

AfterOpenDoc: This section will be executed immediately after the project is opened

BeforeCloseDoc: This section will be executed before the project is closed

BeforeSaveDoc: This section will be executed before the project is saved

6.2.8.2 Utilizing ProjectEvents.ogs

In order for this file and its contents to have an effect, a user needs to edit the file and save it in Code Builder,

and then save the project. The next time the project is opened, the script code contained in this attached OGS

file will be executed upon the specified event (given by the pre-defined section name).

For example, if a user defines a new function in the [AfterOpenDoc] section of ProjectEvents.ogs, saves it (in

Code Builder), and then saves the project in Origin, that function will be available (if defined to be global) for use

any time the project is re-opened. To make the function available in the current session place the cursor (in Code

Builder) on the section name to execute, select the Debug drop-down menu, and select the Execute Current

Section option. Then in the Origin Script Window, issuing the list a command will confirm that the new function

appears and is available for use in the project.

A brief tutorial in the Functions demonstrates the value of ProjectEvents.ogs when used in conjunction with

LabTalk's dataset-based functions.

You can add your own sections to this OGS file to save custom routines or project-specific

script code. Such sections will not be event-driven, but can be accessed by name from any

place that LabTalk script can be executed. For example, if you add a section to this file

named [MyScript], the code in that section can be executed after opening the project by

issuing this command from the script window:

run.section(projectevents,myscript);

A ProjectEvents.ogs script can also be made to run by opening the associated Origin Project (OPJ) from a

command console external to Origin.

6.2.9 From Import Wizard

From-Import-Wizard

The Import Wizard can be used to import ASCII, Binary or custom file formats (when using a custom program

written in Origin C). The Wizard can save a filter in select locations and can include script that runs after the

import occurs. Once created, the filter can be used to import data and automatically execute script. This same

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Functions
https://www.originlab.com/doc/LabTalk/guide/From-Console
https://www.originlab.com/doc/LabTalk/guide/From-Console

LabTalk Scripting Guide

156

functionality applies when you drag a file from Explorer and drop onto Origin if Filter Manager has support for

the file type.

For example,

Start the Import Wizard.

Browse to the Origin Samples\Spectroscopy folder and choose Peaks with Base.DAT.

Click Add, then click OK.

Click Next six times to get to the Save Filters page.

Check Save Filter checkbox.

Enter an appropriate Filter file name, such as Subtract Base and Find Peaks.

Check Specify advanced filter options checkbox.

Click Next.

Paste the following into the text box:

range raTime = 1; // Get the Time column as a range

range raAmp = 2; // Get the Amp column as a range

range raBase = 3; // Get the Base column as a range

page.xlcolname = 0; // Turn off Spreadsheet Cell Notation

firstly

wks.addcol(Subtracted); // Create a column called Subtracted

range raSubtracted = 4; // Get the Subtracted column as a range

raSubtracted = raAmp - raBase; // Subtract Base from Amp

pkFind iy:=(1,4); // Find peaks in the Subtracted data

range raPeaks = 5; // Get the peak index column as a range

for(idx = 1; idx <= raPeaks.GetSize() ; idx++)

{

 pkidx = raPeaks[idx];

 ty Peak found at $(raTime[pkidx]) with height of

$(raSubtracted[pkidx]);

}

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more

information.

Click Finish.

This is what happens:

https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation

Running and Debugging LabTalk Scripts

157

The filter is saved.

The import runs using this filter.

After the import, the script runs which creates the subtracted data and the pkFind function locates peak indices.

Results are typed to the Script Window.

6.2.10 From Nonlinear Fitter

From-Nonlinear-Fitter

The Nonlinear Fitter has a Script After Fitting section on the Code page of the NLFit dialog. This can be useful

if you want to always do something immediately after a fit. As an example, you could access the fit parameter

values to do further calculations or accumulate results for further analysis.

In this example, the Script After Fitting section adds the name of the fit dataset and the calculated peak center

to a Workbook named GaussResults:

// This creates a new book only the first time

if(exist(GaussResults)!=2)

{

 newbook name:=GaussResults sheet:=1 option:=1 chkname:=1;

 GaussResults!wks.col1.name$= Dataset;

 GaussResults!wks.col2.name$= PeakCenter;

}

// Get the tree from the last Report Sheet (this fit)

getresults iw:=__REPORT$;

// Assign ranges to the two columns in 'GaussResults'

range ra1 = [GaussResults]1!1;

range ra2 = [GaussResults]1!2;

// Get the current row size and increment by 1

size = ra1.GetSize();

size++;

// Write the Input data range in first column

ra1[size]$ = ResultsTree.Input.R2.C2$;

// and the Peak Center value in the second

ra2[size] = ResultsTree.Parameters.xc.Value;

6.2.11 From an External Application

From-an-External-Application

External applications can communicate with Origin as a COM Server. Origin's COM Object exposes various

classes with properties and methods to other applications. For complete control, Origin has the Execute method

which allows any LabTalk - including LabTalk callable X-Functions and OriginC function - to be executed. In this

example (using Visual Basic Syntax), we start Origin, import some data, do a Gauss fit and report the peak

center :

https://www.originlab.com/doc/X-Function/ref/pkFind

LabTalk Scripting Guide

158

 ' Start Origin

 Dim oa

 Set oa = GetObject("", "Origin.Application")

 'oa.Execute ("doc -m 1") ' Uncomment if you want to see Origin

 Dim strCmd, strVar As String

 Dim dVar As Double

 ' Wait for Origin to finish startup compile

 ' (30 seconds is specified here,

 ' but function may return in less than 1 second)

 oa.Execute ("sec -poc 30")

 'Project is empty so create a workbook and import some data

 oa.Execute ("newbook")

 strVar = oa.LTStr("SYSTEM.PATH.PROGRAM$") + _

 "Samples\Curve Fitting\Gaussian.DAT"

 oa.Execute ("string fname") ' Declare string in Origin

 oa.LTStr("fname$") = strVar ' Set its value

 oa.Execute ("impasc") ' Import

 ' Do a nonlinear fit (Gauss)

 strCmd = "nlbegin 2 Gauss;nlfit;nlend;"

 oa.Execute (strCmd)

 ' Get peak center

 dVar = oa.LTVar("nlt.xc")

 strVar = "Peak Center at " + CStr(dVar)

 bRet = MsgBox(strVar, vbOKOnly, "Gauss Fit")

 oa.Exit

 Set oa = Nothing

 End

There are more detailed examples of COM Client Applications in the Samples\COM Server and Client folder.

6.2.12 From Console

From-Console

When Origin is started from the command-line of an external console (such as Windows cmd window), it reads

any command beyond the Origin.exe call, to check if any optional arguments have been specified.

For information, see Customizing Origin Startup Behavior with the Command Line.

6.2.13 On A Timer

On-A-Timer

The Timer (Command) executes the TimerProc macro, and the combination can be used to run a script every n

seconds.

The following example shows a timer procedure that runs every 2 seconds to check if a data file on disk has

been modified, and it is then re-imported if new.

In order to run this scipt example, perform the following steps first:

https://www.originlab.com/doc/Origin-Help/Startup-AdjustByComLine
https://www.originlab.com/doc/LabTalk/ref/Timer-cmd

Running and Debugging LabTalk Scripts

159

Create a simple two-column ascii file c:\temp\mydata.dat or any other desired name and

location

Start a new project and import the file into a new book with default ascii settings. The book

short name changes to mydata

Create a line+symbol plot of the data, and set the graph x and y axis rescale property to

auto so that graph updates when new data is added

Keep the graph as the active window

Save the script below to the [AfterOpenDoc] section of the ProjectEvents.OGS file attached

to the project.

Add the following command to the [BeforeCloseDoc] section of ProjectEvents.OGS:

timer -k;

Save the Origin Project, close, and then re-open the project. Now any time the project is

opened, the timer will start, and when the project is closed the timer will stop executing.

Go to the data file on disk and edit and add a few more data points

The timer procedure will trigger a re-import and the graph will update with the additional

new data

// Set up the TimerProc macro

def TimerProc {

 // Check if file exists, and quit if it does not

 string str$="c:\temp\mydata.dat";

 if(0 == exist(str$)) return;

 // Get date/time of file on disk

 double dtDisk = exist(str$,5);

 // Run script on data book

 // Assuming here that book short name is mydata

 win -o mydata {

 // Get date/time of last import

 double dtLast = page.info.system.import.filedate;

 // If file on disk is newer, then re-import the file

 if(dtDisk > dtLast) reimport;

 }

}

// Set TimerProc to be executed every 2 seconds

timer 2;

LabTalk Scripting Guide

160

The Samples\LabTalk Script Examples subfolder has a sample Origin Project named

Reimport File Using Timer.OPJ which has script similar to above set up. You can open

this OPJ to view the script and try this feature.

6.2.14 On Starting or Exiting Origin

On-Starting-Origin

6.2.14.1.1 Defining Global Constants, Variables and Functions

Use the [Startup] section of the Origin.ini to define global constants, variables and functions for use any time

you run Origin.

See these topics for more information on scope:

Scope of Variables

Scope of Functions

6.2.14.1.1.1 Defining global constants and variables

See FAQ-286 for information on defining constants and variables for use across Origin sessions.

6.2.14.1.1.2 Defining a global function

If Origin is running, exit the program.

Start a fresh page in a text editor (e.g. Notepad) and enter the following information:

[Main]

@global = 1;

// This function calculates the cube root of a number

function double dCubeRoot(double dVal)

{

 double xVal;

 if(dVal<0) xVal = -exp(ln(-dVal)/3);

 else xVal = exp(ln(dVal)/3);

 return xVal;

}

@global = 0;

Name and save the file to your the User Files Folder (UFF), using an .OGS file extension (e.g.

myLTFuncs.ogs).

Browse to your Origin.ini file in your UFF and open this file in your text editor.

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/Functions
https://www.originlab.com/doc/Quick-Help/Global-Constants
https://www.originlab.com/doc/Quick-Help/UserFilesFolder

Running and Debugging LabTalk Scripts

161

Locate the [Startup] section of the file and add the name of the .OGS file you just created using the following

form:

FileN=myLTFuncs.ogs

... where N is 1,2,3,etc.

Save your changes to Origin.ini.

To check the availability of your function, run Origin, open the Script Window and enter the name of the function,

followed by a value in parentheses and "=", then press ENTER.

dCubeRoot(8)=

Origin returns:

dCubeRoot(8)=2

See this topic for more information on the Scope of Functions.

6.2.14.1.2 Using OEvents.ogs to Trigger Events

When the Origin application is launched, there are multiple events that are triggered. Your LabTalk script can be

set to execute with each event using the OEvents.OGS file. This OEvents.OGS file includes several sections that

indicate when to run the script, such as, [AfterCompileSystem], [BeforeOpenDoc], and [OnExitOrigin].

The following example demonstrates cleaning the history panel of Command Window on existing Origin.

(Note that Origin C functions can not be run in the [OnExitOrigin] section. If you want to trigger events on exiting

Origin, always use LabTalk commands.)

Copy the OEvents.OGS file from the Origin EXE folder to your User Files Folder. Alternatively, when opening the

file from the EXE folder just make sure to then save it to your User Files Folder.

In the section named [OnExitOrigin], add the following script:

// Delete the files, which keep the history of command window, from the

User File folder

del -f "%YUpDown_Buffer.txt";

del -f "%YLTHistory.txt";

To run sections in OEvents.OGS, you also need to edit the Origin.ini file in your User Files Folder. Close Origin if

running, and then edit your Origin.ini and uncomment (remove the ";") in the line under the [Config] section, so

that it is as below:

Ogs1 = OEvents

; Ogs2 = OEvents

; Origin can trigger multiple system events

; Uncomment this line and implement event handlers in OEvents.ogs

https://www.originlab.com/doc/LabTalk/guide/Functions

LabTalk Scripting Guide

162

Note: More than one event handler file may exist in Origin.ini and the name is not restricted to

OEvents.OGS.

Close Origin and restart a new Origin session to check whether the history panel of Command Window is clean.

Origin C functions can be run from other sections of OEvents.OGS such as

[BeforeOpenDoc]. View the Compiling, Linking and Loading page in Origin C

Programming Guide for an example.

Please note that If you need to call Origin C functions from your custom script associated

with events, you need to ensure that the Origin C file is compiled and the functions are

available for script access. See Loading and Compiling Origin C Functions for details.

6.2.15 From a Custom Menu Item

From-a-Custom-Menu-Item

 LabTalk script can be assigned to custom menu items. The Custom Menu Organizer dialog accessible from

the Preference main menu in Origin provides easy access to add and edit main menu items. The Add Custom

Menu tab of this dialog can be used to add a new main menu entry and then populate it with sub menu items

including pop-up menus and separators. Once a menu item has been added, LabTalk script can be assigned for

that item. The menu items can be made available for all window types or a specific window type.

The custom menu configuration can then be saved and multiple configuration files can be created and then

loaded separately using the Preference: Menu main menu. For further information please view the help file page

for the Custom Menu Organizer dialog.

6.2.16 From a Toolbar Button

From-a-Toolbar-Button

 LabTalk script files can also be run from buttons on the Origin toolbar. In Getting Started with LabTalk chapter,

we have introduced how to run Custom Routine from a toolbar button, here we will introduce more details. Three

files enable this to happen:

A bitmap file that defines the appearance of the button. Use one of the set of buttons provided in Origin or create

your own.

A LabTalk script file that will be executed when the user clicks the button.

An INI file that stores information about the button or button group. Origin creates the INI file for you, when you

follow the procedure below.

https://www.originlab.com/doc/OriginC/guide/Compiling-Linking-and-Loading
https://www.originlab.com/doc/OriginC/guide/Compiling-Linking-and-Loading
https://www.originlab.com/doc/LabTalk/guide/Loading-and-Compiling-OC-Function
https://www.originlab.com/doc/LabTalk/guide/Getting-Started-with-LT

Running and Debugging LabTalk Scripts

163

We will assume for now that you have a bitmap image file (BMP) that will define the button itself (if you are

interested in creating one, example steps are given below).

First, use CodeBuilder (select on the Origin Standard Toolbar to open) or other text editor, to develop your

LabTalk script (OGS) file. Save the file with the OGS extension. You may divide a single script file into several

sections, and associate each section with a different toolbar button.

6.2.16.1 Putting a Button on an Origin Toolbar

To put the button on an Origin toolbar, use this procedure:

In Origin, select View:Toolbars to open the Customize Toolbar dialog.

Make the Button Groups Tab active.

Click the New button in the Button Group to open the Create Button Group dialog.

Enter a new Group Name.

Enter the Number of Buttons for this new Group.

Click the Browse button to locate your bitmap file. This file should be in your User directory.

Click OK.

The Save As dialog will open. Enter the same name as that of your bitmap file. Click OK to save the INI file. You

will now see that your group has been added to the Groups list and your button(s) is now visible.

When creating a custom button group for export to an OPX file, consider saving your button group's initialization

file, bitmap file(s), script file(s), and any other support files to a user-created subfolder in your User Files folder.

When another Origin user installs your OPX file, your custom subfolder will automatically be created in the user's

User Files folder, and this subfolder will contain the files for the custom button group. This allows you to keep

your custom files separate from other Origin files.

6.2.16.2 Match the Button with a LabTalk Script (OGS) File

Click on the button to select it.

Click the Settings button, to open the Button Settings dialog.

Click the Browse button to locate your OGS file.

Enter the Section Name of the OGS file and any arguments in the Argument List.

Enter something descriptive in the Tool Tip Text text box.

Enter a status bar message in the Status Bar text box.

LabTalk Scripting Guide

164

Click OK.

Repeat these steps for each of the buttons in your Button Group.

Drag the first button out onto your Origin workspace. A toolbar is created. You can now drag all other buttons

onto this toolbar.

6.2.16.3 Custom Buttons Available in Origin

The following dialog can be accessed from the View: Toolbars menu option in Origin. On the Button Groups

tab, scroll down to select the User Defined group:

Drag any of these buttons onto the Origin toolbar to begin using them. Use the procedure outlined above to

associate a script with a given button.

Running and Debugging LabTalk Scripts

165

6.2.16.4 Creating a Bitmap File for a New Button

To create a bitmap file, using any program that allows you to edit and save a bitmap image (BMP) such as

Window's Paint. The following steps will help you get started:

Using the bitmap for the built-in user defined toolbar is a good place to begin. In Windows Paint, select

File:Open, browse to your User Files folder and select Userdef.bmp.

Set the image size. Select Image:Attributes. The height needs to remain at 16 and should not be changed.

Each button is 16 pixels high by 16 pixels wide. If your toolbar will be only 2 buttons then change the width to 32.

The width is always 16 times the number of buttons, with a maximum of 10 buttons or a width of 160.

Select View:Zoom:Custom:800%. The image is now large enough to work with.

Select View:Zoom:Show Grid. You can now color each pixel. The fun begins - create a look for each button.

Select File:Save As, enter a new File name but leave the Save as type to 16 Color Bitmap.

6.2.17 From Worksheet Cell

From-Worksheet-Cell

Executable LabTalk script can be inserted into worksheet cells, including cells in column label rows with the

following syntax. The DisplayedText is optional. Without it, the script itself will show.

labtalk://Script DisplayedText

Note: If the script opens a dialog, please prefix the script with ;. Otherwise after closing the dialog, the cell with

end up in edit mode.

To edit it again:

Single click it on the cell and hold the mouse for more than 2 seconds before releasing.

Alt + double click

Choose Edit: Edit Mode (Ctrl+Alt+B) menu. After editing, please make sure select the menu again to exit the

edit mode.

Examples

Add a single line script without space. Click on it will add a new column in current sheet.

labtalk://wks.ncols+=1

LabTalk Scripting Guide

166

Add a single line text with space. Click it will open x-function based smooth dialog. ; is added at the beginning to

avoid entering edit mode after closing the dialog.

labtalk://";smooth -d" Open Smooth Dialog

Run [open] section of file.ogs file. Click it will open File: Open dialog

labtalk://;run.section(file.ogs, open) Open File...

Please visit Inserting Executable LabTalk Script for more information.

6.3 Debugging Scripts

6.3.1 Debugging Scripts

Debugging-Scripts

This section covers means of debugging your LabTalk scripts. The first part introduces interactive execution of

script. The second presents several debugging tools, including Origin's native script editor, Code Builder. And the

third covers the error handling.

Topics covered in this section:

• Interactive Execution

• Debugging Tools

• Error Handling

6.3.2 Interactive Execution

Interactive-Execution

You can execute LabTalk commands or X-functions line-by-line (or a selection of multiple lines) to execute step-

by-step. The advantage of this procedure is that you can verify the result of the issued command, and according

to the result or error, you can act appropriately.

To execute LabTalk commands interactively, you can enter them in the following places:

Classic Script Window

Command Window in Origin's main window

Command & Results Windows in Code Builder

https://www.originlab.com/doc/Origin-Help/InsLink-to-WksCell
https://www.originlab.com/doc/LabTalk/guide/Interactive-Execution
https://www.originlab.com/doc/LabTalk/guide/Debugging-Tools
https://www.originlab.com/doc/LabTalk/guide/Error-Handling
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window
https://www.originlab.com/doc/LabTalk/guide/From-Script-and-Command-Window

Running and Debugging LabTalk Scripts

167

The characteristics and the advantages of each window are as follows:

6.3.2.1.1 Classic Script Window

This window can be open from the Window main menu. This is the most flexible place for advanced users to

execute LabTalk scripts. Enter key will execute

the current line if cursor has no selection

the selected block if there is a selection

You can use Ctrl+Enter to add a line without executing. There is also a Script Execution option on the Edit

menu to toggle between editing and interactive execution.

6.3.2.1.2 Command Window in Origin's Main Window

You can enter a LabTalk command at the command prompt in the Command Window. The result would be

printed immediately after the entered command line. Command Window has various convenient features such as

command history panel, auto-completion, roll back support for utilizing previously executed commands, saving

previously executed commands to an OGS file, etc. Note, however, that you cannot edit multi-line scripts within

the Command Window.

To learn how to use the Command window, see The Origin Command Window chapter in the Origin help file.

6.3.2.1.3 Command & Results Windows in Code Builder

Code Builder is Origin's integrated development environment useful in debugging LabTalk scripts as well as

Origin C code, X-Function code, etc. In Code Builder, use various convenient debugging tools like setting up

break points, step-by-step execution, inspection of the values of variables, etc.

To learn how to use the Code Builder, see the Code Builder User's Guide in the Programming help file.

6.3.3 Debugging Tools

Debugging-Tools

Origin provides various tools to help you to develop and debug your LabTalk scripts.

6.3.3.1 Code Builder (Origin feature)

Code Builder is Origin's integrated development environment to debug LabTalk scripts, Origin C code, X-

Function code and fitting functions coded in Origin C. In Code Builder, use various convenient debugging tools

like setting up break points, step-by-step execution and inspection of variable values. Code Builder can be

opened by the ed.open() method.

To learn how to use the Code Builder, see the Code Builder User's Guide in the Programming help file.

https://www.originlab.com/doc/Origin-Help/CmdWindow

LabTalk Scripting Guide

168

Here is an example showing how to debug LabTalk script in Code Builder.

Open an OGS file by running the following script.

// Open an ogs file in Code Builder

file$ = system.path.program$ + "Samples\LabTalk Script

Examples\ave_traces.ogs";

ed.open(%(file$));

Set a break point on line 22 in the open file, by clicking on the margin to the left of this line:

fname$ = system.path.program$ + "Samples\Data

Manipulation\not_monotonic_multicurve.dat";

The break point will look like this:

Place the cursor on line 12 - the [Main] section - then select menu Debug: Execute Current Section. The

[Main] section code will run and stop at the line with the break point.

Now press F10 to execute the remaining script line by line. Code Builder provides the Watch window to view the

value of a variable during debugging. For example, after pressing F10 once, open the Watch window by menu

item View: Watch if it is not opened yet. Then type fname$ in the left cell of the table in this window, the value

will show in the right cell of the same row.

Running and Debugging LabTalk Scripts

169

To execute the remaining script, press F5. It will complete unless encountering another break point.

6.3.3.2 Ed (object)

The Ed (object) provides script access to Code Builder, a dedicated editor for LabTalk script and Origin C code.

The ed object methods are:

Method Brief Description

ed.open() Open the Code Builder window.

ed.open(fileName) Open the specified file in the Code Builder window.

ed.open(fileName,

sectionName)

Open the specified OGS file at the specified section in the Code Builder

window. (Defaults to file beginning if section not found.)

6.3.3.2.1 Open the Code Builder

ed.open()

6.3.3.2.2 Open a Specific File in Code Builder

The following command opens the file myscript.ogs

ed.open(E:\myfolder\myscript.ogs)

6.3.3.2.3 Open a File on a Pre-Saved Path

 Use the cd X-Function to first switch to the particular folder:

cd 2;

ed.open(autofit.ogs);

https://www.originlab.com/doc/LabTalk/ref/Ed-obj
https://www.originlab.com/doc/LabTalk/ref/Ed-obj
https://www.originlab.com/doc/LabTalk/guide/From-Files

LabTalk Scripting Guide

170

6.3.3.3 LabTalk Variables and Functions Dialog

The list command with no options as well as the ed command (different than the ed object) opens the LabTalk

Variables dialog, which is a table of attributes for all variables in the current project. The attributes are variable

name, value, type, subtype, property, plot information, and description.

This is a useful tool for script programmers as the current values and properties of variables can be viewed in

real time. Additionally, variables can be sorted by any of their attributes, alphabetically in the case of text

descriptors, numerically in the case of numeric values.

Check boxes exist on the right-hand side of the dialog that allow you to see any subset of the entire variable list.

6.3.3.4 Echo (system variable)

To debug and trace, this system variable, Echo prints scripts or error messages to the Command window (or

Script window when entered there). To enable echo, type:

echo = Number

in the Script window (where Number is one of the following):

Number Description

https://www.originlab.com/doc/LabTalk/ref/Edit-cmd
https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/ref/Edit-cmd

Running and Debugging LabTalk Scripts

171

1 Display commands that generate an error;

2 Display scripts that have been sent to the queue for delayed execution;

4 Display scripts that involve commands;

8 Display scripts that involve assignments;

16 Display macros.

These values are bits that can be combined to produce cumulative effects. For example, echo = 12 displays both

command and assignment scripts. Echo = 7 (includes echo = 1, echo = 2, and echo = 4) is useful for following

script execution during menu command selection. To disable echo, type echo = 0 in the Script window

6.3.3.5 #!script (special syntax)

Embed debugging statements in your script using this notation. The # character tells the LabTalk interpreter to

ignore the text until the end of the line. However, when followed by the ! character, the script is executed if the

@B system variable (or System.Debug object property) is set to 1. The following example illustrates this option:

@B = 1;

range rr = [Book1]Sheet1!col(A); // Range to column A

for (ii=1; ii<=10; ii+=1) {

 #!ii=; rr[ii]=; // Embedded debugging script

 rr[ii]+=ii*10;

}

@B = 0;

#!type -a This line will not execute

The script sets @B equal to 1 to allow #! lines to execute. By setting @B to 0 , the last line will not execute.

6.3.3.6 {script} (special syntax)

An error in your LabTalk code will cause the code to stop at the point of the error and not execute any

statements after the error. In cases where you would like the script to continue executing in such cases, you can

use curly braces to define where error handling should begin and resume. For instance, in the following script,

type Start;

impasc fname:=BadFileName;

type End;

the word Start will print to the Script Window, but if BadFileName cannot be found, the script will stop executing

at that point, and the word End will not print.

If, however, you surround the line in question with curly braces (i.e., {}), as in,

https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/System-obj

LabTalk Scripting Guide

172

type Start;

{

 impasc fname:=BadFileName;

}

type End;

then End will print whether or not BadFileName is properly imported.

You can catch this condition with a variable:

@LT = 3; // use in 2017 SR2 and later, remove this line for earlier versions

flag = 1;

{

 impasc fname:=MyFile;

 flag = 0;

}

if(flag)

 type Error ocurred;

else

 type OK;

A similar situation occurs when a section in an OGS file fails. Code will silently return to the calling context. Use

the above variable method to identify that code failed. In this case, the brackets are not needed:

[Called Section]

flag = 1;

BadCommand; // This line errors and silently returns

flag = 0; // flag (which must be global variable) is 1, then above code

failed.

6.3.3.7 @B(system variable), System.Debug (object property)

@B system variable controls the Debug mode to execute the LabTalk statements that begin with #! :

1 = enable

0 = disable

It is equivalent to the System.Debug object property.

6.3.3.8 @OC (system variable)

@OC system variable controls whether or not you can call Origin C functions from LabTalk.

Value Description

@OC = 1 (default) Origin C functions CAN be called

@OC = 0 Origin C functions CANNOT be called

6.3.3.9 @V(system variable), System.Version(object property)

@V indicates the Origin version number. @V and System.Version object property are equivalent.

https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/System-obj
https://www.originlab.com/doc/LabTalk/ref/System-obj
https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/System-obj

Running and Debugging LabTalk Scripts

173

6.3.3.10 @VDF (system variable)

If you set @VDF = 1, when you open a project file (.OPJ), Origin will report the Origin version in which the file

was saved.

6.3.3.11 VarName= (command)

This command examines the value of any variable. Embed this in your script to display intermediate variable

values in the Script window during script execution.

Example 1

The following command prints out the value of myHight variable:

myHight=

6.3.3.12 LabTalk:List (command)

The list command is used to examine your system environment. For example, the list s command displays all

datasets (including temporary datasets) in the project.

6.3.3.13 ErrorProc (macro)

The ErrorProc macro is useful for error trapping.

The ErrorProc macro is triggered ...

when the LabTalk interpreter detects a #Command Error.

when you click the Cancel button in any dialog box.

when you click the No button in dialog boxes that do not have a Cancel button.

The ErrorProc macro is deleted immediately after it is triggered and executed.

6.3.3.14 NotReady (macro)

This macro displays the message "This operation is still under development..." in a dialog box with an OK button.

6.3.3.15 Type <ogsFileName> (command)

This variant of the type command prints out the contents of a specified script file (.OGS) in the current directory

to the Command (or Script) window. Note that the file extension .OGS in ogsFileName may be omitted. The file

name cannot include a path and must be in the working directory.

Examples:

The following script prints the contents of D: \temp\mytemp1.ogs and C:\myogs\hello.ogs.

cd D:\Temp;

type mytemp1.ogs; // Extension included

cd C:\temp;

type hello; // Extension omitted

https://www.originlab.com/doc/LabTalk/ref/System-vars
https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/ref/ErrorProc-macro
https://www.originlab.com/doc/LabTalk/ref/NotReady-macro
https://www.originlab.com/doc/LabTalk/ref/Type-cmd

LabTalk Scripting Guide

174

6.3.3.16 Log to a File

To output the log information to a file, the type command is available. type -gb will specify the log file to output to,

and begin the output routine. Then type -ge will end the routine and stop logging to the file. For example:

type -gb %Ylog.txt; // Start typing text to a file, log.txt, if not exist,

create it

type aa; // Write aa

type bb; // Write bb

type cc; // Write cc

type -ge; // End writing

This can be particularly useful when your script is creating a large volume of output to the Script Window since it

has only a 30000 byte buffer.

6.3.4 Error Handling

Error-Handling

LabTalk scripts may be interrupted if an error has been thrown. But there are times when you want to continue

the execution of the script even if an error is encountered. In this situation, Origin allows you to use a pair of curly

braces ("{" and “}”) to enclose a part of the script that might generate an error. When Origin encounters an error

within the section the remaining script up to the "}" is skipped and execution resumes outside the curly braces. In

this sense, braces and run.section() commands have the same behavior.

The following is a simple example to show how to handle possible errors. Please note that before executing the

scripts in the Script Window, you should create a new worksheet and make sure that column C does not exist.

// Script without error handling

type "Start the section";

stats col(c);

stats.max=;

type "Finished the section";

The line of code, stats col(c);, will throw an error, because Column C does not exist. Then, the script will

terminate and only output:

Start the section

Failed to resolve range string, VarName = ix, VarValue = col(c)

Now we will introduce braces to use error handling. We can add a variable to indicate if an error occurred and

make use of a System Variable to temporarily shut off Origin error messages:

// Script with error handling

type "Start the section";

int iNOE = @NOE; // Save current Origin error message output flag

// The section that will generate an error

{

 @NOE = 0; // Shut off Origin error messages

 vErr = 1; // Set our error variable to true (1)

 stats col(c); // This is the code which could produce an error

 stats.max=; // Execution will continue only if no error occurs

 vErr = 0; // If NO error then our variable gets set to false (0)

https://www.originlab.com/doc/LabTalk/ref/Type-cmd
https://www.originlab.com/doc/LabTalk/ref/Type-cmd
https://www.originlab.com/doc/LabTalk/ref/Type-cmd

Running and Debugging LabTalk Scripts

175

}

@NOE = iNOE; // Restore Origin error messages

if(vErr) ty An error occurred. Continuing ...;

type "Finished the section";

The output will become

Start the section

An error occurred. Continuing ...

Finished the section

After the error on the stats col(c) line, code execution continues outside the closing brace (}) and we can

trap our error and process as needed. You can comment out the lines related to @NOE if you want the Message

Log to retain a record of all errors that occurred.

177

7 String Processing

7.1 String Processing

Category-Str-Process

This chapter introduces you to working with strings, including string variables, registers and arrays, converting

numbers to strings, strings to numbers, and various methods available for string processing.

Topics covered in this chapter:

• String Variables and String Registers

• String Processing

• Converting Strings to Numbers

• Converting Numbers to Strings

• String Arrays

7.2 String Variables and String Registers

String-vars-and-String-Registers

In Origin, string processing is supported in two ways: with string variables, and with string registers. In general,

we encourage the use of string variables as they are more intuitive (i.e., more like strings in other programming

languages) and are supported by many pre-defined string methods; both of which are advantages over string

registers.

7.2.1 String Variables

A string variable is created by declaration and/or assignment, and its name is always followed by a $-sign. For

example:

// Creates by declaration a variable named 'aa' of the string type;

//'aa' is empty (i.e., "")

string aa$;

// Assigns to 'aa' a character sequence

aa$ = "Happy";

// Creates and assigns a value to string variable 'bb',

//all on the same line

string bb$ = "Yes";

https://www.originlab.com/doc/LabTalk/guide/String-vars-and-String-Registers
https://www.originlab.com/doc/LabTalk/guide/String-Processing
https://www.originlab.com/doc/LabTalk/guide/String-Conversion
https://www.originlab.com/doc/LabTalk/guide/Converting-to-String
https://www.originlab.com/doc/LabTalk/guide/String-Arrays
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

LabTalk Scripting Guide

178

// Creates and assigns a value to string variable 'cc' with no declaration

//(see note below)

cc$ = "Project";

Note: Because string variable cc was not declared, it is given Project scope, which means all routines, functions,

or otherwise can see it as long as the project is open. Declared variables aa and bb are given Local (or Session)

scope. For more on scope, see Variables and Scope.

7.2.2 String Registers

Prior to Version 8.0, Origin supported string processing with string registers. As such, they continue to be

supported by more recent versions, and you may see them used in script programming examples. There are 26

string registers, corresponding to the 26 letters of the English alphabet, each preceeded by a %-sign, i.e., %A--

%Z. They can be assigned a character sequence just like string variables, the differences are in the way they are

handled and interpreted, as the examples below illustrate. As a warning, several of the 26 string registers are

reserved for system use, most notably, the ranges %C--%I, and %X--%Z. For complete documentation on their

use, see String Registers.

7.3 String Processing

String-Processing

7.3.1.1 Using String Registers

String Registers predate the introduction of string variables (Origin 8) and are used more often in older scripts.

They are simple to use but are more difficult to read as compared with string variables and their methods. Also,

they are global (session scope) and so are more difficult to control in terms of their values being modified by

other parts of the code.

// Concatenate two strings using string registers

%A="Left";

%B="Handed";

%N="%A %B";

%N= // "Left Handed"

// Extract the file name substring from the longer file path string:

%N="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

for(done=0;done==0;)

{

 %M=%[%N,>'\'];

 if(%[%M]>0) %N = %M;

 else done = 1;

}

%N=;

7.3.1.2 Using String Variables

String variables, introduced in Origin 8, are generally preferable to string registers as they produce more reliable

code. To resolve string variables, %() substitution is used. The following example shows multiple ways to extract

numbers from a string:

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/guide/String-registers

String Processing

179

// String variables support many methods

string fname$="S15-125-03.dat";

int nn=fname.Find('S');

string str1$ = fname.Mid(nn+1, 2)$;

type "1st number = %(str1$)";

string str2$ = fname.Between("-", "-")$;

type "2nd number = %(str2$)";

int nn = fname.ReverseFind('-');

int oo = fname.ReverseFind('.') ;

string str3$ = fname.Mid(nn + 1, oo - nn - 1)$;

type "3rd number = %(str3$)";

//Use %(string$) to convert string to number and do calculation 125-15*03

//Use $(number) to convert the calculation result to string and print

type $(%(str2$) - %(str1$) * %(str3$));

// Using string Registers, we can use substring notation

%M = "S15-125-03.dat";

%N = %[%M,2:3]; // Specify start and end

type "1st number = %N";

%N = %[%M,>'S']; // Find string after 'S'

%N = %[%N,'-']; // Find remaining before '-'

type "1st number = %N";

%O = %[%M,#2,\x2D]; // Find second token delimited by '-' (hexadecimal 2D)

type "2nd number = %O";

%P = %[%M,'.']; // trim extension

%P = %[%P,>'-']; // after first '-'

%P = %[%P,>'-']; // after second '-'

type "3rd number = %P";

type $(%O - %N * %P);

7.3.1.3 Getting a Substring from a Longer String Using String Variables

These examples show multiple ways to get a substring (in this case a file name) from a longer string (a full file

path). For information on substring notation using string registers, see Substring Notation.

7.3.1.3.1 Find substring, using getFileName()

In this example, a string method designed for a very specific but commonly needed task is invoked.

// Use the built-in string method, GetFileName():

string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

string str1$ = fname.GetFileName()$;

str1$=;

7.3.1.3.2 Find substring, using reverseFind(), mid() methods

This time, a combination of string methods is used:

// Use the functions ReverseFind and Mid to extract the file name:

string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

// Find the position of the last '\' by searching from the right.

https://www.originlab.com/doc/LabTalk/guide/String-registers

LabTalk Scripting Guide

180

int nn=fname.ReverseFind('\');

// Get the substring starting after that position and going to the end.

string str2$=fname.Mid(nn+1)$;

// Type the file name to the Script Window.

str2$=;

7.3.1.3.3 Find substring, token-based

Here, another variation of generic finding methods is chosen to complete the task.

// Use a token-based method to extract the file name:

string fname$="C:\Program Files\Origin 8\Samples\Import\S15-125-03.dat";

// Get the number of tokens, demarcated by '\' characters.

int nn=fname.GetNumTokens('\');

// Get the last token.

string str3$ = fname.GetToken(nn, '\')$;

// Output the value of that token to the Script Window.

str3$=;

For more information, see String Methods.

7.3.1.4 Concatenate Strings

You can concatenate strings by using the '+' operator:

string aa$="reading";

string bb$="he likes " + aa$ + " books";

type "He said " + bb$;

You may also use the insert string method to concatenate two strings:

string aa$ = "Happy";

string bb$ = " Go Lucky";

// insert the string 'aa' into string 'bb' at position 1

bb.insert(1,aa$);

bb$=;

For a complete listing and description of supported string methods, please see String (Object).

7.4 Converting Strings to Numbers

String-Conversion

The next few examples demonstrate converting a string of numeric characters to an actual number.

7.4.1 Converting String to Numeric

7.4.1.1 Using Substitution Notation

To convert a variable of type string to a variable of type numeric (double, int, const), consider the following

simple example:

https://www.originlab.com/doc/LabTalk/ref/String-obj
https://www.originlab.com/doc/LabTalk/ref/String-obj

String Processing

181

// myString contains the characters 456 as a string

string myString$ = "456";

// myStringNum now contains the integer value 456

int myStringNum = %(myString$);

The syntax %(string$) is one of the substitution notations supported in LabTalk. Another, $(num), is used to

convert in the opposite direction; from numeric to string.

7.4.1.2 Using String Registers

This example demonstrates how to convert a string held in a string register to a numeric value.

// Similar to above, but performed using string registers:

string myString$ = "456";

// Assignment without quotes will evaluate the right-hand-side

%A = myString$;

// %A will be substituted, then right-hand-side evaluated

int aa = %A;

// 'aa' can be operated on by other integers

int bb = aa + 100;

bb=; // ANS: 556

7.5 Converting Numbers to Strings

Converting-to-String

The following examples demonstrate conversion of numeric variables to string, including notation to format the

number of digits and decimal places.

7.5.1 Converting Numeric to String

7.5.1.1 Using Substitution Notation

To convert a variable of a numeric type (double, int, or const) to a variable of string type, consider the following

simple example:

// myNum contains the integer value 456

int myNum = 456;

// myNumString now contains the characters 456 as a string

string myNumString$ = $(myNum);

The syntax $(num) is one of type of substitution notation supported in LabTalk. Another, %(string$), is used to

convert in the opposite direction, from string to numeric, substituting a string variable with its content.

Formatting can also be specified during the type conversion:

$(number [,format]) // braces indicate that the format is optional

Format follows the C-programming format-specifier conventions, which can be found in any C-language

reference, for example:

string myNumString2$ = $("3.14159",%3d);

myNumString2$= // "3"

https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/guide/string-substitution

LabTalk Scripting Guide

182

string myNumString2$ = $("3.14159",%3.2f);

myNumString2$= // "3.14"

string myNumString2$ = $("3141.59",%6.4e);

myNumString2$= // "3.1416e+003"

For further information on this type of formatting, please see $() Substitution.

7.5.1.2 Using the Format Function

Another way to convert a numeric variable to a string variable uses the format function:

// call format, specifying 3 significant figures

string yy$=Format(2.01232, "*3")$;

// "2.01"

yy$=;

For full documentation of the format function see Format (Function)

7.5.2 Significant Digits, Decimal Places, Thousand Separator, and
Numeric Format

LabTalk has native format specifiers that, used as part of LabTalk's Substitution Notation provide a simple means

to format a number.

7.5.2.1 Use the *n notation to set significant digits

x = 1.23456;

type "x = $(x, *2)";

In this example, x is followed by "*2", which sets x to display two significant digits. So the output result is:

x = 1.2

Additionally, putting a "*" after "*n" will remove trailing 0's before the power of ten. For instance,

y = 1.10001;

type "y = $(y, *4*)";

In this example, the output result is:

y = 1.1

The result has only 2 siginificant digits, because y is followed by *4* instead of *4.

7.5.2.2 Use the .n notation to set decimal places

double x = 1.23456;

type "x = $(x, .2)";

In this example, x is followed by ".2" which sets x to display two decimal places. So the output result is:

x = 1.23

Additionally, putting a "," after ".n" will show thousand separator

double x = 12345678.9;

type "x = $(x, .0,)";

The output will show 0 decimal places and thousand separator

https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/ref/Text-Format-func
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion

String Processing

183

x = 12,345,679

7.5.2.3 Use E*n notation to change the variable to engineering format

The E notation follows the variable it modifies, like the * notation. For example,

x = 1e6;

type "x = $(x, E%4.2f)";

where % indicates the start of the substitution notation, 4 specifies the total number of digits, .2 specifies 2

decimal places, and f is an indicator for floating notation. So the output is:

x = 1.00M

7.5.2.4 Use the $(x, S*n) notation to convert from engineering to scientific

notation

In this syntax, n specifies the total number of digits.

x = 1.23456;

type "x = $(x,S*3)";

And Origin returns:

x = 1.23E0

7.6 String Arrays

String-Arrays

This example shows how to create a string array, add elements to it, sort, and list the contents of the array.

// Import an existing sample file

newbook;

fpath$ = "Samples\Data Manipulation\US Metropolitan Area Population.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Loop over last column and find all states

range rMetro=4;

stringarray saStates;

for(int ir=1; ir<=rMetro.GetSize(); ir++)

{

 string strCell$ = rMetro[ir]$;

 string strState$ = strCell.GetToken(2,',')$;

 // Find instances of '-' in name

 int nn = strState.GetNumTokens("-");

 // Add to States string array

 for(int ii=1; ii<=nn; ii++)

 {

 string str$ = strState.GetToken(ii, '-')$;

 // Add if not already present

 int nFind = saStates.Find(str$);

 if(nFind < 1)

 saStates.Add(str$);

 }

https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion

LabTalk Scripting Guide

184

}

// Sort States string array and print out

saStates.Sort();

for(int ii=1; ii<=saStates.GetSize(); ii++)

 saStates.GetAt(ii)$=;

185

8 Workbooks Worksheets and Worksheet Columns

8.1 Workbooks Worksheets and Worksheet Columns

Workbooks-Worksheets-and-Worksheet-Columns

In this chapter we cover the Workbook -> Worksheet -> Column hierarchy, and how to access these objects from

script. The concept of treating data in a worksheet as a virtual matrix is also covered.

This chapter covers the following topics:

• LT Workbooks

• LT Worksheets

• LT Worksheet Columns

8.2 Workbooks

8.2.1 Workbooks

Workbooks

This chapter covers the following topics:

• Basic Workbook Operation

• Workbook Manipulation

8.2.2 Basic Workbook Operation

You can manipulate workbooks with the Page object and Window command. You can also use Data

Manipulation X-Functions. With these tools, you can create new worksbooks, duplicate workbooks, save

workbook as template, etc. Some practical examples are provided below.

8.2.2.1 Create New Workbook

The newbook X-Function can be used to create new workbook. With the arguments of this X-Function, you can

specify the newly created workbook with Long Name, number of sheets, template to use, whether hidden, etc.

//Create a new workbook with the Long Name "MyResultBook"

newbook MyResultBook;

https://www.originlab.com/doc/LabTalk/guide/Workbooks
https://www.originlab.com/doc/LabTalk/guide/Worksheets
https://www.originlab.com/doc/LabTalk/guide/Worksheet-Columns
https://www.originlab.com/doc/LabTalk/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/LabTalk/guide/Workbook-Manipulation
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Window-cmd
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/X-Function/ref/newbook

LabTalk Scripting Guide

186

// Create a new workbook with 3 worksheets

// and use "MyData" as Long Name and short name

newbook name:="MyData" sheet:=3 option:=lsname;

// Create a new hidden workbook

// and the workbook name is stored in myBkName$ variable

newbook hidden:=1 result:=myBkName$;

// Output workbook name

myBkName$ = ;

// By default, the built-in template "Origin" is used to

// create the new workbook, you can also use a specified template

// Create a new workbook with the XYZ template

newbook template:=XYZ;

Also, the command win -ti is capable of creating a minimized new workbook from a template file.

// Create a new wookbook from the FFT template

// and Long Name and short name to be MyFFT, then minimize it

win -ti wks FFT MyFFT;

8.2.2.2 Open Workbook

If the workbook with data is saved (as extension of ogw), it can be opened by the doc -o command.

// Open the workbook using a one-line path with %@JSamples, which maps to the

Samples folder

doc -o "%@JSamples\Graphing\Automobile Data.ogw";

8.2.2.3 Save Workbook

Origin allows you to save a workbook with data to a file (*.ogw), or as a template without data (*.otw), and for the

workbook with analysis, it is able to be saved as an analysis template (*.ogw).

The command save -i is able to save the active workbook with data to an ogw file.

// Create a new workbook

newbook;

// Fill some data to col(1)

col(1) = uniform(32);

// Save this workbook with data to MyData.ogw under User Files Folder

save -i %YMyData.ogw;

The X-Function template_saveas is used to save workbook as a template.

// Create a new workbook with 3 sheets

newbook sheet:=3;

// Save this workbook as a template named My3SheetsBook

// in User Files Folder (default)

template_saveas template:=My3SheetsBook;

To save a workbook with analysis, the command save -ik can be used.

// Open a sample project using %@JSamples, which points to the Samples

folder

doc -o "%@JSamples\Analysis.opj";

https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Create
https://www.originlab.com/doc/LabTalk/ref/Document_Options_for_Project
https://www.originlab.com/doc/LabTalk/ref/Save-cmd
https://www.originlab.com/doc/X-Function/ref/template_saveas
https://www.originlab.com/doc/LabTalk/ref/Save-cmd

Workbooks Worksheets and Worksheet Columns

187

// Activate the workbook to be saved as analysis template

win -a Book1J;

// Save this workbook as an analysis template named MyAnalysis.ogw

under User Files Folder

save -ik %YMyAnalysis.ogw;

8.2.2.4 Close Workbook

To close workbook, just click the Close button in the top right corner of the workbook. And this behovior is done

by command win -ca, and a dialog pops up to prompt user to delete or hide the workbook.

// Create a workbook, and name is stored in MyBook$ variable

newbook result:=MyBook$;

// Simulate the Close button clicking

win -ca %(MyBook$);

To close the workbook directly without prompting, and delete all the data, you can use command win -cd. And

this is the same with Delete Workbook below.

// Create a new workbook for closing

newbook;

// close this workbook without prompting, and delete all the data

win -cd %H;

8.2.2.5 Show or Hide Workbook

There are three switches, -ch, -h, and -hc, in win command for showing or hiding workbook.

// Create 3 workbooks for hiding

newbook name:=MyBook1 option:=lsname; // first workbook, MyBook1

newbook name:=MyBook2 option:=lsname; // second workbook, MyBook2

newbook name:=MyBook3 option:=lsname; // third workbook, MyBook3;

// Use -ch to hide the active workbook, MyBook3

// And the View Mode in Project Explorer is Hidden

win -ch 1;

// Use -hc to hide the first workbook (not the active one), MyBook1

// And the View Mode in Project Explorer is Hidden

win -hc 1 MyBook1;

// Use -h to hide the second workbook (active workbook), MyBook2

// The View Mode in Project Explorer is still Normal

win -h 1;

// Actually, MyBook2 is still the active workbook

// It is able to show it by:

win -h 0;

// To show MyBook1 and MyBook3, need to use the -hc switch to specify

// the workbook name

win -hc 0 MyBook1;

win -hc 0 MyBook3;

https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close
https://www.originlab.com/doc/LabTalk/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/LabTalk/ref/Window-cmd

LabTalk Scripting Guide

188

8.2.2.6 Name and Label Workbook

For a workbook, there will be short name, Long Name, and Comments. You can rename (short name) a

workbook with win -r command, and use the page object to control Long Name and Comments, including how to

show the workbook title (short name, Long Name, or both).

// Create a new workbook with name of "Data",

// and show both in workbook title

// both short name and Long Name are the same

// workbook title only shows short name

newbook name:=Data option:=lsname;

// Rename the workbook to "RawData"

win -r Data RawData;

// Change Long Name to be "FFT Data"

page.longname$ = "FFT Data";

// Add Comments, "1st group data for fft"

page.comments$ = "1st group data for fft";

// Let the workbook title shows Long Name only

page.title = 1; // 1 = Long Name, 2 = short name, 3 = both

8.2.2.7 Activate Workbook

To activate a workbook, the command win -a can be used.

// The path of project to be opened

string strOpj$ = system.path.program$;

strOpj$ += "Samples\Curve Fitting\Intro_to_Nonlinear_Curve_Fit_Tool.opj";

// Open the project

doc -o %(strOpj$);

// Activate workbook, Book1, in the second subfolder of the project

win -a Book1;

// It also can put the workbook name into a variable

// Variable for the name of workbook, Gaussian, in the project

string strGau$ = Gaussian;

// Activate the Gaussian workbook in the first subfolder

win -a %(strGau$);

Most Origin commands operate on the active window, so you may be tempted to use win -a to activate a

workbook and then run script after it to assume the active workbook. This will work in simple codes but for longer

script, there might be timing issues and we recommend that you use window -o winName {script} instead. See A

Note about Object that a Script Operates upon for more detail explanation.

8.2.2.8 Delete Workbook

To delete a workbook, you can use the win -c command, and this command will delete the workbook directly

without prompts.

// The path of project to be opened

string strOpj$ = system.path.program$ + "Samples\Curve Fitting\2D Bin and

Fit.opj";

https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Name
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Activate
https://www.originlab.com/doc/LabTalk/ref/Window_Options_Other
https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close

Workbooks Worksheets and Worksheet Columns

189

// Open the project

doc -o %(strOpj$);

// Delete workbook, Book1, from the project

win -c Book1;

// To delete an active workbook, the workbook name can be omitted

// Or using %H to refer to the workbook name

win -a MatrixFit1; // Activate the workbook MatrixFit1

win -c; // Delete the workbook

// Or using this one

// win -c %H;

// It also allows to delete a workbook whose name is stored in a variable

// Create a new workbook using newbook X-Function

// And the name of this workbook is stored in string variable ToDel$

newbook result:=ToDel$;

// delete the workbook created just now

win -c %(ToDel$);

8.2.3 Workbook Manipulation

Origin provides the capabilities for workbook manipulation by using LabTalk script, such as duplicating, merging,

splitting, etc.

8.2.3.1 Duplicate Workbook

To duplicate active workbook, the win -d command is used. It allows to specify a name for the duplicated

workbook, and the new workbook is activated after duplicated. The command win -da is doing the similar thing,

however, it keeps the active workbook active after duplicated.

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\LabTalk Script Examples\Loop_wks.opj";

doc -o %(strOpj$);

// Activate the workbook S2Freq1

win -a S2Freq1;

// Duplicate this workbook, and name it "MyCopy"

// And this new workbook will be activated

win -d MyCopy;

// Duplicate the MyCopy workbook, and name it "MyCopy2"

// But keep MyCopy still activated

win -da MyCopy2;

8.2.3.2 Merge Workbooks

To merge multiple workbooks into one new workbook, the X-Function, merge_book, is available.

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\LabTalk Script Examples\Loop_wks.opj";

https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Create
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Create
https://www.originlab.com/doc/X-Function/ref/merge_book

LabTalk Scripting Guide

190

doc -o %(strOpj$);

// Activate Sample1 folder

pe_cd /Sample1;

// Merge two workbooks (S1Freq1 and S1Freq2) in two subfolders

// User the source workbook name for the worksheet name in the merged

workbook

merge_book fld:=recursive rename:=sname;

// Activate Sample2 folder

pe_cd /Sample2;

// Merge two workbooks (S2Freq1 and S2Freq2) in two subfolders

// User the source workbook name for the worksheet name in the merged

workbook

merge_book fld:=recursive rename:=sname;

// Activeate the root folder

pe_cd /;

// Two new workbooks are created from the above script

// The names of these two workbooks begin with "mergebook"

// Now, merge these two workbooks into a new workbooks

// The worksheets in the final result workbook will name

// by using the original worksheet name

merge_book fld:=project single:=0 match:=wkbshort key:="mergebook*"

rename:=wksname;

8.2.3.3 Split Workbook

The example above is merging multiple workbooks into one workbook. It is also able to split a workbook into

multiple workbooks, which contain single worksheet. The wsplit_book X-Function is designed for this purpose.

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\COM Server and Client\Basic Stats on Data.opj";

doc -o %(strOpj$);

// There are three worksheets in the active workbook, RawData

// Now split this workbook into three workbooks

// And each workbook will contain one worksheet from the original workbook

wsplit_book fld:=active;

8.3 Worksheets

8.3.1 Worksheets

Worksheets

This section covers the following topics:

https://www.originlab.com/doc/X-Function/ref/wsplit_book

Workbooks Worksheets and Worksheet Columns

191

• Basic Worksheet Operation

• Worksheet Data Manipulation

• Converting Worksheet to Matrix

• Virtual Matrix

8.3.2 Basic Worksheet Operation

Worksheet-Basic-Operation

The basic worksheet operations include adding worksheet to workbook, activating a worksheet, getting and

setting worksheet properties, deleting worksheet, etc. And these operations can be done by using Page and Wks

objects, together with some Data Manipulation X-Functions. Some practical examples are provided below.

8.3.2.1 Add New Worksheet

The newsheet X-Function can be used to add new worksheets to a workbook.

// Create a new workbook with 3 worksheets,

// and use "mydata" as long name and short name

newbook name:="mydata" sheet:=3 option:=lsname;

// Add a worksheet named "source" with 4 columns to current workbook

newsheet name:=source cols:=4;

8.3.2.2 Activate a Worksheet

Workbook is an Origin object that contains worksheets which then contain columns. Worksheets in a workbook

are internally layers in a page. In other words, a worksheet is derived from a layer object and a workbook derived

from a page object. The active layer in a page is represented by the page.active or page.active$ property, and

thus it is used to active a worksheet.

// Create a new workbook with 4 worksheets

newbook sheet:=4;

page.active = 2; // Active worksheet by index

page.active$ = sheet3; // Active worksheet by name

8.3.2.3 Modify Worksheet Properties

8.3.2.3.1.1 Using Worksheet Object

When a worksheet is active, you can type wks.= and press Enter to list all worksheet properties. Most of these

properties are writable so you can modify it directly. For example:

// Rename the active worksheet

wks.name$ = Raw Data;

// Set the number of columns to 4

https://www.originlab.com/doc/LabTalk/guide/Worksheet-Basic-Operation
https://www.originlab.com/doc/LabTalk/guide/Worksheet-Data-Manipulation
https://www.originlab.com/doc/LabTalk/guide/Converting-Worksheet-to-Matrix
https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/X-Function/ref/newsheet
https://www.originlab.com/doc/LabTalk/guide/Workbooks
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

192

wks.ncols = 4;

// Modify the column width to 8 character

wks.colwidth = 8;

// Show the first user-defined parameter on worksheet header

wks.userparam1 = 1;

Two properties, wks.maxRows and wks.nRows are similar. The former one find the largest row index that has

value in the worksheet, while the later set or read the number of rows in the worksheet. You can see the different

in the following script.

newbook; // Create a new workbook

col(b) = {1:10}; // Set column B with 1-10 for the first ten rows

wks.maxRows = ;

wks.nRows = ;

Origin outputs 10 for wks.maxRows; while outputs 32 for wks.nRows.

If the worksheet is not the active one, you can specify the full worksheet name (including workbook name) before

wks object, the syntax is

[WorkbookName]WorksheetNameOrIndex!wks

Or you can use the range of the worksheet. For example

// Open a project

string strOpj$ = system.path.program$;

strOpj$ += "Samples\COM Server and Client\Basic Stats on Data.opj";

doc -o %(strOpj$);

wks.nCols = ; // Output number of columns in the active worksheet

// Output number of columns in the worksheet [RawData]Data!

[RawData]Data!wks.nCols = ;

// Output the name of the first worksheet in RawData workbook

[RawData]1!wks.name$ = ;

// Use range

range rWks = [RawData]Data!; // Range for the Data worksheet in RawData

workbook

rWks.userparam1 = 1; // Show the first user-defined parameter in worksheet

8.3.2.3.1.2 Using X-Functions

Besides wks object, you can also use X-Functions to modify worksheet properties. These X-Function names are

usually with the starting letter "w". Such as wcolwidth, wcellformat and wclear, etc. So we can also resize the

column with as below without using wks.colwidth:

wcolwidth 2 10; // Set the 2nd column width to 10

8.3.2.4 Delete Worksheet

 The layer -d command can be used to delete a worksheet or graph layer.

// Create a new workbook with 6 worksheets

// Workbook name is stored into MyBook$

// And the first worksheet will be the active one

https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/X-Function/ref/wcolwidth
https://www.originlab.com/doc/X-Function/ref/wcellformat
https://www.originlab.com/doc/X-Function/ref/wclear
https://www.originlab.com/doc/LabTalk/ref/Layer_Options_for_Layer

Workbooks Worksheets and Worksheet Columns

193

newbook sheet:=6 result:=MyBook$;

// Add a new worksheet with name of "My Sheet"

newsheet name:="My Sheet";

page.active = 1; // Activate the first worksheet

layer -d; // Delete the active worksheet

// Delete a worksheet by index

// Delete the third worksheet (or layer) in the active workbook (or graph)

layer -d 3;

// Delete a worksheet by name

layer -d "Sheet5";

// Delete a specified worksheet by range

range rs = [%(MyBook$)]"My Sheet"!; // Define a range to a specified

worksheet

layer -d rs;

// Delete a worksheet whose name is stored in a string variable

string strSheet$ = "Sheet3";

layer -d %(strSheet$);

To delete a worksheet whose name is stored in a string variable, there are some special string variables for

some special worksheets, for example:

//__report$ holds the name of the last report sheet Origin created

layer -d %(__report$);

The variable __report$ is an example of a system-created string variable that records the last-used instance of a

particular object. A list of such variables can be found in Reference Tables.

8.3.3 Worksheet Data Manipulation

Worksheet-Data-Manipulation

In this section we present examples of X-Functions for basic data processing. For direct access to worksheet

data, see Range Notation.

8.3.3.1 Copy Worksheet Data

8.3.3.1.1 Copy a Worksheet

The wcopy X-Function is used to create a copy worksheet of the specified worksheet.

The following example duplicates the current worksheet, creating a new workbook with the copied worksheet:

wcopy 1! [<new>]1!;

8.3.3.1.2 Copy a Range of Cells

https://www.originlab.com/doc/LabTalk/ref/Last-Used-System-vars
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/X-Function/ref/wcopy

LabTalk Scripting Guide

194

The wrcopy X-Function is used to copy a range of cells from one worksheet to another. It also allows you to

specify a source row to be used as the Long Names in the destination worksheet.

The following script copies rows from 5 to 9 of [book1]sheet1! to a worksheet named CopiedValues in Book1 (if

the worksheet does not exist it will be created), and assigns the values in row 4 from [book1]sheet1! to the long

name of the destination worksheet, [book1]CopiedValues!

wrcopy iw:=[book1]sheet1! r1:=5 r2:=10 name:=4 ow:=CopiedValues!;

To copy column and matrix object, please refer to Copy Column and Copy Matrix Data respectively.

8.3.3.2 Reduce Worksheet Data

Origin has several data reducing X-Functions like reduce_ex, reducedup, reducerows and reducexy. These X-

Functions provide different ways of creating a smaller dataset from a larger one. Which one you choose will

depend on what type of input data you have, and what type of output data you want.

8.3.3.2.1 Examples

The following script will create a new X and Y column where the Y will be the mean value for each of the

duplicate X values.

reducedup col(B);

The following script will reduce the active selection (which can be multiple columns or an entire worksheet,

independent of X or Y plotting designation) by a factor of 3. It will remove rows 2 and 3 and then rows 5 and 6,

leaving rows 1 and 4, etc. By default, the reduced values will go to a new worksheet.

reducerows npts:=3;

The following script will average every n numbers (5 in the example below) in column A and output the average

of each group to column B. It is the same as the ave LabTalk function, which would be written as

col(b)=ave(col(a),5):

reducerows irng:=col(A) npts:=5 method:=ave rd:=col(b);

8.3.3.3 Extract Worksheet Data

Partial data from a worksheet can be extracted using conditions involving the data columns, using the wxt X-

function.

// Import a sample data file

newbook;

string fname$ = system.path.program$ + "samples\statistics\automobile.dat";

impasc;

// Define range using some of the columns

range rYear=1, rMake=2, rHP=3;

type "Number of rows in raw data sheet= $(rYear.GetSize())";

https://www.originlab.com/doc/X-Function/ref/wrcopy
https://www.originlab.com/doc/LabTalk/guide/Worksheet-Column-Data-Manipulation
https://www.originlab.com/doc/LabTalk/guide/Matrix-Object-Data-Manipulation
https://www.originlab.com/doc/X-Function/ref/reduce_ex
https://www.originlab.com/doc/X-Function/ref/reducedup
https://www.originlab.com/doc/X-Function/ref/reducerows
https://www.originlab.com/doc/X-Function/ref/reducexy
https://www.originlab.com/doc/LabTalk/ref/Ave-func
https://www.originlab.com/doc/X-Function/ref/wxt

Workbooks Worksheets and Worksheet Columns

195

// Define a condition string and extract data

// to a new named sheet in the same book

string strCond$="rYear >= 1996 and rHP<70 and rHP>60 and rMake[i]$=Honda";

wxt test:=strCond$ ow:="Extracted Rows"! num:=nExtRows;

type "Number of rows extracted = $(nExtRows)";

8.3.3.3.1 Output To New Workbook

You can also direct the output to a new workbook, instead of a new worksheet in the existing workbook, by

changing the following line:

wxt test:=strCond$ ow:=[<new name:="Result">]"Extracted"! num:=nExtRows;

As you can see, the only difference from the earlier code is that we have added the workbook part of the range

notation for the ow variable, with the <new> keyword. (show links and indexing to <new> modifiers, options, like

template, name, etc)

8.3.3.3.2 Use Wildcard Search

LabTalk uses * and ? characters for wildcard in string comparison. You can try changing the strCond as follows:

string strCond$ = "rYear >= 1996 and rHP<70 and rHP>60 and rMake[i]$=*o*";

to see all the other makes of cars with the letter o.

8.3.3.4 Delete Worksheet Data

Deleting the Nth row can be accomplished with the reducerows X-Function, described above.

This example demonstrates deleting every Nth column in a worksheet using a for-loop:

int ndel = 3; // change this number as needed;

int ncols = wks.ncols;

int nlast = ncols - mod(ncols, ndel);

// Need to delete from the right to the left

for(int ii = nlast; ii > 0; ii -= ndel)

{

 delete wcol($(ii));

}

8.3.3.5 Sort Worksheet

The following example shows how to perform nested sorting of data in a worksheet using the wsort X-Function:

// Start a new book and import a sample file

newbook;

string fname$ = system.path.program$ + "Samples\Statistics\automobile.dat";

impasc;

// Set up vectors to specify nesting of columns and order of sorting;

// Sort nested: primary col 2, then col 1, then col 3:

https://www.originlab.com/doc/X-Function/ref/reducerows
https://www.originlab.com/doc/LabTalk/guide/Flow-of-Control
https://www.originlab.com/doc/X-Function/ref/wsort

LabTalk Scripting Guide

196

dataset dsCols = {2, 1, 3};

// Sort col2 ascending, col 1 ascending, col 3 descending:

dataset dsOrder = {1, 1, 0};

wsort nestcols:=dsCols order:=dsOrder;

8.3.3.6 Split Worksheet

Origin provides the X-Function, wsplit, for the purpose of splitting one worksheet's columns into multiple

worksheets.

The example below is going to import multiple CSV files, and then get the Amplitude data from all the data file

into a worksheet, and then convert this worksheet to matrix to make a contour plot.

// Create a new workbook

newbook;

// Find all csv files in the specified folder

string strPath$ = system.path.program$ + "Samples\Batch Processing\";

findfiles path:=strPath$ fname:=csvFiles$ ext:=csv;

// Import all found csv files into one worksheet

impCSV fname:=csvFiles$ // All found csv files

 options.Mode:=1 // From second file, start new column

 options.names.FNameToSht:=0 // Not rename worksheet

 options.names.FNameToBk:=0 // Not rename workbook

 options.HeaderLines.SubHeaderLines:=2 // Two subheader lines

 options.HeaderLines.LongNames:=1 // First subheader line is LongName

 options.HeaderLines.Units:=2; // Second subheader line is Units

// Split the worksheet according to the Long Name

// The columns with the same Long Name will be in the same result worksheet

// All the result worksheets will be in the same new workbook

wsplit mode:=label label:=L;

// Activate the Amplitude worksheet

page.active$ = Amplitude;

// Convert the Amplitude worksheet to matrix directly

w2m;

// Make a contour for the amplitude

worksheet -p 226 contour;

8.3.3.7 Unstack/Stack Categorical Data

8.3.3.7.1 Unstack Worksheet Columns

At times unstacking categorical data is desirable for analysis and/or plotting purposes. The wunstackcol X-

Function is the most convenient way to perform this task from script.

https://www.originlab.com/doc/X-Function/ref/wsplit
https://www.originlab.com/doc/X-Function/ref/wunstackcol

Workbooks Worksheets and Worksheet Columns

197

In this example, categorical data is imported, and we want to unstack the data by a particular category, which we

specify with the input range irng2. The data to be displayed (by category) is referenced by input range irng1. In

this example, the column ranges are input directly, but range variables can also be used.

// Import automobile data

newbook;

string fpath$ = "\Samples\Statistics\Automobile.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Unstack all other columns using automobile Make, stored in col 2

// Place "Make" in Comments row of output sheet

wunstackcol irng1:=(1, 3:7) irng2:=2 label:="Comments";

The result is a new worksheet with the unstacked data.

8.3.3.7.2 Stack Worksheet Columns

Staking categorical data is something like reverse operation of unstacking categorical data. In the original

dataset, samples belong to different groups is stored in different columns. After stacking, the samples will be in

different rows in the same column, with an additional column in the worksheet providing the group information.

You can use wstackcol to stack worksheet columns.

In the following example, we open a workbook with categorical data first. And then with the first worksheet

activated, and stack column B, C, and D by rows, including another column to be A.

// Open a workbook

string strBook$ = system.path.program$;

strBook$ += "Samples\Statistics\Body.ogw";

doc -o %(strBook$);

// Stack column B, C, D in Male worksheet

// Include column A as another column

// Method is By Rows

wstackcol irng:=(2:4) tr.identifiers:={L} include:=1 method:=1;

The result is a new worksheet in the same workbook with the stacked data.

8.3.3.8 Pivot Table

The wpivot X-Function is available for the purpose of quickly summarizing the data, so to analyze, compare, and

detect the relationships in the data. That is an easy way to present data information.

// Create a new workbook

// And import a data file

newbook;

fname$ = system.path.program$ +

"Samples\Statistics\HouseholdCareSamples.xls";

impExcel lname:=1;

// Make sure "HQ Family Mart" worksheet is activate

// And make a copy of this worksheet

page.active$ = "HQ Family Mart";

https://www.originlab.com/doc/X-Function/ref/wstackcol
https://www.originlab.com/doc/X-Function/ref/wpivot

LabTalk Scripting Guide

198

wcopy ow:=[<new>]"HQ Family Mart"!;

// Pivot table, row source is Make

// Column source is Brand, and data is Number in shelf

// The result will show the number of products in shelf

// for different brands and different makes

wpivot row:=col(D) col:=col(F) data:=col(K)

 method:=sum total:=1 sort_total:=no sum:=1;

// Activate the source data worksheet

page.active$ = "HQ Family Mart";

// Pivot table, row source, column source and data column are the same

// For the smaller values, it will combine them across columns

// by 10% of the total

// In the result worksheet, the column info. is put to user-defined parameter

rows

// The row name is the name of column's Long Name in source worksheet

wpivot row:=col(D)

 col:=col(F)

 data:=col(K)

 method:=sum total:=1 sort_total:=no sum:=1

 dir:=col threshold:=10 // Combine smaller values across column, by

10%

 // Put column info (from column's Long Name) to user-defined

parameters row

 pos:=udl udlabel:=L;

8.3.3.9 Worksheet Filter

Worksheet Filter (Data Filter) in Origin is column-based filter to reduce rows of worksheet data by using the

specified condition, so to hide the undesired rows for relevant data analysis and graphing. Three data formats

are supported: numeric, text and date/time. In LabTalk, you can use the wks.col (wks.col.filter, wks.col.filter$,

wks.col.filterenabled, wks.col.filterprescript$, and wks.col.filterx$) object to handle the data filter. And to run/re-

apply the filter, use the wks.runfilter() method.

// Create a new workbook, and import the data

newbook;

string fname$ = system.path.program$ + "Samples\Statistics\Automobile.dat";

impasc;

// Set data filter for column 1, numeric type

wks.col1.filter = 1; // Add filter

wks.col1.filterx$ = year; // Set the variable "year" to represent column 1

// Set filter condition, between 1995 and 2000

wks.col1.filter$ = "year.between(1995,2000)";

// Set data filter for column 2, text type

wks.col2.filter = 1; // Add filter

wks.col2.filterx$ = make; // Set the variable "make" to represent column 2

// Set before query script

wks.col2.filterprescript$ = "string strFavorite$ = GMC";

wks.col2.filter$ = "make = strFavorite$"; // Set filter query string

// Run the worksheet filter

https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

Workbooks Worksheets and Worksheet Columns

199

wks.runfilter();

// Disable the filter in column 1

wks.col1.filterenabled = 0;

// Re-apply the worksheet filter

wks.runfilter();

To detect whether there is filter in a worksheet, you can use the wks.hasfilter() method.

// If the active worksheet has filter, return 1, otherwise, return 0

wks.hasfilter() = ;

8.3.4 Converting Worksheet to Matrix

You may need to re-organize your data by converting from worksheet to matrix, or vice versa, for certain analysis

or graphing needs. This page provides information and examples of converting worksheet to matrix, and please

refer to Converting Matrix to Worksheet for the "vice versa" case.

8.3.4.1 Worksheet to Matrix

Data contained in a worksheet can be converted to a matrix using a set of Gridding X-Functions.

The w2m X-Function converts matrix-like worksheet data directly into a matrix. Data in source worksheet can

contain the X or Y coordinate values in the first column, first row, or a header row. However, because the

coordinates in a matrix should be uniform spaced, you should have uniformly spaced X/Y values in the source

worksheet.

If your X/Y coordinate values are not uniform spaced, you should use the Virtual Matrix feature instead of

converting to a matrix.

The following example show how to perform direct worksheet to matrix conversion:

// Create a new workbook

newbook;

// Import sample data

string fname$ = system.path.program$ +

 "\samples\Matrix Conversion and Gridding\DirectXY.dat";

impasc;

// Covert worksheet to matrix, first row will be X and first column will be Y

w2m xy:=xcol xlabel:=row1 ycol:=1;

// Show X/Y values in the matrix window

page.cntrl = 2;

When your worksheet data is organized in XYZ column form, you should use Gridding to convert such data into a

matrix. Many gridding methods are available, which will interpolate your source data and generate a uniformly

spaced array of values with the X and Y dimensions specified by you.

The following example converts XYZ worksheet data by Renka-Cline gridding method, and then creates a 3D

graph from the new matrix.

// Create a new workbook without sheets

https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/guide/Converting-Matrix-to-Worksheet
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/X-Function/ref/w2m
https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix

LabTalk Scripting Guide

200

newbook;

// Import sample data

string fname$ = system.path.program$ +

 "\samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat";

impasc;

// Convert worksheet data into a 20 x 20 matrix by Renka-Cline gridding

method

xyz_renka 3 20 20;

// Plot a 3D color map graph

worksheet -p 242 cmap;

8.3.5 Virtual Matrix

Virtual-Matrix

 Data arranged in a group of worksheet cells can be treated as a matrix and various plots such as 3D Surface,

3D Bars, and Contour can be created from such data. This feature is referred to as Virtual Matrix. The X and Y

coordinate values can be optionally contained in the block of data in the first column and row, or also in a header

row of the worksheet.

Whereas Matrix objects in Origin only support linear mapping of X and Y coordinates, a virtual matrix supports

nonlinear or unevenly spaced coordinates for X and Y.

The virtual matrix is defined when data in the worksheet is used to create a plot. The plotvm X-Function should

be used to create plots.

The following example shows how to use the plot_vm X-Function:

// Create a new workbook and import sample data

newbook;

string fname$=system.path.program$ + "Samples\Graphing\VSurface 1.dat";

impasc;

// Treat entire sheet as a Virtual Matrix and create a colormap surface plot

plotvm irng:=1! format:=xacross rowpos:=selrow1 colpos:=selcol1

 ztitle:="VSurface 1" type:=242 ogl:=<new template:=cmap>;

// Change X axis scale to log

layer.x.type=2;

8.4 Worksheet Columns

8.4.1 Worksheet Columns

Worksheet-Columns

This chapter covers the following topics:

• Basic Worksheet Column Operation

https://www.originlab.com/doc/X-Function/ref/plotvm
https://www.originlab.com/doc/LabTalk/guide/Basic-Worksheet-Column-Operation

Workbooks Worksheets and Worksheet Columns

201

• Worksheet Column Data Manipulation

• Date and Time Data

8.4.2 Basic Worksheet Column Operation

To perform operations on worksheet columns, in most situations, you can use wks.col object, or the Range

Notation to the column object.

8.4.2.1 Add or Insert Column

To add a column to the end of the worksheet, you can use the wks.addCol() method, which will add a column

with the specified name, if the specified name is used or ignored, a generic name is chosen for the newly added

column.

// Create a new workbook

newbook;

//Turn off "Spreadsheet Cell Notation" (SCN)

page.xlcolname = 0;

// Add a new column to the end, with name of Result

wks.addCol(Result);

The method above is only able to add one column to the end at a time. If you are going to add a multiple

columns, you can add columns by setting the number of columns in the worksheet with the wks.nCols property.

For example, the script below will add 3 columns to the end of the active worksheet with the generic names

(Note: it is not able to specify the names in this way, please refer to Rename and Label Column section below).

// Create a new workbook

newbook;

// Add 3 columns to the end of worksheet

wks.nCols = wks.nCols + 3;

Besides adding columns to the end of the worksheet, it is also capable of inserting numbers of columns before

the current column. First of all, it needs to specify which column (by 1-based index) is the current column using

wks.col property, and then using wks.insert() method to insert column(s) before the current column. In the

method, you need to specify a list of column names separated by space.

// Create a new workbook

newbook;

// Set column 2 to be the current column

wks.col = 2;

//Turn off "Spreadsheet Cell Notation" (SCN)

page.xlcolname = 0;

// Insert 3 column before column 2, with the specify column names

wks.insert(DataX DataY Result);

https://www.originlab.com/doc/LabTalk/guide/Worksheet-Column-Data-Manipulation
https://www.originlab.com/doc/LabTalk/guide/Date-and-Time-Data
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/guide/Range-Notation
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

202

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more information.

8.4.2.2 Insert or Delete Rows in Columns

 To delete or insert rows in worksheet columns, you can use the wks.deleteRows() or wks.insertRows() methods.

The syntax is as follows ...

wks.deleteRows(rowBegin[,numRows, colBegin, colEnd])

wks.insertRows(rowBegin[,numRows, colBegin, colEnd])

... with arguments inside the square brackets being optional.

Examples are given below:

wks.deleteRows(3); // Delete the third row in all columns

wks.deleteRows(3, 5); // Delete 5 rows beginning with the third row in all

columns:

wks.deleteRows(3, 5, 2); // Delete 5 rows beginning with the third row in

columns from the second to the end

wks.deleteRows(3, 5, 2, 4); // Delete 5 rows beginning with the third row in

columns 2 to 4

wks.insertRows(3); // Insert a row in front of the third row in all columns

wks.insertRows(3, 5); // Insert 5 rows in front of the third row in all

columns

wks.insertRows(3, 5, 2); // Insert 5 rows in front of the third row in

columns from the second to the end

wks.insertRows(3, 5, 2, 4); // Insert 5 rows in front of the third row in

columns 2 to 4

Note that the wdelrows X-Function can also be used to delete worksheet rows.

8.4.2.3 Move Column

The colmove X-Function allows you to move column(s) of data within a worksheet. It accepts an explicitly stated

range (as opposed to a range variable), and the type of move operation as inputs.

// Make the first column the last (left to right) in the worksheet:

colmove rng:=col(1) operation:=last;

// Move columns 2-4 to the leftmost position in the worksheet:

colmove rng:=Col(2):Col(4) operation:=first;

8.4.2.4 Rename and Label Column

To rename (short name) a column, Origin provides the wks.col object with the name$ property. Also, the Column

Label Row Characters, G, is able to rename column short name.

// Create a new workbook

newbook;

https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/X-Function/ref/wdelrows
https://www.originlab.com/doc/X-Function/ref/colmove
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters

Workbooks Worksheets and Worksheet Columns

203

// Rename column 1 to DataX

wks.col1.name$ = DataX;

// Rename column 2 to DataY by using range

range rY = 2; // range to column 2

rY.name$ = DataY;

// Add a new column

wks.addCol();

// Turn off "Spreadsheet Cell Notation" (SCN)

page.xlcolname = 0;

// Rename it with "G"

col(3)[G]$ = "Result";

The Column Label Row Characters are the convenient way to access the column labels, including Long Name,

Units, Comments, Column Parameters, User-Defined Parameters, etc.

// Create a new workbook

newbook result:=BkName$;

// Show the following label rows:

// Long Name, Units, Comments, 1st Column Parameter

// and 1st User-Defined Parameter

wks.labels(LUCP1D1);

// Ranges to column 1 and 2

range r1 = [%(BkName$)]1!1;

range r2 = [%(BkName$)]1!2;

// Set Long Name by using col

col(1)[L]$ = Time;

col(2)[L]$ = Voltage;

// Set Units by using range

r1[U]$ = Sec;

r2[U]$ = V;

// Set Comments by using range

r1[C]$ = Sample1;

r2[C]$ = Sample1;

// Set Column Parameters by using range

r1[P1]$ = "Machine1";

r2[P1]$ = "Machine1";

// Rename the 1st User-Defined Parameter

wks.UserParam1$ = Current;

// Set Current label row

r1[Current]$ = 1mA;

r2[Current]$ = 1mA;

8.4.2.5 Hide/Unhide Column

To hide/unhide column(s), you can use the colHide X-Function.

// Create a new workbook

newbook;

// Set worksheet column number to 6

wks.nCols = 6;

https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/X-Function/ref/colhide

LabTalk Scripting Guide

204

// Hide the second column

colHide 2 hide;

// Hide the 3rd and 5th columns

colHide (3, 5) hide;

To show (unhide) column(s), it just changes the second argument from hide to unhide.

8.4.2.6 Swap Column

The colSwap X-Function is used to swap two specified columns.

// Create a new workbook

newbook;

// Swap the position of the 1st and 2nd columns

colSwap (1, 2);

The specified two columns is not needed to be adjacent.

// Create a new workbook

newbook;

// Set number of columns to be 6

wks.ncols = 6;

// Swap the 2nd and 4th columns

colswap (2, 4);

To swap two columns, if Spreadsheet Cell Notation is enabled in the workbook, you might

not able to see the exchange of the column short names as the short names are always

assigned from A~Z successively and automatically; if you want to exchange the column

short names, you might need disable the Spreadsheet Cell Notation before running the

colswap command. See FAQ-849 for more information.

8.4.2.7 Modify Column Formats

8.4.2.7.1 Plot Designation

Plot designation for a column determines how the selected data will be handled by default for plotting and data

analysis. Plot designation includes X, Y, Z, Z Error, Y Error, Label, etc. And you can change it by using

wks.col.type.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat";

impasc;

// Set column designation (column type)

wks.col = 3; // Set column 3 to be current column

wks.col.type = 6; // Z

https://www.originlab.com/doc/X-Function/ref/colswap
https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation
https://www.originlab.com/doc/LabTalk/ref/wkscoltype

Workbooks Worksheets and Worksheet Columns

205

// Select the 3rd column (Z column)

worksheet -s 3 1 3 -1;

// Make a color map surface with the template based on OpenGL

worksheet -p 103 glcmap;

8.4.2.7.2 Column Width

To set column width, the wcolwidth X-Function is available, or use wks.col.width.

// Open a workbook

string strPath$ = system.path.program$;

strPath$ += "Samples\Graphing\Automobile Data.ogw";

doc -o %(strPath$);

// To make column 2 show all the numbers but not ###

// Set width of column 2 to 6 characters

wcolwidth irng:=col(2) width:=6;

8.4.2.7.3 Data Format and Display

Setting a correct data format for a column helps to display the data in the column correctly, also helps to perform

operations, such plotting, data analysis, etc. properly. There are many data format available for a column, such

as Numeric, Text, Date, Time, Month, Day of Week, etc. To set format, please use wks.col object's format

property.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Signal Processing\Average Sunspot.dat";

impasc;

// Set column 2 to Numeric (current is Text & Numeric)

wks.col2.format = 1; // Numeric = 1

// Enable digit mode to be "Set Decimal Places"

// and set number of decimal places to 2

wks.col2.digitMode = 1; // Set Decimal Places

wks.col2.digits = 2; // Two decimal places

The following examples are showing the corresponding settings for different format.

Numeric

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Curve Fitting\Enzyme.dat";

impasc;

// Set column 2 to Numeric (current is Text & Numeric)

wks.col2.format = 1; // Numeric = 1

// Set display format with comma

wks.col2.subformat = 4; // Display as Decimal: 1,000

https://www.originlab.com/doc/X-Function/ref/wcolwidth
https://www.originlab.com/doc/LabTalk/ref/wkscolwidth
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj

LabTalk Scripting Guide

206

// Data type to be short int

wks.col2.numerictype = 3;

// Do the same for column 3

wks.col3.format = 1; // Numeric = 1

// Set display format with comma

wks.col3.subformat = 4; // Display as Decimal: 1,000

// Data type to be short int

wks.col3.numerictype = 3;

Date

For Date and Time format, if the data stored in a column is not Julian day numbers (looks like Date and Time

format, actually is text), we cannot set the format as Date or Time directly, or the look-like-Date-and-Time-format

text will become missing value or something incorrect. To avoid this issue, Origin provides the

wks.col.setformat() method.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Import and Export\Custom Date and Time.dat";

impasc;

// Set format of column 1 to be Date

// with a custom display format, which is like

// the current text display in the column

wks.col1.setformat(4, 22, dd'.'MM'.'yyyy HH':'mm':'ss'.'##);

// Set a familiar display format yyyy/MM/dd HH:mm:ss

wks.col1.subformat = 11;

Time

Please refer to the description about Date above.

// Import data

newbook;

string fname$ = system.path.program$;

fname$ += "Samples\Import and Export\IRIG Time.dat";

impasc;

// Set format of column 1 to be Time

wks.col1.format = 3; // Time = 3

// Display IRIG Time format DDD:HH:mm:ss.##

wks.col1.subformat = 16;

Month

// Set column 1 format as Month

// And show the whole name of month

wks.col1.format = 5; // Month = 5

wks.col1.subformat = 2; // Show the whole month's name

Day of Week

https://www.originlab.com/doc/LabTalk/ref/wkscolsetformat

Workbooks Worksheets and Worksheet Columns

207

// Set column 1 format as Day of Week

// And show only the first letter of each day of week

wks.col1.format = 6; // Day of Week = 6

wks.col1.subformat = 3; // Show the first letter of each day of week

8.4.2.8 Add Sparkline to Column

The sparklines X-Function is used to add sparklines to the specified columns in the worksheet.

// Open a workbook

string strPath$ = system.path.program$;

strPath$ += "Samples\Graphing\Automobile Data.ogw";

doc -o %(strPath$);

// Turn on sparklines for all columns except the ones with "Year" Long Name

for(ii = 2; ii <= wks.nCols; ii+=5)

{

 sparklines sel:=0 c1:=ii c2:=ii+3;

}

8.4.2.9 Delete Column

The delete command is capable of removing a column from worksheet.

// Create a workbook

newbook;

// Delete column B

delete col(B);

// Add a new worksheet with 4 columns

newsheet cols:=4;

// Delete column 3 by using range

range r1 = 3; // column 3 in the newly added worksheet

delete r1;

// Delete multiple columns by using range

newsheet cols:=6;

range r2 = (1,3,4); // assign multiple columns to the range

delete r2;

If the column(s) you want to delete is (are) at the end of the worksheet, you can just set the number of worksheet

columns to delete it (them), by using wks.nCols.

// Open a workbook

string strPath$ = system.path.program$;

strPath$ += "Samples\Graphing\Automobile Data.ogw";

doc -o %(strPath$);

// Delete last 20 columns from the opened worksheet

wks.nCols = wks.nCols-20;

8.4.3 Worksheet Column Data Manipulation

8.4.3.1 Basic Operation

https://www.originlab.com/doc/X-Function/ref/sparklines
https://www.originlab.com/doc/LabTalk/ref/Delete-cmd
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

208

Once you have loaded or created some numeric data, here are some script examples of things you may want to

do.

8.4.3.1.1 Basic Arithmetic

Most often data is stored in columns and you want to perform various operations on that data in a row-wise

fashion. You can do this in two ways in your LabTalk scripts: (1) through direct statements with operators or (2)

using ranges. For example, you want to add the value in each row of column A to its corresponding value in

column B, and put the resulting values in column C:

Col(C) = Col(A) + Col(B); // Add

Col(D) = Col(A) * Col(B); // Multiply

Col(E) = Col(A) / Col(B); // Divide

The - and ^ operators work the just as above for subtraction and exponentiation respectively.

You can also perform the same operations on columns from different sheets with range variables:

// Point to column 1 of sheets 1, 2 and 3

range aa = 1!col(1);

range bb = 2!col(1);

range cc = 3!col(1);

cc = aa+bb;

cc = aa^bb;

cc = aa/bb;

When performing arithmetic on data in different sheets, you need to use range variables.

Direct references to range strings are not supported. For example, the script Sheet3!col(1)

= Sheet1!col(1) + Sheet2!col(1); will not work!

8.4.3.1.2 Functions

In addition to standard operators, LabTalk supports many common functions for working with your data, from

trigonometric functions like sin and cos to Bessel functions to functions that generate statistical distributions like

uniform and Poisson. All LabTalk functions work with single-number arguments of course, but many are also

"vectorized" in that they work on worksheet columns, loose datasets, and matrices as well. Take the

trigonometric function sin for example:

// Find the sine of a number:

double xx = sin(0.3572)

// Find the sine of a column of data (row-wise):

Col(B) = sin(Col(A))

// Find the sine of a matrix of data (element-wise):

[MBook2] = sin([MBook1])

As an example of a function whose primary job is to generate data consider the uniform function, which in one

form takes as input N, the number of values to create, and then generates N uniformly distributed random

numbers between 0 and 1:

https://www.originlab.com/doc/LabTalk/ref/Sin-func
https://www.originlab.com/doc/LabTalk/ref/Cos-func
https://www.originlab.com/doc/LabTalk/ref/Uniform-func
https://www.originlab.com/doc/LabTalk/ref/Poisson-func

Workbooks Worksheets and Worksheet Columns

209

/* Fill the first 20 rows of Column B

 with uniformly distributed random numbers: */

Col(B) = uniform(20);

For a complete list of functions supported by LabTalk see Alphabetic Listing of Functions.

8.4.3.2 Set Formula for Column

In the Origin GUI, the Set Column Values dialog can be used to generate or transform data in worksheet

columns using a specified formula. Such transformation can also be performed in LabTalk by using the csetvalue

X-Function. Here are some examples on how to set column value using LabTalk.

newbook;

wks.ncols = 3;

// Fill column 1 with random numbers

csetvalue formula:="rnd()" col:=1;

// Transform data in column 1 to integer number between 0 ~ 100

csetvalue formula:="int(col(1)*100)" col:=2;

// Specify Before Formula Script when setting column value

// and set recalculate mode to Manual

csetvalue formula:="mm - col(2)" col:=3 script:="int mm = max(col(2))"

recalculate:=2;

string str$ = [%h]%(page.active$)!;

newsheet cols:=1;

// Use range variables to refer to a column in another sheet

csetvalue f:="r1/r2" c:=1 s:="range r1=%(str$)2; range r2=%(str$)3;" r:=1;

When logic statement is used to set formula for columns, values such as 0.0, NANUM

(missing value) and values between -1.0E-290 to 1.0E-290 will be evaluated to be False.

For instance, LabTalk command will return a value 0 (False) instead of 1 (True).

type $(-1e-290?1:0); // Returns 0 (False)

type $(1/0?1:0); // Returns 0 (False), where 1/0 == NANUM

8.4.3.3 Copy Column

The colcopy X-Function copies column(s) of data including column label rows and column format such as date or

text and numeric.

The following example copies columns two through four of the active worksheet to columns one through three of

sheet1 in book2:

// Both the data and format as well as each column long name,

// units and comments gets copied:

colcopy irng:=(2:4) orng:=[book2]sheet1!(1:3) data:=1

 format:=1 lname:=1 units:=1 comments:=1;

8.4.3.4 Sort Column

https://www.originlab.com/doc/LabTalk/ref/Alphabetical-Listing-of-Functions
https://www.originlab.com/doc/X-Function/ref/csetvalue
https://www.originlab.com/doc/X-Function/ref/colcopy

LabTalk Scripting Guide

210

To sort a specified column, you can use wsort X-Function. And when using this X-Function to sort just one

column, the arguments c1 and c2 should be the same column in worksheet, and the bycol also needs to be the

same as c1.

// Create a new workbook

newbook;

// Fill first column with row number, and second column with uniform random

number

col(1) = {1:32};

col(2) = uniform(32);

// Sort column 2 descending

wsort c1:=2 c2:=2 bycol:=2 descending:=1;

8.4.3.5 Reverse Column

The X-Function colreverse is available for reversing column.

// Create a new workbook

newbook;

// Fill first column with row number, and second column with uniform random

number

col(1) = {1:32};

col(2) = uniform(32);

// Reverse column 1 by using index

colreverse rng:=1; // colreverse rng:=col(A); // this also works

// Reverse column 2 by using range variable

range rr = 2;

colreverse rng:=rr;

8.4.4 Date and Time Data

Date-and-Time-Data

While the various string formats used for displaying date and time information are useful in conveying information

to users, a mathematical basis for these values is needed to support plotting and analysis involving date-time

data.

Origin's default date-time system is a modification of the Astronomical Julian Date system to store dates and

time. In this system, time zero is 12 noon on January 1, 4713 BCE. The integer part of the number represents

the number of days since time zero and the fractional part is the fraction of a 24 hour day. Origin offsets this

value by subtracting 12 hours (0.50 days) to put day transitions at midnight, rather than noon. It should also be

noted that Origin supports two alternate date-time systems.

The next few examples are dedicated to dealing with date and time data in your LabTalk scripts.

https://www.originlab.com/doc/X-Function/ref/wsort
https://www.originlab.com/doc/X-Function/ref/colreverse
https://www.originlab.com/doc/Origin-Help/DateTime-in-Origin
https://www.originlab.com/doc/Origin-Help/DateTime-in-Origin

Workbooks Worksheets and Worksheet Columns

211

You can opt not to display missing values in your date-time data by setting the value of

system variable @JM.

8.4.4.1 Dates and Times

As an example, say you have Date data in Column 1 of your active sheet and Time data in Column 2. You would

like to store the combined date-time as a single column.

/* Since both date and time have a mathematical basis,

 they can be added: */

Col(3) = Col(1) + Col(2);

// By default, the new column will display as a number of days ...

/* Use format and subformat methods to set

 the date/time display of your choice: */

// Format #4 is the date format

wks.col3.format = 4;

// Subformat #11 is MM/dd/yyyy hh:mm:ss

wks.col3.subformat = 11;

The column number above was hard-coded into the format statement; if instead you had the column number as

a variable named cn, you could replace the number 3 with $(cn) as in wks.col$(cn).format = 4. For other

format and subformat options, see LabTalk Language Reference: Object Reference: Wks.col (object).

If our date and time column are just text with a MM/dd/yyyy format in Column 1 and hh:mm:ss format in

Column 2, the same operation is possible with a few more lines of code:

// Get the number of rows to loop over.

int nn = wks.col1.nrows;

loop(ii,1,nn){

 string dd$ = Col(1)[ii]$;

 string tt$ = Col(2)[ii]$;

 // Store the combined date-time string just as text

 Col(3)[ii]$ = dd$ + " " + tt$;

 // Date function converts the date-time string to a numeric date value

 Col(4)[ii] = date(%(dd$) %(tt$));

};

// Now we can convert column 4 to a true Date column

wks.col4.format = 4; // Convert to a Date column

wks.col4.subformat = 11; // Display as M/d/yyyy hh:mm:ss

Here, an intermediate column has been formed to hold the combined date-time as a string, with the resulting

date-time (numeric) value stored in a fourth column. While they appear to be the same text, column C is literally

just text and column D is a true Date.

Given this mathematical system, you can calculate the difference between two Date values which will result in a

Time value (the number of days, hours and minutes between the two dates) and you can add a Time value to a

https://www.originlab.com/doc/LabTalk/ref/sys-var-list
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj

LabTalk Scripting Guide

212

Date value to calculate a new Date value. You can also add Time data to Time data and get valid Time data, but

you cannot add Date data to Date data.

8.4.4.2 Formatting for Output

8.4.4.2.1 Available Formats

Use the D notation to convert a numeric date value into a date-time string using one of Origin's built-in Date

subformats:

type "$(@D, D10)";

returns the current date and time (stored in the system variable @D) as a readable string:

7/20/2009 10:30:48

The D10 option corresponds to the MM/dd/yyyy hh:mm:ss format. Many other output formats are available by

changing the number after the D character, which is the index entry (from 0) in the Date Format drop down list of

the Worksheet Column Format dialog box, in the line of script above. The first entry (index = 0) is the Windows

Short Date format, while the second is the Windows Long Date format.

Note : The D must be uppercase. When setting a worksheet subformat as in wks.col3.subformat = #, these

values are indexed from 1.

For instance

type "$(date(7/20/2009), D1)";

produces, using U.S. Regional settings,

Monday, July 20, 2009

Similarly, for time values alone, there is an analagous T notation, to format output:

type "$(time(12:04:14), T5)"; // ANS: 12:04 PM

Formatting dates and times in this way uses one specific form of the more general $() Substitution notation.

8.4.4.2.2 Custom Formats

There are three custom date and time formats - two of which are script editable properties and one which is

editable in the Column Properties dialog or using a worksheet column object method.

system.date.customformatn$

wks.col.SetFormat object method.

Both methods use date-time specifiers, such as yyyy'.'MM'.'dd, to designate the custom format. Please observe

that:

The text portions (non-space delimiters) of the date-time specifier can be changed as required, but must be

surrounded by single quotes.

https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion

Workbooks Worksheets and Worksheet Columns

213

The specifier tokens themselves (i.e., yyyy, HH, etc.) are case sensitive and need to be used exactly as shown—

all possible specifier tokens can be found in the Reference Tables: Date and Time Format Specifiers.

The first two formats store their descriptions in local file storage and as such may appear different in other login

accounts. The third format stores its description in the column itself.

8.4.4.2.2.1 Dnn notation

Origin has reserved D19 to D21 (subformats 20 to 22, since the integer after D starts its count from 0) for these

custom date displays. The options D19 and D20 are controlled by system variables

system.date.customformat1$ and system.date.customformat2$, respectively. To use this option for output,

follow the example below:

system.date.customformat1$ = MMM dd hh'.'mm tt;

type "$(Date(7/25/09 14:47:21),D19)"; // Output: Jul 25 02.47 PM

system.date.customformat2$ = yy','MM','dd H'.'mm'.'ss'.'####;

type "$(Date(7/27/09 8:22:37.75234),D20)"; // Output: 09,07,27 8.22.37.7523

8.4.4.2.2.2 Wks.Col.SetFormat object method

To specify a custom date display for a date column which is stored in the worksheet column, use the

Wks.Col.SetFormat object method. When entering the custom date format specifier, be sure to surround any

non-date characters with single quotes. Also note that this object method works on columns of the active

worksheet only.

In the following example, column 4 of the active worksheet is set to display a custom date/time format:

// wks.format=4 (date), wks.subformat=22 (custom)

wks.col4.SetFormat(4, 22, yyyy'-'MM'-'dd HH':'mm':'ss'.'###);

doc -uw; // Refresh the worksheet to show the change

https://www.originlab.com/doc/LabTalk/ref/Date-and-Time-Format-Specifiers
https://www.originlab.com/doc/LabTalk/ref/wkscolsetformat

215

9 Matrix Books Matrix Sheets and Matrix Objects

9.1 Matrix Books Matrix Sheets and Matrix Objects

Matrix-Books-Matrix-Sheets-and-Matrix-objs

Similar to workbooks and worksheets, matrices in Origin also employ a data organizing hierarchy: Matrix Book ->

Matrix Sheet -> Matrix Object. Therefore, objects like Page and Wks encompass matrix books and matrix sheets

as well as workbooks and worksheets. In addition, Origin provides many X-Functions for handling matrix data.

This chapter covers the following topics:

• Basic Matrix Book Operation

• LT Matrix Sheets

• LT Matrix Objects

9.2 Basic Matrix Book Operation

Matrixbook has the same data structure level with workbook in Origin, both are windows. So, you can manipulate

matrixbooks with the Page object and Window command, which is similar to workbook.

9.2.1 Workbook-like Operations

Both matrixbook and workbook are windows, and they share lots of similar operations, even using the same

LabTalk script. So, the differences will be pointed out below, and if the same script is used, please refer to Basic

Workbook Operation.

Create New Matrixbook

When using X-Function newbook to create new matrixbook, the argument mat must be 1. Here is the similar

example to the one for workbook.

//Create a new matrixbook with the Long Name "MyMatrixBook"

newbook mat:=1 name:=MyMatrixBook;

// Create a new matrixbook with 3 matrixsheets

// and use "Images" as Long Name and short name

newbook mat:=1 name:=Images sheet:=3 option:=lsname;

// Create a new hidden matrixbook

// and the matrixbook name is stored in myBkName$ variable

newbook mat:=1 hidden:=1 result:=myBkName$;

// Output matrixbook name

myBkName$ = ;

https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/LabTalk/guide/Basic-Matrix-Book-Operation
https://www.originlab.com/doc/LabTalk/guide/Matrix-Sheets
https://www.originlab.com/doc/LabTalk/guide/Matrix-objs
https://www.originlab.com/doc/LabTalk/guide/Workbooks
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Window-cmd
https://www.originlab.com/doc/LabTalk/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/LabTalk/guide/Basic-Workbook-Operation
https://www.originlab.com/doc/X-Function/ref/newbook

LabTalk Scripting Guide

216

Open Matrixbook

Use the same command, doc -o, as opening workbook, to open matrixbook. The difference is that the extension

of a matrixbook is ogm.

Save Matrixbook

Origin's matrixbook with data is with the extension of ogm, and template without data is otm. To save matrixbook

to ogm file and otm file, the save -i command and template_saveas X-Function will be used respectively, that is

also the same with workbook. However, matrixbook is not able to be saved as an analysis template.

Close Matrixbook

This is the same as workbook, see commands win -ca and win -cd.

Show or Hide Matrixbook

This is the same as workbook, see switches -ch, -h, and -hc in win command.

Name and Label Matrixbook

This is the same as workbook, see win -r command, and page object.

Activate Matrixbook

This is the same as workbook, see win -a command. The command window -o winName {script} can be used to

run the specified script for the named matrixbook. See the opening pages of the Running Scripts chapter for a

more detailed explanation.

Delete Matrixbook

This is the same as workbook, see win -c command.

Set/Get Matrix Labels

See Set Labels in both Matrixsheet and Matrix Object pages.

9.2.2 Show Image Thumbnails

To show or hide image thumbnails, the command matrix -it is available.

// Create a new matrixbook

newbook mat:=1;

// Import an image

string strImg$ = system.path.program$;

strImg$ += "Samples\Image Processing and Analysis\bamboo.jpg";

impImage fname:=strImg$;

// Hide image thumbnails

matrix -it 0;

9.3 Matrix Sheets

9.3.1 Matrix Sheets

Matrix-Sheets

https://www.originlab.com/doc/LabTalk/ref/Document_Options_for_Project
https://www.originlab.com/doc/LabTalk/ref/Save-cmd
https://www.originlab.com/doc/X-Function/ref/template_saveas
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close
https://www.originlab.com/doc/LabTalk/ref/Window-cmd
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Name
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Activate
https://www.originlab.com/doc/LabTalk/ref/Window_Options_Other
https://www.originlab.com/doc/LabTalk/guide/Running-Scripts
https://www.originlab.com/doc/LabTalk/ref/Window_Options_to_Close
https://www.originlab.com/doc/en/LabTalk/guide/Matrix-Basic-Operation
https://www.originlab.com/doc/en/LabTalk/guide/Basic-Matrix-Object-Operation
https://www.originlab.com/doc/LabTalk/ref/Matrix-cmd

Matrix Books Matrix Sheets and Matrix Objects

217

Matrix sheet has the same data structure level as Worksheet in Origin. So they have a lot of common properties.

This section covers the following topics:

• Basic Matrixsheet Operation

• Matrixsheet Data Manipulation

9.3.2 Basic Matrixsheet Operation

Matrix-Basic-Operation

Examples in this section are similar to those found in the Basic Worksheet Operation section, because many

object properties and X-Functions apply to both Worksheets and Matrixsheets. Note, however, that not all

properties of the wks object apply to a matrixsheet, and one should verify before using a property in production

code.

9.3.2.1 Add New Matrixsheet

The newsheet X-Function with the mat:=1 option can be used to add new matrixsheets to matrixbook.

// Create a new matrixbook with 3 matrixsheets,

// and use "myMatrix" as long name and short name

newbook name:="myMatrix" sheet:=3 option:=lsname mat:=1;

// Add a 100*100 matrixsheet named "newMatrix" to current matrixbook

newsheet name:=newMatrix cols:=100 rows:=100 mat:=1;

9.3.2.2 Activate a Matrixsheet

Similar to worksheets, matrixsheets are also layers in a page, and page.active and page.active$ properties can

access matrixsheets. For example:

// Create a new matrixbook with 3 matrixsheets

newbook sheet:=3 mat:=1;

page.active = 2; // Activate a matrixsheet by layer number

page.active$ = MSheet3; // Activate a matrixsheet by name

9.3.2.3 Modify Matrixsheet Properties

To modify matrix properties, use the wks object, which works on matrixsheets as well as worksheets. For

example:

// Rename the matrixsheet

wks.name$ = "New Matrix";

// Modify the column width

wks.colwidth = 8;

9.3.2.3.1.1 Set Dimensions

https://www.originlab.com/doc/LabTalk/guide/Worksheets
https://www.originlab.com/doc/LabTalk/guide/Matrix-Basic-Operation
https://www.originlab.com/doc/LabTalk/guide/Matrix-Data-Manipulation
https://www.originlab.com/doc/LabTalk/guide/Worksheet-Basic-Operation
https://www.originlab.com/doc/X-Function/ref/newsheet
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

218

Both the wks object and the mdim X-Function can be used to set matrix dimensions:

// Use the wks object to set dimension

wks.ncols = 100;

wks.nrows = 200;

// Use the mdim X-Function to set dimension

mdim cols:=100 rows:=100;

For the case of multiple matrix objects contained in the same matrixsheet, note that all of the matrix objects must

have the same dimensions.

9.3.2.3.1.2 Set Labels

You can use wks.x(y).comments$/longname$/units$ to get/set x/y labels. See the wks object for details. Z labels

can see this.

//write the Long Name for X coordinates of the active matrix

wks.x.longname$="time"

9.3.2.3.1.3 Set XY Mapping

Matrices have numbered columns and rows which are mapped to linearly spaced X and Y values. In LabTalk,

you can use the mdim X-Function to set the mapping.

// XY mapping of matrixsheet

mdim cols:=100 rows:=100 x1:=2 x2:=4 y1:=4 y2:=9;

9.3.2.4 Delete Matrixsheet

Use the layer -d commands to delete matrixsheet. For example:

layer -d; // delete the active layer, can be worksheet, matrixsheet or graph

layer

layer -d 3; // by index, delete third matrixsheet in active matrixbook

layer -d msheet1; // delete matrixsheet by name

range rs = [mbook1]msheet3!;

layer -d rs; // delete matrixsheet by range

// the matrixbook name stored in a string variable

string str$ = msheet2;

layer -d %(str$);

9.3.3 Matrixsheet Data Manipulation

Matrix-Data-Manipulation

9.3.3.1 Conversion Between Matrixsheets and Matrix Objects

In Origin, a matrixsheet can hold multiple matrix objects. Use the mo2s X-Function to split multiple matrix objects

into separate matrixsheets.

https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/X-Function/ref/mdim
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/en/LabTalk/guide/Basic-Matrix-Object-Operation#Set_Labels
https://www.originlab.com/doc/X-Function/ref/mdim
https://www.originlab.com/doc/LabTalk/ref/Layer_Options_for_Layer
https://www.originlab.com/doc/X-Function/ref/mo2s

Matrix Books Matrix Sheets and Matrix Objects

219

Use the ms2o X-Function to combine multiple matrixsheets into one (provided all matrices share the same

dimensions).

// Merge matrixsheet 2, 3, and 4

ms2o imp:=MBook1 sheets:="2,3,4" oms:=Merge;

// Split matrix objects in MSheet1 into new sheets

mo2s ims:=MSheet1 omp:=<new>;

9.4 Matrix Objects

9.4.1 Matrix Objects

Matrix-objs

Matrix object is the basic unit for storing matrix data, and its container is matrix sheet, that relationship is like

column and worksheet. The following pages will show the practical examples on the operation of matrix object.

This chapter covers the following topics:

• Basic Matrix Object Operation

• Matrix Object Data Manipulation

• Converting Matrix to Worksheet

9.4.2 Basic Matrix Object Operation

A matrixsheet can have multiple matrix objects, which share the same dimensions. A matrix object is analogous

to a worksheet column and can be added or deleted, etc. The following sections provide some practical

examples on the basic operations of matrix object.

9.4.2.1 Add or Insert Matrix Object

It allows to set the number of matrix objects in the matrixsheet by using wks.nmats, so to add matrix objects.

Also, the method wks.addcol() can be used to add a matrix object.

// Set the number of matrix objects in the matrixsheet to 5

wks.nmats = 5;

// Add a new matrix object to a matrixsheet

wks.addCol();

// Add a named matrix object to a matrixsheet

wks.addCol(Channel2);

By default, the 1st matrix object in matrixsheet is the current matrix object, you can use the wks.col property. And

the method wks.insert() will insert matrix object before the current matrix object.

// Create a new matrixbook, and show image thumbnails

newbook mat:=1;

https://www.originlab.com/doc/X-Function/ref/ms2o
https://www.originlab.com/doc/LabTalk/guide/Basic-Matrix-Object-Operation
https://www.originlab.com/doc/LabTalk/guide/Matrix-Object-Data-Manipulation
https://www.originlab.com/doc/LabTalk/guide/Converting-Matrix-to-Worksheet
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-obj

LabTalk Scripting Guide

220

matrix -it 1;

// Insert a matrix object before the 1st one in the active matrixsheet

wks.insert();

// Set the 2nd matrix object to be the current one

wks.col = 2;

// Insert a matrix object before the 2nd one

wks.insert();

9.4.2.2 Activate Matrix Object

To activate a matrix object in the active matrixsheet, the wks.active is available.

// Create a new matrixbook

newbook mat:=1;

// Add two more matrix objects to the active matrixsheet

wks.addCol();

wks.addCol();

// Show image thumbnails

matrix -it 1;

// Activate the second matrix object

wks.active = 2;

9.4.2.3 Switch Between Image Mode and Data Mode

The matrix command has provided the option for switching between image mode and data mode of the matrix

object. Only the active matrix object appears in the matrixsheet.

matrix -ii 1; // Show image mode

matrix -ii 0; // Show data mode

9.4.2.4 Set Labels

For each matrix object, you can set Long Name, Comments, and Units, by using Range Notation, which is a

matrix object.

// Create a new matrixbook

newbook mat:=1;

// Set number of matrix object of 1st matrixsheet to be 3

wks.nMats = 3;

// Show image thumbnails

matrix -it 1;

// Activate 1st matrix object

wks.active = 1;

// Set Long Name, Units, and Comments

range rx = 1; // 1st matrix object of the active matrixsheet

rx.lname$ = X; // Long Name = X

https://www.originlab.com/doc/LabTalk/ref/Matrix-cmd
https://www.originlab.com/doc/LabTalk/guide/Range-Notation

Matrix Books Matrix Sheets and Matrix Objects

221

rx.unit$ = cm; // Unit = cm

rx.comment$ = "X Direction"; // Comment = "X Direction"

// Do the same thing for matrix object 2 and 3

wks.active = 2;

range ry = 2;

ry.label$ = Y; // Long Name can also be set in this way

ry.unit$ = cm;

ry.comment$ = "Y Direction";

wks.active = 3;

range rz = 3;

rz.label$ = Z;

rz.unit$ = Pa;

rz.comment$ = Pressure;

9.4.2.5 Delete Matrix Object

To delete a matrix object, you can use the delete command.

// Delete a matrix object by range

range rs=[mbook1]msheet1!1; // The first matrix object

del rs;

// or delete a matrix object by name

range rs=[mbook1]msheet1!Channel2; // The object named Channel2

del rs;

9.4.3 Matrix Object Data Manipulation

In addition to the matrix command, Origin provides X-Functions for performing specific operations on matrix

object data. In this section we present examples of X-Functions that available used to work with matrix object

data.

9.4.3.1 Set Values in Matrix Object

Matrix cell values can be set either using the matrix -v command or the msetvalue X-Function. The matrix -v

command works only on an active matrix object, whereas the X-Function can set values in any matrixsheet.

This example shows how to set matrix values and then turn on display of image thumbnails in the matrix window.

// Create a matrixbook

newbook mat:=1;

int nmats = 10;

range msheet=1!;

// Set the number of matrix objects

msheet.Nmats = nmats;

// Set value to the first matrix object

matrix -v x+y;

range mm=1; mm.label$="x+y";

double ff=0;

// Loop over other objects

loop(i, 2, nmats-1) {

 msheet.active = i;

 ff = (i-1)/(nmats-2);

 // Set values

 matrix -v (5/ff)*sin(x) + ff*20*cos(y);

https://www.originlab.com/doc/LabTalk/ref/Delete-cmd
https://www.originlab.com/doc/LabTalk/ref/Matrix-cmd
https://www.originlab.com/doc/LabTalk/ref/Matrix-cmd
https://www.originlab.com/doc/X-Function/ref/msetvalue

LabTalk Scripting Guide

222

 // Set LongName

 range aa=$(i);

 aa.label$="$(5/ff,*3)*sin(x) + $(ff*20)*cos(y)";

}

// Fill last one with random values

msheet.active = nmats;

matrix -v rnd();

range mm=$(nmats); mm.label$="random";

// Display thumbnail images in window

matrix -it;

9.4.3.2 Copy Matrix Data

The mcopy X-Function is used to copy matrix data.

// Copy data from mbook1 into another matrix, mbook2.

mcopy im:=mbook1 om:=mbook2; // This command auto-redimensions the target

9.4.3.3 Conversion between Matrix Object and Vector

Two X-Functions, m2v and v2m, are available for converting matrix data into a vector, and vector data into a

matrix, respectively. Origin uses row-major ordering for storing a matrix, but both functions allow for column-

major ordering to be specified as well.

// Copy the whole matrix, column by column, into a worksheet column

m2v method:=m2v direction:=col;

// Copy data from col(1) into specified matrix object

v2m ix:=col(1) method:=v2row om:=[Mbook1]1!1;

9.4.3.4 Conversion between Numeric Data and Image Data

In Origin, matrices can contain image data (i.e., RGB) or numeric data (i.e., integer). The following functions are

available to convert between the two formats.

// Convert a grayscale image to a numeric data matrix

img2m img:=mat(1) om:=mat(2) type:=byte;

// Convert a numeric matrix to a grayscale image

m2img bits:=16;

9.4.3.5 Manipulate Matrix Object with Complex Values

X-Functions for manipulating a matrix with complex values include map2c, mc2ap, mri2c, and mc2ri. These X-

Functions can merge two matrices (amplitude and phase, or real and imaginary) into one complex matrix, or split

a complex matrix into amplitude/phase or real/imaginary components.

// Combine Amplitude and Phase into Complex

map2c am:=mat(1) pm:=mat(2) cm:=mat(3);

// Combine Real and imaginary in different matrices to complex in new matrix

mri2c rm:=[MBook1]MSheet1!mat(1) im:=[MBook2]MSheet1!mat(1) cm:=<new>;

// Convert complex numbers to two new matrix with amplitude and phase

respectively

mc2ap cm:=mat(1) am:=<new> pm:=<new>;

// Convert complex numbers to two matrix objects with real part and imaginary

part

mc2ri cm:=[MBook1]MSheet1!Complex rm:=[Split]Real im:=[Split]Imaginary;

https://www.originlab.com/doc/X-Function/ref/mcopy
https://www.originlab.com/doc/X-Function/ref/m2v
https://www.originlab.com/doc/X-Function/ref/v2m
https://www.originlab.com/doc/X-Function/ref/map2c
https://www.originlab.com/doc/X-Function/ref/mc2ap
https://www.originlab.com/doc/X-Function/ref/mri2c
https://www.originlab.com/doc/X-Function/ref/mc2ri

Matrix Books Matrix Sheets and Matrix Objects

223

9.4.3.6 Transform Matrix Object Data

Use the following X-Functions to physically alter the dimensions or contents of a matrix. In the transformations

below, except the flipping matrix object, others may change the dimensions of its matrixsheet, which will make

the change on other matrix objects in this matrixsheet.

9.4.3.6.1 Crop or extract from Data or Image Matrix

When a matrix contains an image in a matrix, the X-Function mcrop can be used to extract or crop to a

rectangular region of the matrix.

// Crop an image matrix to 50 by 25 beginning from 10 pixels

// from the left and 20 pixels from the top.

mcrop x:=10 y:=20 w:=50 h:=25 im:=<active> om:=<input>; // <input> will crop

// Extract the central part of an image matrix to a new image matrix

// Matrix window must be active

matrix -pg DIM px py;

dx = nint(px/3);

dy = nint(py/3);

mcrop x:=dx y:=dy h:=dy w:=dx om:=<new>; // <new> will extract

9.4.3.6.2 Expand Data Matrix

The X-Function mexpand can expand a data matrix using specified column and row factors. Biquadratic

interpolation is used to calculate the values for the new cells.

// Expand the active matrix with both factor of 2

mexpand cols:=2 rows:=2;

9.4.3.6.3 Flip Data or Image Matrix

The X-Function mflip can flip a matrix horizontally or vertically to produce its mirror matrix.

// Flip a matrix vertically

mflip flip:=vertical;

// Can also use the "matrix" command

matrix -c h; // horizontally

matrix -c v; // vertically

9.4.3.6.4 Rotate Data or Image Matrix

With the X-Function mrotate90, you can rotate a matrix 90/180 degrees clockwise or counterclockwise.

// Rotate the matrix 90 degrees clockwize

mrotate90 degree:=cw90;

// Can also use the "matrix" command to rotate matrix 90 degrees

matrix -c r;

9.4.3.6.5 Shrink Data Matrix

https://www.originlab.com/doc/X-Function/ref/mCrop
https://www.originlab.com/doc/X-Function/ref/mexpand
https://www.originlab.com/doc/X-Function/ref/mflip
https://www.originlab.com/doc/X-Function/ref/mrotate90

LabTalk Scripting Guide

224

The X-Function mshrink can shrink a data matrix by specified row and column factors.

// Shrink the active matrix by column factor of 2, and row factor of 1

mshrink cols:=2 rows:=1;

9.4.3.6.6 Transpose Data Matrix

The X-Function mtranspose can be used to transpose a matrix.

// Transpose the second matrix object of [MBook1]MSheet1!

mtranspose im:=[MBook1]MSheet1!2;

// Can also use the "matrix" command to transpose a matrix

matrix -t;

9.4.3.7 Split RGB Image into Separate Channels

The imgRGBsplit X-Functions splits color images into separate R, G, B channels. For example:

// Split channels creating separate matrices for red, green and blue

imgRGBsplit img:=mat(1) r:=mat(2) g:=mat(3) b:=mat(4) colorize:=0;

// Split channels and apply red, green, blue palettes to the result matrices

imgRGBsplit img:=mat(1) r:=mat(2) g:=mat(3) b:=mat(4) colorize:=1;

Please see Image Processing X-Functions for further information on image handling.

9.4.3.8 Use Temporary Matrix Object as Intermediate Analysis Result

Sometimes user may not want to create a new Matrixbook for output in X-Function each time when performing

intermediate matrix analysis operations. He can create a temporary matrix in a hidden Matrixbook for

intermediate output, and delete the Matrixbook when it is not needed in next operation.

Example 1

This example shows how to save intermediate image operation result in a temporary Matrixbook, and delete it in

the next step.

//Import an image into Origin's Matrixbook

string fn$=system.path.program$ + "Samples\Image Processing and

Analysis\white camellia.jpg";

impImage fname:=fn$;

//Create a hidden Matrixbook

newbook hidden:=1 mat:=1;

%A = bkname$;

//Perform Auto Level operation and save the output in the hidden Matrixbook

imgAutoLevel oimg:=[%A]1! cl:=<optional>;

//Apply Median filter on the image from Auto Level operation

imgMedian d:=3 img:=[%A]1! oimg:=<new>;

//Delete the intermediate matrix

win -cd %A;

Example 2

https://www.originlab.com/doc/X-Function/ref/mshrink
https://www.originlab.com/doc/X-Function/ref/mtranspose
https://www.originlab.com/doc/X-Function/ref/imgRGBsplitPro
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs

Matrix Books Matrix Sheets and Matrix Objects

225

In this example, a median filter was applied on a matrix, and the volume was calculated after the minimum was

subtracted. All intermediate matrix results were saved in a hidden temporary Matrixbook, and the Matrixbook was

deleted after it was not needed.

//Open a sample Matrixbook

string fn$=system.path.program$ + "Samples\Matrix Conversion and Gridding\2D

Gaussian.ogm";

doc -o %(fn$);

//Create a temporary hidden Matrixbook

newbook hidden:=1 mat:=1;

%A = bkname$;

range rm = [%A]1!;

//Add two matrix objects to receive two intermediate matrix results

rm.nmats = 2;

//Apply a median filter on a matrix

medianflt2 n:=3 po:=RepeatPadding om:=[%A]1!mat(1);

//Subtract the minimum

msetvalue im:=[%A]1!mat(2) formula:="mat(1)-z0" script:="double z0; mstats

im:=mat(1) min:=z0;";

//Integrate the matrix

double dv;

integ2 im:=[%A]1!mat(2) integral:=dv;

win -cd %A;

9.4.4 Converting Matrix to Worksheet

You may need to re-organize your data by converting from matrix to worksheet, or vice versa, for certain analysis

or graphing needs. This page provides information and examples of converting matrix to worksheet, and please

refer to Converting Worksheet to Matrix for the "vice versa" case.

9.4.4.1 Matrix to Worksheet

Data in a matrix can also be converted to a worksheet by using the m2w X-Function. This X-Function can directly

convert data into worksheet, with or without X/Y mapping, or convert data by rearranging the values into XYZ

columns in the worksheet.

The following example shows how to convert matrix into worksheet, and plot graphs using different methods

according the form of the worksheet data.

// Create a new matrixbook

win -t matrix;

// Set matrix dimension and X/Y values

mdim cols:=21 rows:=21 x1:=0 x2:=10 y1:=0 y2:=100;

// Show matrix X/Y values

page.cntrl = 2;

// Set matrix Z values

msetvalue formula:="nlf_Gauss2D(x, y, 0, 1, 5, 2, 50, 20)";

// Hold the matrix window name

%P = %H;

// Covert matrix to worksheet by Dierct method

m2w ycol:=1 xlabel:=row1;

// Plot graph from worksheet using Virtual Matrix

https://www.originlab.com/doc/LabTalk/guide/Converting-Worksheet-to-Matrix
https://www.originlab.com/doc/X-Function/ref/m2w

LabTalk Scripting Guide

226

plotvm irng:=1! format:=1 ztitle:=MyGraph type:=242 ogl:=<new

template:=cmap>;

// Convert matrix to XYZ worksheet data

sec -p 2;

win -a %P;

m2w im:=!1 method:=xyz;

// Plot a 3D Scatter

worksheet -s 3;

worksheet -p 240 3D;

If the matrix data is converted directly to worksheet cells, you can then plot such worksheet data using the Virtual

Matrix feature.

https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix
https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix

227

10 Graphing

10.1 Graphing

Graphing

This chapter covers the following topics:

• Creating Graphs

• Formatting Graphs

• Managing Layers

• Creating and Accessing Graphical Objects

Origin's breadth and depth in graphing support capabilities are well known. The power and flexibility of Origin's

graphing features are accessed as easily from script as from our graphical user interface. The following sections

provide examples of creating and editing graphs from LabTalk scripts.

10.2 Creating Graphs

Creating-Graphs

 Creating graphs is probably the most commonly performed operation in Origin. Origin provides a collection of X-

Function and LabTalk functions for this purpose. You can find all X-Functions used for plotting under the Plotting

category and can list them by typing the following command:

lx cat:="plotting";

Some X-Functions are general tools to plot graph from a specific kinds of data, for example plotxy to plot graphs

from XY range data, and plotm to plot graph from matrix data. Some are used to plot a special plot type, for

example plotgboxraw to plot a grouped box plot from raw data, and plotpiper to create a piper plot. Please

refer to plotting category for details of each X-Function.

The following sections give examples of two X-Functions that allow you to create graphs directly from LabTalk

scripts: plotxy and plotgroup. Once a plot is created, you can use object properties, like page, layer, axis

objects, and set command to format the graph.

10.2.1 Creating a Graph with the PLOTXY X-Function

plotxy is an X-Function used for general purpose plotting. It is used to create a new graph window, plot into a

graph template, or plot into a new graph layer. It has a syntax common to all X-Functions:

plotxy option1:=optionValue option2:=optionValue ... optionN:=optionValue

https://www.originlab.com/doc/LabTalk/guide/Creating-Graphs
https://www.originlab.com/doc/LabTalk/guide/Formatting-Graphs
https://www.originlab.com/doc/LabTalk/guide/Managing-Layers
https://www.originlab.com/doc/LabTalk/guide/Creating-and-Accessing-Graphical-objs
https://www.originlab.com/doc/X-Function/ref/Plotting
https://www.originlab.com/doc/X-Function/ref/Plotting
https://www.originlab.com/doc/X-Function/ref/Plotting
https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-Axis-obj
https://www.originlab.com/doc/LabTalk/ref/Set-cmd
https://www.originlab.com/doc/LabTalk/guide/Formatting-Graphs
https://www.originlab.com/doc/X-Function/ref/plotxy

LabTalk Scripting Guide

228

All possible options and values are summarized in the X-Function help for plotxy. Since it is somewhat non-

intuitive, the plot option and its most common values are summarized here:

plot:= Plot Type

200 Line

201 Scatter

202 Line+symbol

203 column

All of the possible values for the plot option can be found in the Plot Type IDs.

10.2.1.1 Plotting X Y data

10.2.1.1.1 Input XYRange referencing the X and Y

The following example plots the first two columns of data in the active worksheet, where the first column will be

plotted as X and the second column as Y, as a line plot.

plotxy iy:=(1,2) plot:=200;

10.2.1.1.2 Input XYRange referencing just the Y

The following example plots the second column of data in the active worksheet, as Y against its associated X, as

a line plot. When you do not explicitly specify the X, Origin will use the the X-column that is associated with that

Y-column in the worksheet, or if there is no associated X-column, then an <auto> X will be used. By default,

<auto> X is row number.

plotxy iy:=2 plot:=200;

10.2.1.2 Plotting X YY data

The following example plots the first three columns of data from Book1, Sheet1, where the first column will be

plotted as X and the second and third columns as Y, as a grouped scatter plot.

plotxy iy:=[Book1]Sheet1!(1,2:3) plot:=201;

10.2.1.3 Plotting XY XY data

https://www.originlab.com/doc/X-Function/ref/plotxy
https://www.originlab.com/doc/LabTalk/ref/Plot-Type-IDs

Graphing

229

The following example plots the first four columns of data in the active worksheet, where the first column will be

plotted as X against the second column as Y and the third column as X against the fourth column as Y, as a

grouped line+symbol plot.

plotxy iy:=((1,2),(3,4)) plot:=202;

10.2.1.4 Plotting using worksheet column designations

The following example plots all columns in the active worksheet, using the worksheet column plotting

designations, as a column plot. '?' indicates to use the worksheet designations; '1:end' indicates to plot all the

columns.

plotxy iy:=(?,1:end) plot:=203;

10.2.1.5 Plotting a subset of a column

The following example plots rows 1-12 of all columns in the active worksheet, as a grouped line plot.

plotxy iy:=(1,2:end)[1:12] plot:=200;

Note: Please refer to Specifying Subrange Using X Values for more details on subset.

10.2.1.6 Plotting into a graph template

The following example plots the first column as theta(X) and the second column as r(Y) in the active worksheet,

into the polar plot graph template, and the graph window is named MyPolarGraph.

plotxy (1,2) plot:=192 ogl:=[<new template:=polar name:=MyPolarGraph>];

10.2.1.7 Plotting into an existing graph layer

The following example plots columns 10-20 in the active worksheet, using column plotting designations, into the

second layer of Graph1. These columns can all be Y columns and they will still plot against the associated X

column in the worksheet.

plotxy iy:=(?,10:20) ogl:=[Graph1]2!;

10.2.1.8 Creating a new graph layer

The following example adds a new Bottom-X Left-Y layer to the active graph window, plotting the first column as

X and the third column as Y from Book1, Sheet2, as a line plot. When a graph window is active and the output

graph layer is not specified, a new layer is created.

plotxy iy:=[Book1]Sheet2!(1,3) plot:=200;

10.2.1.9 Creating a Double-Y Graph

// Import data file

string fpath$ = "Samples\Import and Export\S15-125-03.dat";

string fname$ = system.path.program$ + fpath$;

impASC;

// Remember Book and Sheet names

string bkname$ = page.name$;

https://www.originlab.com/doc/LabTalk/guide/Range-Notation

LabTalk Scripting Guide

230

string shname$ = layer.name$;

// Plot the first and second columns as X and Y

// The worksheet is active, so can just specify column range

plotxy iy:=(1,2) plot:=202 ogl:=[<new template:=doubleY>];

// Plot the first and third columns as X and Y into the second layer

// Now that the graph window is the active window, need to specify Book

//and Sheet

plotxy iy:=[bkname$]shname$!(1,3) plot:=202 ogl:=2;

10.2.2 Create Graph Groups with the PLOTGROUP X-Function

According to the grouping variables (datasets), plotgroup X-Function creates grouped plots for page, layer or

dataplot. To work properly, the worksheet should be sorted by the graph group data first, then the layer group

data and finally the dataplot group data.

This example shows how to plot by group.

// Establish a path to the sample data

fn$ = system.path.program$ + "Samples\Statistics\body.dat";

newbook;

impASC fn$; // Import into new workbook

// Sort worksheet--Sorting is very important!

wsort bycol:=3;

// Plot by group

plotgroup iy:=(4,5) pgrp:=Col(3);

This next example creates graph windows based on one group and graph layers based on a second group:

// Bring in Sample data

fn$ = system.path.program$ + "Samples\Graphing\Categorical Data.dat";

newbook;

impASC fn$;

// Sort

dataset sortcol = {4,3}; // sort by drug, then gender

dataset sortord = {1,1}; // both ascending sort

wsort nest:=sortcol ord:=sortord;

// Plot each drug in a separate graph with gender separated by layer

plotgroup iy:=(2,1) pgrp:=col(drug) lgrp:=col(gender);

Note : Each group variable is optional. For example, you could use one group variable to organize data into

layers by omitting Page Group and Data Group. The same sort order is important for whichever options you do

use.

10.2.3 Create 3D Graphs with Worksheet -p Command

To create 3D Graphs, use the Worksheet (command) (-p switch).

First, create a simple 3D scatter plot:

// Create a new book

newbook r:=bkn$;

https://www.originlab.com/doc/X-Function/ref/plotgroup
https://www.originlab.com/doc/LabTalk/ref/Worksheet_Options_for_Plot

Graphing

231

// Run script on bkn$

win -o bkn$ {

 // Import sample data

 string fname$ = system.path.program$ +

 "\samples\Matrix Conversion and Gridding" +

 "\XYZ Random Gaussian.dat";

 impasc;

 // Save new book name

 bkn$ = %H;

 // Change column type to Z

 wks.col3.type = 6;

 // Select column 3

 worksheet -s 3;

 // Plot a 3D scatter graph by template named "3d"

 worksheet -p 240 3d;

};

You can also create 3D color map or 3D mesh graph. 3D graphs can be plotted either from worksheet or matrix.

And you may need to do gridding before plotting.

We can run the following script after above example and create a 3D wire frame plot from matrix:

win -o bkn$ {

 // Gridding by Shepard method

 xyz_shep 3;

 // Plot 3D wire frame graph;

 worksheet -p 242 wirefrm;

};

10.2.4 Create 3D Graph and Contour Graphs from Virtual Matrix

Origin can also create 3D graphs, such as 3D color map, contour, or 3D mesh, etc., from worksheet by the

plotvm X-Function. This function creates a virtual matrix, and then plot from such matrix. For example:

// Create a new workbook and import sample data

newbook;

string fname$=system.path.program$ + "Samples\Graphing\VSurface 1.dat";

impasc;

// Treat entire sheet as a Virtual Matrix and create a colormap surface plot

plotvm irng:=1! format:=xacross rowpos:=selrow1 colpos:=selcol1

 ztitle:="VSurface 1" type:=242 ogl:=<new template:=cmap>;

// Change X axis scale to log

// Nonlinear axis type supported for 3D graphs created from virtual matrix

LAYER.X.type=2;

10.2.5 Create Circular Dendrogram

Creating Circular Dendrogram menu is not support the Origin GUI. If you want to plot this graph type, you can do

Hierarchical Cluster Analysis to create the graph, or use the following script:

run.section(plot, CircularPhyTree);

run.section(plot, CircularBinPhyTree);

https://www.originlab.com/doc/X-Function/ref/plotvm
https://www.originlab.com/doc/LabTalk/guide/Virtual-Matrix

LabTalk Scripting Guide

232

This sample shows how to plot this kind of graph:

// Import data file

newbook;

string fpath$ = "Samples\Graphing\US Mean Temperature.dat";

string fname$ = system.path.program$ + fpath$;

impASC;

// Hierarchical Cluster Analysis

hcluster -r 2 irng:=[USMeanTempera]"US Mean

Temperature"!D"January"[1]:O"December"[100] link:=ward number:=4 center:=1;

// Highlight datasets

page.active$ = "Cluster Plot Data1" ;

worksheet -s 1 0 3 0;

// Create graph

run.section(plot, CircularPhyTree);

10.2.6 Installing and Uninstalling a Graph Template Via LabTalk

You can use LabTalk to install or uninstall a graph template using the following commands (the graph template

file must exist in your User Files Folder). When uninstalling, the file is not moved from your User Files Folder.

// To install

run.section(dofile.ogs, OnInstallTemplate, "%YMyTemplate.otpu");

// To uninstall

run.section(dofile.ogs, OnUnInstallTemplate, "%YMyTemplate.otpu");

10.3 Formatting Graphs

Formatting-Graphs

10.3.1 Graph Window

A graph window is comprised of a visual page, with an associated Page (Object). Each graph page contains at

least one visual layer, with an associated layer object. The graph layer contains a set of X Y axes with

associated layer.x and layer.y objects, which are sub-objects of the layer object.

When you have a range variable mapped to a graph page or graph layer, you can use that

variable name in place of the word page or layer.

10.3.2 Page Properties

The page object is used to access and modify properties of the active graph window. To output a list of all

properties of this object:

page.=

https://www.originlab.com/doc/LabTalk/ref/Page-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-Axis-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-Axis-obj
https://www.originlab.com/doc/LabTalk/ref/Page-obj

Graphing

233

The list will contain both numeric and text properties. When setting a text (string) property value, the $ follows the

property name.

To read the Short name of the active window:

page.name$="Graph3";

To read the Long name of the active window:

page.longname$="This name can contain spaces";

You can also access Graph properties or attributes using a range variable instead of the page object. The

advantage is that using a range variable works whether or not the desired graph is active.

The example below sets the active graph layer to layer 2, using a range variable to point to the desired graph by

name. Once declared, the range variable can be used in place of page:

//Create a Range variable that points to your graph

range rGraph = [Graph3];

//The range now has properties of the page object

rGraph.active=2;

10.3.3 Layer Properties

The layer object is used to access and modify properties of the graph layer.

To set the graph layer dimensions:

//Set the layer area units to cm

layer.unit=3;

//Set the Width

layer.width=5;

//Set the Height

layer.height=5;

10.3.3.1 Fill the Layer Background Color

The laycolor X-Function is used to fill the layer background color. The value you pass to the function for color,

corresponds to Origin's color list as seen in the Plot Details dialog (1=black, 2=red, 3=green, etc).

To fill the background color of layer 1 as green:

laycolor layer:=1 color:=3;

10.3.3.2 Set Speed Mode Properties

The speedmode X-Function is used to set layer speed mode properties.

10.3.3.3 Update the Legend

The legendupdate X-Function is used to update or reconstruct the graph legend on the page/layer.

10.3.4 Axis Properties

The layer.x and layer.y sub-object of the layer object is used to modify properties of the axes.

https://www.originlab.com/doc/LabTalk/ref/Layer-obj
https://www.originlab.com/doc/X-Function/ref/laycolor
https://www.originlab.com/doc/LabTalk/ref/List-of-Colors
https://www.originlab.com/doc/X-Function/ref/speedmode
https://www.originlab.com/doc/X-Function/ref/legendupdate
https://www.originlab.com/doc/LabTalk/ref/Layer-Axis-obj
https://www.originlab.com/doc/LabTalk/ref/Layer-Axis-obj

LabTalk Scripting Guide

234

To modify the X scale of the active layer:

//Set the scale to Log10

layer.x.type = 2;

//Set the start value

layer.x.from = .001;

//Set the end value

layer.x.to = 1000;

//Set the increment value

layer.x.inc = 2;

If you wish to work with the Y scale, then simply change the x in the above script to a y. If

you wish to work with a layer that is not active, you can specify the layer index,

layerN.x.from. Example: layer3.y.from = 0;

The Axis command can also be used to access the settings in the Axis dialog.

To change the X Axis Tick Labels to use the values from column C, given a plot of col(B) vs. col(A) with text in

col(C), from Sheet1 of Book1:

range aa = [Book1]Sheet1!col(C);

axis -ps X T aa;

10.3.5 Data Plot Properties

The Set (Command) is used to change the attributes of a data plot. The following example shows how the Set

command works by changing the properties of the same dataplot several times. In the script, we use sec

command to pause one second before changing plot styles.

// Make up some data

newbook;

col(a) = {1:5};

col(b) = col(a);

// Create a scatter plot

plotxy col(b);

// Set symbol size

// %C is the active dataset

sec -p 1;

set %C -z 20;

// Set symbol shape

sec -p 1;

set %C -k 3;

// Set symbol color

sec -p 1;

set %C -c color(blue);

// Connect the symbols

sec -p 1;

set %C -l 1;

// Change plot line color

sec -p 1;

set %C -cl color(red);

// Set line width to 4 points

https://www.originlab.com/doc/LabTalk/ref/Axis-cmd
https://www.originlab.com/doc/LabTalk/ref/Set-cmd
https://www.originlab.com/doc/LabTalk/ref/Second-cmd
https://www.originlab.com/doc/LabTalk/ref/Second-cmd

Graphing

235

sec -p 1;

set %C -w 2000;

// Change solid line to dash

sec -p 1;

set %C -d 1;

Here is another example which plots into a template, DoubleY, with two layers, and then sets dataplot style for

the dataplot in the second layer:

// Importing data

newbook;

string fn$=system.path.program$ + "Samples\Curve Fitting\Enzyme.dat";

impasc fname:=fn$;

//declare active worksheet range

range rr = !;

//plot into a template

plotxy iy:=(1,2) plot:=200 ogl:=[<new template:=DoubleY>];

//plot into second layer of active graph, which is graph created from line

above

plotxy iy:=%(rr)(1,3) plot:=200 ogl:=2!;

//declare range for first dataplot in layer 2

range r2 = 2!1;

//set line to dash

set r2 -d 1;

//get current template name

win -g;

%A=;

//save the graph as another template

template_saveas template:=myLineAndDash;

10.3.6 Legend and Label

Formatting the Legend and Label are discussed on Creating and Accessing Graphical Objects.

10.4 Managing Layers

Managing-Layers

10.4.1 Creating a panel plot

The newpanel X-Function creates a new graph with an n x m layer arrangement.

10.4.1.1 Creating a 6 panel graph

The following example will create a new graph window with 6 layers, arranged as 2 columns and 3 rows. This

function can be run independent of what window is active.

newpanel col:=2 row:=3;

Remember that when using X-Functions you do not always need to use the variable name

when assigning values; however, being explicit with col:= and row:= may make your code

more readable. To save yourself some typing, in place of the code above, you can use the

https://www.originlab.com/doc/LabTalk/guide/Creating-and-Accessing-Graphical-objs
https://www.originlab.com/doc/X-Function/ref/newpanel

LabTalk Scripting Guide

236

following:

newpanel 2 3;

10.4.1.2 Creating and plotting into a 6 panel graph

The following example will import some data into a new workbook, create a new graph window with 6 layers,

arranged as 2 columns and 3 rows, and loop through each layer (panel), plotting the imported data.

// Create a new workbook

newbook;

// Import a file

path$ = system.path.program$ + "Samples\Graphing\";

fname$ = path$ + "waterfall2.dat";

impasc;

// Save the workbook name as newpanel will change %H

string bkname$=%H;

// Create a 2*3 panel

newpanel 2 3;

// Plot the data

for (ii=2; ii<8; ii++)

{

 plotxy iy:=[bkname$]1!wcol(ii) plot:=200 ogl:=$(ii-1);

}

10.4.2 Adding Layers to a Graph Window

The layadd X-Function creates/adds a new layer to a graph window. This function is the equivalent of the Insert:

New Layer(Axes) menu.

Programmatically adding a layer to a graph is not common. It is recommended to create a

graph template ahead of time and then use the plotxy X-Function to plot into your graph

template.

The following example will add an independent right Y axis scale. A new layer is added, displaying only the right

Y axis. It is linked in dimension and the X axis is linked to the current active layer at the time the layer is added.

The new added layer becomes the active layer.

layadd type:=rightY;

10.4.3 Arranging the layers

The layarrange X-Function is used to arrange the layers on the graph page.

https://www.originlab.com/doc/X-Function/ref/layadd
https://www.originlab.com/doc/X-Function/ref/plotxy
https://www.originlab.com/doc/X-Function/ref/layarrange

Graphing

237

Programmatically arranging layers on a graph is not common. It is recommended to create

a graph template ahead of time and then use the plotxy X-Function to plot into your graph

template.

The following example will arrange the existing layers on the active graph into two rows by three columns. If the

active graph does not already have 6 layers, it will not add any new layers. It arranges only the layers that exist.

layarrange row:=2 col:=3;

10.4.4 Moving a layer

The laysetpos X-Function is used to set the position of one or more layers in the graph, relative to the page.

The following example will left align all layers in the active graph window, setting their position to be 15% from

the left-hand side of the page.

laysetpos layer:="1:0" left:=15;

10.4.5 Swap two layers

The layswap X-Function is used to swap the location/position of two graph layers. You can reference the layers

by name or number.

The following example will swap the position on the page of layers indexed 1 and 2.

layswap igl1:=1 igl2:=2;

The following example will swap the position on the page of layers named Layer1 and Layer2.

layswap igl1:=Layer1 igl2:=Layer2;

Layers can be renamed from both the Layer Management tool as well as the Plot Details

dialog. In the Layer Management tool, you can double-click on the Name in the Layer

Selection list, to rename. In the left-hand navigation panel of the Plot Details dialog, you

can slow double-click a layer name to rename.

To rename from LabTalk, use layern.name$ where n is the layer index. For example, to

rename layer index 1 to Power, use the following: layer1.name$="Power";

10.4.6 Aligning layers

The layalign X-Function is used to align one or more layers relative to a source/reference layer.

The following example will bottom align layer 2 with layer 1 in the active graph window.

layalign igl:=1 destlayer:=2 direction:=bottom;

The following example will left align layers 2, 3 and 4 with layer 1 in the active graph window.

https://www.originlab.com/doc/X-Function/ref/plotxy
https://www.originlab.com/doc/X-Function/ref/laysetpos
https://www.originlab.com/doc/X-Function/ref/layswap
https://www.originlab.com/doc/X-Function/ref/layalign

LabTalk Scripting Guide

238

layalign igl:=1 destlayer:=2:4 direction:=left;

The following example will left align all layers in Graph3 with respect to layer 1. The 2:0 notation means for all

layers, starting with layer 2 and ending with the last layer in the graph.

layalign igp:=graph3 igl:=1 destlayer:=2:0 direction:=left;

10.4.7 Linking Layers

The laylink X-Function is used for linking layers to one another. It is used to link axes scales as well as layer

area/position.

The following example will link all X axes in all layers in the active graph to the X axis of layer 1. The Units will be

set to % of Linked Layer.

laylink igl:=1 destlayers:=2:0 XAxis:=1;

10.4.8 Setting Layer Unit

The laysetunit X-Function is used to set the unit for the layer area of one or more layers.

10.5 Creating and Accessing Graphical Objects

Creating-and-Accessing-Graphical-objs

Graphical Objects could be many types, Line, Polyline, Rectangle, Cycle, Polygon, Arrow, Text, Image, etc.

Once an object is created and attached to a layer, you can see it by invoking the list -o command option. The

following section shows you how to create, change, and delete an object by LabTalk.

10.5.1 Creating Objects

10.5.1.1 Creating Labels

A label is one type of graphic object and can be created using the Label command. If no name is specified when

creating labels by the label -n command, Origin will name the labels automatically with "Textn", where n is the

creation index.

When creating labels, you can use escape sequences in a string to customize the text display. These sequences

begin with the backslash character (\). Enter the following script to see how these escape sequences work.

When there are spaces or multiple lines in your label text, quote the text with a double quote mark.

label "You can use \b(Bold Text)

Subscripts and Superscripts like X\=(\i(i), 2)

\i(Italic Text)

\ab(Text with Overbar)

or \c4(Color Text) in your Labels";

The following script creates a new text label on your active graph window with the value from column 1, row 5 of

sheet1 in book3. It works for both string and numeric.

https://www.originlab.com/doc/X-Function/ref/laylink
https://www.originlab.com/doc/X-Function/ref/laysetunit
https://www.originlab.com/doc/LabTalk/ref/List-cmd
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/LabTalk/ref/Label-cmd
https://www.originlab.com/doc/LabTalk/ref/Label-cmd

Graphing

239

label -s %([book3]Sheet1,1,5);

The following script creates a new text label on your active graph window from the value in row 1 of column 2 of

sheet2 in book1. Note the difference from the above example - the cell(i,j) function takes row number as first

argument. It works for a numeric cell only.

label -s $([book1]Sheet2!cell(1,2));

Besides, you can address worksheet cell values as your label contents. The following script creates a new text

label on your active graph window from the value in row 1 of column 2 of sheet2 in book1. The value is displayed

with 4 significant digits.

label -s $([book1]Sheet2!cell(1,2), *4);

The %() notation does not allow formatting and displays the value with full precision. You

need to use $() notation if you wish to format the numeric value.

10.5.1.2 Creating Legends

A graph legend is just a text label with the object name Legend. It has properties common to all graphical

objects. To output a list of all properties of the legend, type the following into the Script Window and press Enter:

legend.=

To view the object name of any graphical object right-click on it and select Properties from

the context menu; then click on the Programming tab and look to the Name field.

To update or reconstruct the graph legend, use the legendupdate X-function, which has the following syntax:

legendupdate [mode:=optionName]

The square brackets indicate that mode is optional, such that legendupdate may be used on its own, as in:

legendupdate;

which will use the default legend setting (short name) or use mode to specify what you would like displayed:

legendupdate mode:=0;

which will display the Comment field in the regenerated legend for the column of data plotted. All possible

modes can be found in Help: X-Functions: legendupdate:

Note that either the index or the name of the mode may be used in the X-function call, such that the script lines,

legendupdate mode:=comment;

legendupdate mode:=0;

are equivalent and produce the same result.

The custom legend option requires an additional argument, demonstrated here:

https://www.originlab.com/doc/LabTalk/guide/string-substitution
https://www.originlab.com/doc/LabTalk/guide/numeric-string-conversion
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/X-Function/ref/legendupdate
https://www.originlab.com/doc/X-Function/ref/legendupdate

LabTalk Scripting Guide

240

legendupdate mode:=custom custom:=@WS;

All available custom legend options are given in the Legend_Text_Customization.

The following example shows how to use these functions and commands to update legends.

// Import sample data;

newbook;

string fn$ = system.path.program$ +

 "Samples\Curve Fitting\Enzyme.dat";

impasc fname:=fn$;

string bn$ = %H;

// Create a two panels graph

newpanel 1 2;

// Add dataplot to layers

for (ii=1; ii<=2; ii++)

{

 plotxy iy:=[bn$]1!wcol(ii+1) plot:=201 ogl:=$(ii);

}

// Upate whole page legends by worksheet comment + unit

legendupdate dest:=0 update:=0 mode:=custom custom:=@ln;

// Modify the legend settings for each layers

doc -e LW {

 // Set legend font size

 legend.fsize = 28;

 // Set legend font color

 legend.color = color(blue);

 // Move legend to upper-left of the layer

 legend.x = layer.x.from + legend.dx / 2;

 legend.y = layer.y.to - legend.dy / 2;

};

Note: To modify the text of the legend, you can also use the label command. One reason to use this would be if

you wanted to display more than one text entry for each dataplot. The script below will update the legend text to

display both the worksheet name and the X column's Comment:

label -sl -n legend "\l(1) %(1, @WS) %(1X, @LC)";

10.5.1.3 Creating Lines

Objects like lines, rectangles, are graphic objects, and you can use draw command to create them.

In the example below, you can see how to use the -l and -v switches to draw a Vertical Line. The line will be

drawn at the midpoint of the X axis, where X1 and X2 are system variables that store the X From and X To scale

values respectively.

draw -l -v (X1+(X2-X1)/2);

To make the line movable, use the -lm switch.

draw -lm -v (X1+(X2-X1)/2);

10.5.2 Working on Objects

10.5.2.1 Position of Objects

https://www.originlab.com/doc/LabTalk/ref/Legend-Substitution-Notation
https://www.originlab.com/doc/LabTalk/ref/Label-cmd
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/LabTalk/ref/Draw-cmd
https://www.originlab.com/doc/LabTalk/ref/System-vars

Graphing

241

Object position can either be controlled when creating it, or changed by object properties. The following table

lists how these properties and commmands works:

Property / Command Unit Reference Point

label -p Percentage Top-left

label -px Pixel of Screen Top-left

object.top / object.left Pixel of Page Top-left

object.x / object.y Layer coordinates Center of Object

object.x1 / object.y1 Layer coordinates Top-left

Notes: The pixel of a page can be found from the Print/Dimensions tab of Plot Details dialog.

For example:

win -T Plot; // Create an empty graph

// Create a text object at the layer center,

// named as "MyText", and the context is "Hello World"

label -p 50 50 -n MyText Hello World;

sec -p 1;

// Place the label at (1, 5)

MyText.x1 = 1;

MyText.y1 = 5;

10.5.2.2 Change Object Properties

All graphical objects can use objectName.property= to get or set object properties. Take label as example, the

object.x and object.y properties specify the x and y position of the center of an object, and object.dx and

object.dy specify the object width and height. These four properties are all using axis units, so we can combine

these four properties with layer.axis.from and layer.axis.to to place the label in the proper position on a layer.

The following script example shows how to use label properties to place labels.

// Import sample data

newbook;

string fname$ = system.path.program$ +

 "Samples\Curve Fitting\Enzyme.dat";

https://www.originlab.com/doc/LabTalk/ref/Graphic-objs
https://www.originlab.com/doc/LabTalk/ref/Graphic-objs

LabTalk Scripting Guide

242

impasc;

string bn$ = %H;

plotxy ((,2), (,3));

// Create a label and name it "title"

// Be note the sequence of option list, -n should be the last option

// -j is used to center the text

// -s enables the substitution notation

// -sa enables conversion of \n (new line)

// Subsitution is used to get text from column comments

label -j 1 -s -sa -n title

 Enzyme Reaction Velocity\n%([bn$]1!col(2)[c]$) vs. %([bn$]1!col(3)[c]$);

// Set font

title.font=font(Times New Roman);

// Set label font size

title.fsize = 28;

// Set label font color

title.color = color(blue);

// Placing label

title.x = layer.x.from + (layer.x.to - layer.x.from) / 2;

title.y = layer.y.to + title.dy / 2;

// Placing legend

legend.y = layer.y.from + (layer.y.to - layer.y.from) / 2;

legend.x = layer.x.to - legend.dx / 2;

10.5.2.2.1 Customize special text objects

Origin has some special text objects, the name of which have already been pre-specified in system, are also

positioned on a graph layer, such as axis titles below:

Object Object Name

Bottom X axis title xb

Top X axis title xt

Left Y axis title yl

Right Y axis title yr

Back Z axis title zb

Font Z axis title zf

For these special objects, you can also run objectName.property= to get or set its property.

Graphing

243

xb.fsize = 20; //set the font size of bottom X axis title.

yl.fillcolor=2; //Add a box frame to left Y axis title and set the fill color

to red.

yl.transparency=50;//set the transparency to 50%.

You can set a proper integer value to fill the axis title frame with a different built-in color.

10.5.3 Deleting an Object

To delete objects, use the label command with -r, -ra, and -rc switches:

Switch Description

label -r objectName Delete the specified object

label -ra objectNamePrefix Delete all objects whose names start with objectNamePrefix

label -rc objectName Remove specified object, with the connected objects

https://www.originlab.com/doc/LabTalk/ref/List-of-Colors
https://www.originlab.com/doc/LabTalk/ref/Label-cmd

245

11 Importing

11.1 Importing

Importing

This chapter covers the following topics:

• Importing Data

• Importing Images

Origin provides a collection of X-Functions for importing data from various file formats such as ASCII, CSV,

Excel, National Instruments DIAdem, pCLAMP, and many others. The X-Function for each file format provides

options relevant to that format in addition to common settings such as assigning the name of the import file to the

book or sheet name.

All X-Functions pertaining to importing have names that start with the letters imp. The table below provides a

listing of these X-Functions. As with all X-Functions, help-file information is available at Script or Command line

by entering the name of the X-Function with the -h option. For instance: entering impasc -h in the Script window

will display the help file immediately below the command.

Name Brief Description

impASC Import ASCII file/files

impBin2d Import binary 2d array file

impCSV Import csv file

impDT Import Data Translation Version 1.0 files

impEP Import EarthProbe (EPA) file. Now only EPA file is supported for EarthProbe data.

impExcel Import Microsoft Excel 97-2007 files

https://www.originlab.com/doc/LabTalk/guide/Importing-Data
https://www.originlab.com/doc/LabTalk/guide/Importing-Images
https://www.originlab.com/doc/X-Function/ref/impASC
https://www.originlab.com/doc/X-Function/ref/impBin2d
https://www.originlab.com/doc/X-Function/ref/impCSV
https://www.originlab.com/doc/X-Function/ref/impDT
https://www.originlab.com/doc/X-Function/ref/impEP
https://www.originlab.com/doc/X-Function/ref/impExcel

LabTalk Scripting Guide

246

impFamos Import Famos Version 2 files

impFile Import file with pre-defined filter.

impHEKA Import HEKA (dat) files

impIgorPro Import WaveMetrics IgorPro (pxp, ibw) files

impImage Import a graphics file

impinfo Read information related to import files.

impJCAMP Import JCAMP-DX Version 6 files

impJNB Import SigmaPlot (JNB) file. It supports version lower than SigmaPlot 8.0.

impKG Import KaleidaGraph file

impMatlab Import Matlab files

impMDF Import ETAS INCA MDF (DAT, MDF) files. It supports INCA 5.4 (file version 3.0).

impMNTB Import Minitab file (MTW) or project (MPJ). It supports the version prior to Minitab 13.

impNetCDF Import netCDF file. It supports the file version lower than 3.1.

impNIDIAdem Import National Instruments DIAdem 10.0 dat files

impNITDM
Import National Instruments TDM and TDMS files(TDMS does not support data/time

format)

https://www.originlab.com/doc/X-Function/ref/impFamos
https://www.originlab.com/doc/X-Function/ref/impFile
https://www.originlab.com/doc/X-Function/ref/impHEKA
https://www.originlab.com/doc/X-Function/ref/impIgorPro
https://www.originlab.com/doc/X-Function/ref/impImage
https://www.originlab.com/doc/X-Function/ref/impinfo
https://www.originlab.com/doc/X-Function/ref/impJCAMP
https://www.originlab.com/doc/X-Function/ref/impJNB
https://www.originlab.com/doc/X-Function/ref/impKG
https://www.originlab.com/doc/X-Function/ref/impMatlab
https://www.originlab.com/doc/X-Function/ref/impMDF
https://www.originlab.com/doc/X-Function/ref/impMNTB
https://www.originlab.com/doc/X-Function/ref/impNetCDF
https://www.originlab.com/doc/X-Function/ref/impNIDIAdem
https://www.originlab.com/doc/X-Function/ref/impNITDM

Importing

247

impODQ Import *.ODQ files.

imppClamp
Import pCLAMP file. It supports pClamp 9 (ABF 1.8 file format) and pClamp 10 (ABF

2.0 file format).

impSIE Import nCode Somat SIE 0.92 file

impSPC Import Thermo File

impSPE Import Princeton Instruments (SPE) file. It supports the version prior to 2.5.

impWav Import waveform audio file

reimport Re-import current file

You can write your own import routines in the form of X-Functions as well. If the name of a user-created X-

Function begins with imp and it is placed in the \X-Functions\Import and Export subfolder of the EXE, UFF or

Group paths, then such functions will appear in the File|Import menu.

The following sections give examples of script usage of these functions for importing data, graphs, and images.

11.2 Importing Data

Importing-Data

The following examples demonstrate importing of data from external files. The examples import ASCII files, but

the scripts can be adjusted for filetype (e.g. MATLAB). Syntax and supporting commands will be the same. Since

these examples import Origin sample files, they can be typed or pasted directly into the Script or Command

window and run.

11.2.1 Import an ASCII Data File Into a Worksheet or Matrix

11.2.1.1 Data Connector Methods

This is a simple example of single file import using a Data Connector.

string path$ = system.path.program$ + "Samples\Import and Export\ASCII CSV

with Quotes.csv";

newbook;

wbook.dc.add("CSV");

https://www.originlab.com/doc/X-Function/ref/impODQ
https://www.originlab.com/doc/X-Function/ref/imppClamp
https://www.originlab.com/doc/X-Function/ref/impSIE
https://www.originlab.com/doc/X-Function/ref/impSPC
https://www.originlab.com/doc/X-Function/ref/impSPE
https://www.originlab.com/doc/X-Function/ref/impWav
https://www.originlab.com/doc/X-Function/ref/reimport
https://www.originlab.com/doc/Origin-Help/Data-Connector

LabTalk Scripting Guide

248

wks.dc.source$ = path$;

wks.dc.import();

See complete list of wks.dc objects and wbk.dc objects

11.2.1.2 X-Function Methods

This example imports an ASCII file (in this case having a *.txt extension) into the active worksheet or matrix.

Another X-Function, findfiles, is used to find a specific file in a directory (assigned to the string path$) that

contains many other files. The output of the findfiles X-Function is a string variable containing the desired

filename(s), and is assigned, by default, to a variable named fname$. Not coincidentally, the default input

argument for the impASC X-Function is a string variable called fname$.

string path$ = system.path.program$ + "Samples\Import and Export\";

findfiles ext:=matrix_data_with_xy.txt;

impASC;

11.2.2 Import ASCII Data with Options Specified

This example makes use of many advanced options of the impASC X-Function. It imports a file to a new book,

which will be renamed by the options of the impASC X-Function. Notice that there is only one semi-colon

(following all options assignments) indicating that all are part of the call to impASC.

string fn$=system.path.program$ + "Samples\Spectroscopy\HiddenPeaks.dat";

impasc fname:=fn$

options.ImpMode:=3 /* start with a new book */

options.Sparklines:=0 /* turn off sparklines */

options.Names.AutoNames:=0 /* turn off auto rename */

options.Names.FNameToSht:=1 /* rename sheet to file name */

options.Miscellaneous.LeadingZeros:=1; /* remove leading zeros */

11.2.3 Import Multiple Data Files

11.2.3.1 Data Connector Methods

This example demonstrates importing multiple CSV files to a new workbook, using a Data Connector. The scripts

creates a new workbook for each file.

string folder$ = system.path.program$ + "Samples\Batch Processing\";

string files$;

findfiles path:=folder$ ext:=".csv" fname:=files$;

int num = files.GetNumTokens(CRLF);

for (int ii = 1; ii <= num; ii++) {

 newbook;wbook.dc.add("CSV");

 wks.dc.source$ = files.gettoken(ii, CRLF)$;

 wks.dc.Import();

}

This example imports the same files into a single workbook.

string folder$ = system.path.program$ + "Samples\Batch Processing\";

string files$;

findfiles path:=folder$ ext:=".csv" fname:=files$;

int num = files.GetNumTokens(CRLF);

https://www.originlab.com/doc/
https://www.originlab.com/doc/LabTalk/ref/Wbk-DC-obj
https://www.originlab.com/doc/X-Function/ref/findFiles
https://www.originlab.com/doc/X-Function/ref/impASC
https://www.originlab.com/doc/X-Function/ref/impASC
https://www.originlab.com/doc/Origin-Help/Data-Connector

Importing

249

newbook;

page.nlayers = num;

wbook.dc.add("CSV");

for (int ii = 1; ii <= num; ii++) {

 page.active = ii;

 wks.dc.sel$="";//needs to be before source, helps connect the sheet

 wks.dc.source$ = files.gettoken(ii, CRLF)$;

}

wbook.dc.Import();

This example partially imports CSV with wks.dc.optn$ setting by tree

wbook.dc.add("CSV");

string str1$="%@O";

str1$ = str1.GetFilePath()$;

str1$ += "Samples\Statistics\automobile.dat";

wks.dc.source$=str1$;

Tree tr1=wks.dc.optn$;

tr1.settings.partial.SetAttribute("Use", 1);

tr1.settings.partial.col$="1:3";

tr1.ToString(wks.dc.optn$);//convert tree to string

wks.dc.import();

11.2.3.2 X-Function Methods

This example demonstrates importing multiple data files to a new workbook; starting a new worksheet for each

file.

string fns, path$=system.path.program$ + "Samples\Curve Fitting\";

findfiles fname:=fns$ ext:="step1*.dat"; // find matching files in 'path$'

int n = fns.GetNumTokens(CRLF); // Number of files found

string bkName$;

newbook s:=0 result:=bkName$;

impasc fname:=fns$ // impasc has many options

options.ImpMode:=4 // start with new sheet

options.Sparklines:=2 // add sparklines if < 50 cols

options.Cols.NumCols:=3 // only import first three columns

options.Names.AutoNames:=0 // turn off auto rename

options.Names.FNameToBk:=0 // do not rename the workbook

options.Names.FNameToSht:=1 // rename sheet to file name

options.Names.FNameToShtFrom:=4 // trim file name after 4th letter

options.Names.FNameToBkComm:=1 // add file name to workbook comment

options.Names.FNameToColComm:=1 // add file name to columns comments

options.Names.FPathToComm:=1 // include file path to comments

orng:=[bkName$]A1!A[1]:C[0] ;

11.2.4 Import an ASCII File to Worksheet and Convert to Matrix

This example shows two more helpful X-Functions working in conjunction with impASC; they are dlgFile, which

generates a dialog for choosing a specific file to import, and w2m which specifies the conversion of a worksheet

to a matrix. It should be noted that the w2m X-Function expects linearly increasing Y values in the first column

and linearly increasing X values in the first row: test this with matrix_data_with_xy.txt in the Samples\Import

and Export\ folder.

https://www.originlab.com/doc/X-Function/ref/impASC
https://www.originlab.com/doc/X-Function/ref/dlgFile
https://www.originlab.com/doc/X-Function/ref/w2m

LabTalk Scripting Guide

250

dlgfile g:=ascii; // Open file dialog

impAsc; // Import selected file

// Use the worksheet-to-matrix X-Function, 'w2m', to do the conversion

w2m xy:=0 ycol:=1 xlabel:=row1

11.2.5 Related: the Open Command

Another way to bring data into Origin is with the Open (Command).

Open has several options, one of which allows a file to be open for viewing in a notes window:

open -n fileName [winName]

This line of script opens the ASCII file fileName to a notes window. If the optional winName is not specified, a

new notes window will be created.

To demonstrate with an existing file, try the following:

%b = system.path.program$ + "Samples\Import and Export\ASCII simple.dat";

open -n "%b";

11.2.6 Import with Themes and Filters

11.2.6.1 Import with a Theme

When importing from the Origin GUI, you can save your import settings to a theme file. Such theme files have a

*.OIS extension and are saved in the \Themes\AnalysisAndReportTable\ subfolder of the Origin User Files

Folder (UFF). They can then be accessed using an X-Function with the -t option switch. The import is performed

according to the settings saved in the theme file specified.

string fn$=system.path.program$ + "Samples\Spectroscopy\HiddenPeaks.dat";

// Assume that a theme file named "My Theme.OIS" exists

impasc fname:=fn$ -t "My Theme";

11.2.6.2 Import with an Import Wizard Filter File

Custom importing of ASCII files and simple binary files can be performed using the Import Wizard GUI tool. This

tool allows extraction of variables from file name and header, and further customization of the import including

running a script segment at the end of the import, which can be used to perform post-processing of imported

data. All settings in the GUI can be saved as an Import Filter File to disk. Such files have extension of .OIF and

can be saved in multiple locations.

Once an import wizard filter file has been created, the impfile X-Function can be used to access the filter and

perform custom importing using the settings saved in the filter file.

string fname$, path$, filtername$;

// point to file path

path$ = system.path.program$ + "Samples\Import and Export\";

// find files that match specification

findfiles ext:="S*.dat";

// point to Import Wizard filter file

https://www.originlab.com/doc/LabTalk/ref/Open-cmd
https://www.originlab.com/doc/LabTalk/guide/XF-Execution-Options
https://www.originlab.com/doc/X-Function/ref/impFile

Importing

251

string str$ = "Samples\Import and Export\VarsFromFileNameAndHeader.oif";

filtername$ = system.path.program$ + str$;

// import all files using filter in data folder

impfile location:=data;

11.2.7 Import from a Database

Origin provides four functions for Database Queries. The basic functionality of Database importing is

encapsulated in two functions as shown in this example using the standard Northwind database provided by

Microsoft Office:

// The dbedit function allows you to create the query and connection

// strings and attach these details to a worksheet

dbedit exec:=0

sql:="Select Customers.CompanyName, Orders.OrderDate,

[Order Details].Quantity, Products.ProductName From

((Customers Inner Join Orders On Customers.CustomerID = Orders.CustomerID)

Inner Join [Order Details] On Orders.OrderID = [Order Details].OrderID)

Inner Join Products On Products.ProductID = [Order Details].ProductID"

connect:="Provider=Microsoft.Jet.OLEDB.4.0;User ID=;

Data Source=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;

Mode=Share Deny None;Extended Properties="";

Jet OLEDB:System database="";

Jet OLEDB:Registry Path="";

Jet OLEDB:Database Password=***;

Jet OLEDB:Engine Type=5;

Jet OLEDB:Database Locking Mode=1;

Jet OLEDB:Global Partial Bulk Ops=2;

Jet OLEDB:Global Bulk Transactions=1;

Jet OLEDB:New Database Password="";

Jet OLEDB:Create System Database=False;

Jet OLEDB:Encrypt Database=False;

Jet OLEDB:Don't Copy Locale on Compact=False;

Jet OLEDB:Compact Without Replica Repair=False;

Jet OLEDB:SFP=False;Password="

// The dbimport function is all that's needed to complete the import

dbimport;

Two additional functions allow you to retrieve the details of your connection and query strings and execute a

Preview/Partial import.

Name Brief Description

dbEdit Create, Edit, Load or Remove a query in a worksheet.

dbImport Execute the database query stored in a specific worksheet.

https://www.originlab.com/doc/X-Function/ref/dbEdit
https://www.originlab.com/doc/X-Function/ref/dbImport

LabTalk Scripting Guide

252

dbInfo
Read the sql string and the connection string contained in a database query in a

worksheet.

dbPreview
Execute a limited import (defaults to 50 rows) of a query. Useful in testing to verify that

your query is returning the information you want.

11.3 Importing Images

Importing-Images

The ImpImage X-Function supports importing image files into Origin from script. By default, the image is stored in

Origin as an image (i.e., RGB values). You have the option to convert the image to grayscale.

Multiple-file importing is supported. By default, multiple images will be appended to the target page by creating

new layers. If importing to a matrix, each matrix-layer will be renamed to the corresponding imported file's name.

11.3.1 Import Image to Matrix and Convert to Data

This example imports a single image file to a matrix and then converts the (RGB color) image to grayscale

values, storing them in a new matrix.

newbook mat:=1; // Create a new matrixbook

fpath$ = "Samples\Image Processing and Analysis\car.bmp";

string fname$ = system.path.program$ + fpath$;

// Imports the image on path 'fname$' to the active window

//(the new matrixbook)

impimage;

// Converts the image to grayscale values,and puts them in a new matrix

// 'type' specifies bit-depth: 0=short (2-byte/16-bit, default);

// 1=byte (1-byte/8-bit)

img2m type:=byte;

11.3.2 Import Single Image to Matrix

This example imports a series of *.TIF images into a new Matrixbook. As an alternative to the img2m X-Function

(shown above), the keyboard shortcuts Ctrl+Shift+d and Ctrl+Shift+i toggle between the matrix data and image

representations of the file.

newbook mat:=1;

fpath$ = "Samples\Image Processing and Analysis\";

string fns, path$ = system.path.program$ + fpath$;

// Find the files whose names begin with 'myocyte'

findfiles fname:=fns$ ext:="myocyte*.tif";

// Import each file into a new sheet (options.Mode = 4)

impimage options.Mode:=4 fname:=fns$;

https://www.originlab.com/doc/X-Function/ref/dbInfo
https://www.originlab.com/doc/X-Function/ref/dbPreview
https://www.originlab.com/doc/X-Function/ref/impImage
https://www.originlab.com/doc/X-Function/ref/img2m

Importing

253

11.3.3 Import Multiple Images to Matrixbook

This example imports a folder of JPG images to different Matrixbooks.

string pth1$ = "C:\Documents and Settings\All Users\"

string pth2$ = "Documents\My Pictures\Sample Pictures\";

string fns, path$ = pth1$ + pth2$;

// Find all *.JPG files (in 'path$', by default)

findfiles fname:=fns$ ext:="*.jpg";

// Assign the number of files found to integer variable 'n'

// 'CRLF' ==> files separated by a 'carriage-return line-feed'

int n = fns.GetNumTokens(CRLF);

string bkName$;

string fname$;

// Loop through all files, importing each to a new matrixbook

for(int ii = 1; ii<=n; ii++)

{

 fname$ = fns.GetToken(ii, CRLF)$;

 //create a new matrix page

 newbook s:=0 mat:=1 result:=bkName$;

 //import image to the first layer of the matrix page,

 //defaut file name is fname$

 impimage orng:=[bkName$]msheet1;

}

11.3.4 Import Image to Graph Layer

You also can import an Image to an existing GraphLayer. Here the image is only for display (the data will not be

visible, unless it is converted to a matrix, see next example).

string fpath$ = "Samples\Image Processing and Analysis\cell.jpg";

string fn$ = system.path.program$ + fpath$;

insertImg2g fname:=fn$ ipg:=graph1;

255

12 Exporting

12.1 Exporting

Exporting

This chapter covers the following topics:

• Exporting Worksheets

• Exporting Graphs

• Exporting Matrices

• Exporting Videos

Origin provides a collection of X-Functions for exporting data, graphs, and images. All X-Functions pertaining to

exporting have names that start with the letters exp. The table below provides a listing of these X-Functions. As

with all X-Functions, help-file information is available at Script or Command line by entering the name of the X-

Function with the -h option. For instance: entering expgraph -h in the Script window will display the help file

immediately below the command.

Name Brief Description

expASC Export worksheet data as ASCII file

expGraph Export graph(s) to graphics file(s)

expImage Export the active Image into a graphics file

expMatASC Export matrix data as ASCII file

expNITDM Export workbook data as National Instruments TDM and TDMS files

expWAV Export data as Microsoft PCM wave file

https://www.originlab.com/doc/LabTalk/guide/Exporting-Worksheets
https://www.originlab.com/doc/LabTalk/guide/Exporting-Graphs
https://www.originlab.com/doc/LabTalk/guide/Exporting-Matrices
https://www.originlab.com/doc/LabTalk/guide/Exporting-Videos
https://www.originlab.com/doc/X-Function/ref/expASC
https://www.originlab.com/doc/X-Function/ref/expGraph
https://www.originlab.com/doc/X-Function/ref/expImage
https://www.originlab.com/doc/X-Function/ref/expMatASC
https://www.originlab.com/doc/X-Function/ref/expNITDM
https://www.originlab.com/doc/X-Function/ref/expWAV

LabTalk Scripting Guide

256

expWks Export the active sheet as raster or vector image file

img2GIF Export the active Image into a gif file

12.2 Exporting Worksheets

Exporting-Worksheets

12.2.1 Export a Worksheet

Your worksheet data may be exported either as an image (i.e., PDF) or as a data file.

12.2.1.1 Export a Worksheet as an Image File

The expWks X-Function can be used to export the entire worksheet, the visible area of the worksheet, or

worksheet selection, to an image file such as JPEG, EPS, or PDF:

// Export the active worksheet to an EPS file named TEST.EPS,

// saved to the D:\ drive.

expWks type:=EPS export:=active filename:="TEST" path:="D:";

The expWks X-Function also provides options for exporting many worksheets at the same time using the export

option, which if unspecified simply exports the active worksheet.

In the following example, export:=book exports all worksheets in the current workbook to the desired folder path:

expWks type:=PDF export:=book path:="D:\TestImages" filename:=Sheet#;

Worksheets are saved in the order they appear in the workbook from left to right. Here, the naming has been set

to number the sheets in that order, as in 'Sheet1', 'Sheet2', etc. If more than 9 sheets exist, filename:=Sheet##

will yield names such as 'Sheet01'.

Other options for export are project, recursive, folder, and specified.

The expWks X-Function is particularly useful in exporting custom report worksheets that user may create by

placing graphs and other relevant analysis results in a single sheet for presentation, using formatting features

such as merging and coloring cells.

12.2.1.2 Export a Worksheet as a Multipage PDF File

The expPDFw X-Function allows exporting worksheets to multi-page PDF files. This X-Function is then useful to

export large worksheets, including custom report sheets, where the worksheet has more content than can fit in

one page for the current printer settings. This X-Function offers options such as printing all sheets in a book or all

sheets in the project, and options for including a cover page and adding page numbering.

12.2.1.3 Export a Worksheet as a Data File

https://www.originlab.com/doc/X-Function/ref/expWks
https://www.originlab.com/doc/X-Function/ref/img2GIF
https://www.originlab.com/doc/X-Function/ref/expWks
https://www.originlab.com/doc/X-Function/ref/expPDFw

Exporting

257

In this example, worksheet data is output to an ASCII file with tabs separating the columns using the expAsc X-

Function:

// Export the data in Book 2, Worksheet 3 using tab-separators to

// an ASCII file named TEST.DAT, saved to the D:\ drive.

expASC iw:=[Book2]Sheet3 type:=0 path:="D:\TEST.DAT" separator:=TAB;

Note, in this example, that type simply indicates the type of file extension, and may be set to any of the following

values (type:=dat is equivalent to type:=0):

0=dat:*.dat,

1=text:Text File(*.txt),

2=csv:*.csv,

3=all:All Files(*.*)

More examples can be found here.

12.3 Exporting Graphs

Exporting-Graphs

Here are three examples of exporting graphs using the X-Function expGraph called from LabTalk:

12.3.1 Export a Graph with Specific Width and Resolution (DPI)

Export a graph as an image using the expGraph X-Function. The image size options are stored in the nodes of

tree variable named tr1, while resolution options (for all raster type images) are stored in a tree named tr2.

One common application is to export a graph to a desired image format specifying both the width of the image

and the resolution. For example, consider a journal that requires, for a two-column article, that graphs be sent as

high-resolution (1200 DPI), *.tif files that are 3.2 inches wide:

// Export the active graph window to D:\TestImages\TEST.TIF.

// Width = 3.2 in, Resolution = 1200 DPI

expGraph type:=tif path:="D:\TestImages" filename:="TEST"

 tr1.unit:=0

 tr1.width:=3.2

 tr2.tif.dotsperinch:=1200;

Possible values for tr1.unit are:

0 = inch

1 = cm

https://www.originlab.com/doc/X-Function/ref/expASC
https://www.originlab.com/doc/X-Function/ref/expASC
https://www.originlab.com/doc/LabTalk/examples/general-export
https://www.originlab.com/doc/X-Function/ref/expGraph

LabTalk Scripting Guide

258

2 = pixel

3 = page ratio

Note: this is a good example of accessing data stored in a tree structure to specify a particular type of output.

The full documentation for tr1 can be found in the online and product (CHM) help.

12.3.2 Exporting All Graphs in the Project

Exporting all of the graphs from an Origin Project can be achieved by combining the doc -e command, which

loops over all specified objects in a project with the expGraph X-Function.

For example, to export all graphs in the current project as a bitmap (BMP) image, as above:

doc -e P

{

 // %H is a string register that holds the name of the active window.

 expGraph type:=bmp path:="d:\TestImages" filename:=%H

 tr1.unit:=2

 tr1.width:=640;

}

Several examples of doc -e can be found in Looping Over Objects.

12.3.3 Exporting Graph with Path and File Name

The string registers, %G and %X, hold the current project file name and path. Combine with the label command,

you can place these information on page while exporting a graph. For example:

// Path of the project

string proPath$ = system.path.program$ + "Samples\Graphing\Multi-Curve

Graphs.opj";

// Open the project

doc -o %(proPath$);

// Add file path and name to graph

win -a Graph1;

label -s -px 0 0 -n ForPrintOnly \v(%X%G.opj);

// Export graph to disk D

expGraph type:=png filename:=%H path:=D:\;

// Delete the file path and name

label -r ForPrintOnly;

12.4 Exporting Matrices

Exporting-Matrices

Matrices can store image data as well as non-image data in Origin. In fact, all images in Origin are stored as

matrices, whether or not they are rendered as a picture or displayed as pixel values. A matrix can be exported no

matter which type of content it holds.

https://www.originlab.com/doc/Origin-Help/ExpGraph-Dailog
https://www.originlab.com/doc/LabTalk/ref/Document_Options_Others
https://www.originlab.com/doc/LabTalk/guide/Looping-Over-objs
https://www.originlab.com/doc/LabTalk/guide/String-registers
https://www.originlab.com/doc/LabTalk/ref/Label-cmd

Exporting

259

Exporting matrices with script is achieved with two X-Functions: expMatAsc for a non-image matrix and

expImage for an image matrix.

12.4.1 Exporting a Non-Image Matrix

To export a matrix that holds non-image data to an ASCII file use the expMatAsc X-Function. Allowed export

extenstions are *.dat (type:=0), *.txt (type:=1), *.csv (type:=2), and all file types (type:=3).

// Export a matrix (in Matrix Book 1, Matrix Sheet 1) to a file of

// the *.csv type named TEST.CSV with xy-gridding turned on.

expMatASC im:=[MBook1]MSheet1 type:=2 path:="D:\TEST.CSV" xygrid:=1;

See the page Export Graphs/Data/Videos, for more data export examples.

12.4.2 Exporting an Image Matrix

Matrix windows in Origin can contain multiple sheets, and each sheet can contain multiple matrix objects. A

matrix object can contain an image as RGB values (default, reported as three numbers in a single matrix cell,

each matrix cell corresponds to a pixel), or as gray-scale data (a single gray-scale number in each matrix cell).

For example, a user could import an image into a matrix object (as RGB values) and later convert it to gray-scale

data (i.e., the gray-scale pixel values) using the Image menu. Whether the matrix object contains RGB or gray-

scale data, the contents of the matrix can be exported as an image file to disk, using the expImage X-Function.

For example, the following script command exports the first matrix object in Sheet 1 of matrixbook MBook 1:

// Export the image matrix as a *.tif image:

expImage im:=[MBook1]1!1 type:=tif fname:="c:\flower"

When exporting to a raster-type image format (includes JPEG, GIF, PNG, TIF), one may want to specify the bit-

depth as well as the resolution (in dots-per-inch, DPI). This is achieved with the expImage options tree, tr. The

X-Function call specifying these options might look like this:

expImage im:=[MBook1]MSheet1! type:=png fname:="D:\TEST.PNG"

tr.PNG.bitsperpixel:="24-bit Color"

tr.PNG.dotsperinch:=300;

All nodes of the tree tr, are described in the online or product (CHM) help.

12.5 Exporting Videos

Exporting-Videos

To export group of graphs as a video, you need to use the Video Writer (vw) object. In order to export a video

with actual frames, you must create a video writer object, write some windows to it as frames and then release

the video writer. You can only work with one video writer at a time, i.e. each time you create a video writer object

with the vw.Create() method, you must use vw.Release() to release the video writer before you can use the

vw.Create() method again.

https://www.originlab.com/doc/X-Function/ref/expMatASC
https://www.originlab.com/doc/LabTalk/examples/general-export
https://www.originlab.com/doc/X-Function/ref/expImage
https://www.originlab.com/doc/X-Function/ref/Details-of-TreeNodes-in-Image-Export-Function
https://www.originlab.com/doc/LabTalk/ref/Vw-obj

LabTalk Scripting Guide

260

We provide several example scripts showing how to create, write graphs to, or release a video writer object. You

can also view a full example in the LabTalk Examples category.

12.5.1 Create a Video Writer Object

To export a video, first create a video writer object with the vw.Create() method. At a minimum, you need to

specify the file name (including the complete file path) of the video. You can also specify the codec value for the

compression method, frames per second and video dimensions, at this stage.

For example, this script creates a video file named "test.avi" in an existing file path D:\Exported Videos\ with

other settings as default (i.e. no compression, 1 frame per second, 640 px as width and 480 px as height):

vw.Create("D:\Exported Videos\test.avi");

//The above script is the same as the script below

//vw.Create("D:\Exported Videos\test.avi", 0, 1, 640, 480);

You can also define the compression method with FourCC code. For example, the script below uses WMV1

compressed format to create the video:

//Define codec with four character code

int codec = vw.FourCC('W', 'M', 'V', '1');

//Create a 800*600 video file as test.avi under user files folder

vw.Create(%Y\My Video.avi, codec, 1, 800, 600)

To check if the video creation is successful, use vw.Create(). The vw.Create() method returns 0 if the video is

created, and returns a non-zero value if the creation fails. For example:

//If file path D:\AAA exist,the following should return 0

//If the file path does NOT exist, it will return error code

int err = vw.Create(D:\AAA\test.avi);

if(err==0)

 type "video creation is successful";

else

 type "video creation failure, the error code is $(err)";

12.5.2 Write Graph(s) to a Video Writer Object

Once a video writer object is created, you can start to write graphs into it with the vw.WriteGraph() method. In

addition to graph windows, you can write other windows including function plots, workbooks, matrixes, and layout

pages.

This example script writes the current active window to the video.

vw.WriteGraph();

You can specify the window name and also the number of frames to write. For example, the following script will

add Graph1 as 5 frames:

vw.WriteGraph(Graph1,5);

You can make use of a loop structure to, for example, add all graphs in a video, so that you do not need to write

multiple lines of script. The example below writes all graph windows in the project to the video. Each graph will

be inserted as 2 frames.

https://www.originlab.com/doc/LabTalk/examples/general-export
https://www.originlab.com/doc/LabTalk/examples
https://www.originlab.com/doc/LabTalk/ref/FourCC-Table

Exporting

261

doc -e P

{

 vw.WriteGraph(,2);

}

You can return an error code from this method as in the last example of the create video writer session. If the

return value is 0, it means that writing the graph (or other window) was successful.

12.5.3 Release a Video Writer Object

For each video writer object, it is essential to release the video writer to generate the video. The method used in

this case is vw.Release().

The following script shows a complete example of generating a video file "example.avi" in the user files folder

with a newly created empty graph window.

int err = vw.Create(%Y\example.avi);

//Write existing graphs into the video if the video can be created.

if(0 == err)

{

 //Create an empty graph window with default template

 win -t plot;

 vw.WriteGraph();

}

//Release the video writer

vw.Release();

The vw.Release() method also has a return value. If it is 0 then the video generation is successful; if it is 1, it

indicates that the video generation failed.

263

13 The Origin Project

13.1 The Origin Project

The-Origin-Project

The Origin Project contains all of your data, operations, graphs, and reports. This chapter discusses

techniques for managing the elements of your project using script, and is presented in the following

sections:

• Managing the Project

• Accessing Metadata

• Looping Over Objects

• Protecting Project Data

13.2 Managing the Project

Managing-the-Project

13.2.1 The DOCUMENT Command

Document is a native LabTalk command that lets you perform various operations related to the Origin Project.

The syntax for the document command is

document -option value;

Notes:

value is not applicable for some options and is left out of the command

For additional capabilities please see the Doc (Object).

Internally, Origin updates a property that indicates when a project has been modified. Attempting to Open a

project when the current project has been modified normally triggers a prompt to Save the current project. The

document command has options to control this property.

13.2.1.1 Start a New Project

// WARNING! This will turn off the Save project prompt

document -s;

// ''doc'' is short for ''document'' and ''n'' is short for ''new''

doc -n;

13.2.1.2 Open/Save a project

https://www.originlab.com/doc/LabTalk/guide/Managing-the-Project
https://www.originlab.com/doc/LabTalk/guide/Accessing-Metadata
https://www.originlab.com/doc/LabTalk/guide/Looping-Over-objs
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/ref/Document-cmd

LabTalk Scripting Guide

264

Use the doc -o command to open a project and the save command to save it.

// Open an Origin Project file

string fname$ = SYSTEM.PATH.PROGRAM$ + "Origin.opj";

doc -o %(fname$); // Abbreviation of ''document -open''

// Make some changes

%(Data1,1) = data(0,100);

%(Data1,2) = 100 * uniform(101);

// Save the project with a new name in new location

fname$ = SYSTEM.PATH.APPDATA$ + "My Project.opj";

save %(fname$);

13.2.1.3 Append projects

Continuing with the previous script, we can Append other project file(s). Origin supports only one project file at a

time so the existing project plus the appended project become the new project.

// Append an Origin Project file to the current file

fname$ = SYSTEM.PATH.PROGRAM$ + "Origin.opj";

doc -a %(fname$); // Abbreviation of ''document -append''

// Save the current project - which is still ''My Project.opj''

save;

// Save the current project with a new name to a new location

save C:\Data Files\working.opj;

13.2.1.4 Save/Load Child Windows

In Origin, a child window - such as a graph, workbook, matrix or Excel book - can be saved as a single file.

Append can be used to add the file to another project. The appropriate extension is added automatically for

Workbook, Matrix and Graph whereas you must specify .XLS for Excel windows.

// The save command acts on the active window

save -i C:\Data\MyBook;

Append can be used to load Child Window Types :

// Workbook(*.OGW), Matrix(*.OGM), Graph(*.OGG), Excel(*.XLS)

dlgfile group:=*.ogg;

// fname is the string variable set by the dlgfile X-Function

doc -a %(fname$);

For Excel, you can specify that an Excel file should be imported rather than opened as Excel

doc -ai "C:\Data\Excel\Current Data.xls";

Notes windows are a special case with special option switch:

// Save notes window named Notes1

save -n Notes1 C:\Data\Notes\Today.TXT;

// Read text file into notes window named MyNotes

open -n C:\Data\Notes\Today.txt MyNotes;

13.2.1.5 Saving External Excel Book

This is introduced in Origin 8.1, to allow an externally linked Excel book to be saved using its current file name:

save -i;

https://www.originlab.com/doc/LabTalk/ref/Document_Options_for_Project
https://www.originlab.com/doc/LabTalk/ref/Save-cmd

The Origin Project

265

13.2.1.6 Refresh Windows

You can refresh windows with the following command:

doc -u;

13.2.2 Project Explorer X-Functions

The following X-Functions provide DOS-like commands to create, delete and navigate through the subfolders of

the project:

Name Brief Description

pe_dir Show the contents of the active folder

pe_cd Change to another folder

pe_move Move a Folder or Window

pe_path Report the current path

pe_rename Rename a Folder or Window

pe_mkdir Create a Folder

pe_rmdir Delete a Folder

In this example :

doc -s; // Clear Origin's 'dirty' flag

doc -n; // Start a new project

pe_cd /; // Go to the top level

pe_mkdir "Test Subjects"; // Create a folder

pe_cd "Test Subjects"; // Navigate to that folder

pe_mkdir "Trials"; // Create a sub-folder

pe_mkdir "Results"; // and another

pe_cd /; // Return to the top level

pe_mkdir "Control Subjects"; // Create another folder

pe_cd "Control Subjects"; // Navigate to that folder

pe_mkdir "Trials"; // Create a sub-folder

pe_mkdir "Results"; // and another

pe_cd /; // Return to the top level

pe_mkdir "Comparison"; // Create a folder

https://www.originlab.com/doc/X-Function/ref/pe_dir
https://www.originlab.com/doc/X-Function/ref/pe_cd
https://www.originlab.com/doc/X-Function/ref/pe_move
https://www.originlab.com/doc/X-Function/ref/pe_path
https://www.originlab.com/doc/X-Function/ref/pe_rename
https://www.originlab.com/doc/X-Function/ref/pe_mkdir
https://www.originlab.com/doc/X-Function/ref/pe_rmdir

LabTalk Scripting Guide

266

we create a folder structure that looks like this in Project explorer :

Note that if you have Open in Subfolder enabled in Preference: Options : [Open/Close] then you will have an

additional folder named Folder1.

13.3 Accessing Metadata

Accessing-Metadata

Metadata is information which refers to other data. Examples include the time at which data was originally

collected, the operator of the instrument collecting the data and the temperature of a sample being investigated.

Metadata can be stored in Projects, Pages, Layers and Columns.

13.3.1 Column Label Rows

Metadata is most visible in a worksheet where column headers may contain information such as Long Name (L),

Units (U), Comments(C), Sampling Interval and various Parameter rows, including User-Defined parameters.

The row indices for column label rows are assigned to characters, which are given in the Column Label Row

reference table. Examples of use follow.

13.3.1.1 Read/Write Column Label Rows

At times you may want to capture or set the Column Label Rows or Column Header string from script. Access

the label row by using the corresponding label row characters as a row index.

Note: Numeric cell access does not supported to use label row characters.

Here are a few examples of reading and writing column header strings:

Book1_A[L]$ = Time; // Set the Long Name of column A to '''Time'''

https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters
https://www.originlab.com/doc/LabTalk/ref/Column-Label-Row-Characters

The Origin Project

267

Book1_A[U]$ = sec; // Set the Units of column A to '''sec'''

string strC$ = col(2)[C]$; // Read the Comments of column2 into strC$

// Get value from first system parameter row

double syspar1 = %(col(2)[p1]$);

Col(1)[L]$="Temperature"; // set Col(1) long name to "Temperature"

range bb = 2; // declare a range variable for Col(2)

// Set the long name of Col(2) to that of Col(1) with the string " Data"

// appended

bb[L]$=Col(1)[L]$+" Data";

Note: For Origin 8.0, LabTalk variables took precedence over Column Label Row characters, for example:

int L = 4; // For Origin 8.0 and earlier ...

Col(B)[L]$= // Returns the value in row 4 of Col(B), as a string

But for Origin 8.1, this has been changed so that the column label rows (L, U, C, etc.) will take precedence:

int L = 4; // For Origin 8.1 ...

Col(B)[L]$= // Returns the Long Name of Col(B), as a string

13.3.1.2 Create and Name User Parameter Rows

The following example shows how to create and access user parameter rows

// Show the first user parameter row

wks.userParam1 = 1;

// Assign the 1st user parameter row a custom name

wks.userParam1$ = "Temperature";

// Write to a specific user parameter row of a column

col(2)[Temperature]$ = "96.8";

// Get a user-defined parameter row value

double temp = %(col(2)[Temperature]$);

13.3.1.3 Show/Hide Column Labels

You can set which column header rows are displayed and in what order by wks.labels object method. For the

active worksheet, this script specifies the following column header rows (in the order given): Long Name, Unit,

the first System-Parameter, the First User-Parameter, and Comments:

range ww = !;

ww.labels(LUP1D1C);

13.3.2 Even Sampling Interval

Origin users can set the sampling interval (X) for a data series (Y) to something other than the corresponding row

numbers of the data points (default).

13.3.2.1 Accessing the Sampling Interval Column Label Row

When this is done, a special header row is created to remind the user of the custom interval (and initial value)

applied. To access the text in this header row, simply use the E row-index character. This header is effectively

read-only and cannot be set to an arbitrary string, but the properties from which this string is composed may be

changed with either column properties (see the wks.col object) or the colint X-Function.

// Read the Sampling Interval header text of Column 1 to a string variable

https://www.originlab.com/doc/LabTalk/ref/Wks-obj
https://www.originlab.com/doc/LabTalk/ref/Wks-Col-obj
https://www.originlab.com/doc/X-Function/ref/colint

LabTalk Scripting Guide

268

string sampInt$ = Col(1)[E]$;

// If an initial value of 2 and increment of 0.5 was set for Col(1),

// the output will be:

sampInt$=; // "x0 = 2"

 // "dx = 0.5"

To see a Sampling Interval header, you can try the following steps:

Create a new worksheet and delete the X-column

Right-click at the top of the remaining column (i.e., B(Y)), such that then entire column is

selected, and select Set Sampling Interval from the drop-down menu.

Set the initial and step values to something other than 1.

Click OK, and you will see a new header row created which lists the values you specified.

The next example demonstrates how to do this from script, using X-functions.

Also, when you import certain types of data, e.g. *.wav, the sampling interval will show as a

header row.

13.3.2.2 Sampling Interval by X-Function

Sampling Interval is special in that its display is formatted for the user's information. Programmatically, it is

accessed as follows

// Use full formal notation of an X-Function

colint rng:=col(1) x0:=68 inc:=.25 units:=Degrees lname:="Temperature";

// which in shorthand notation is

colint 1 68 .25 Degrees "Temperature";

The initial value and increment can be read back using worksheet column properties:

double XInitial = wks.col1.xinit;

double XIncrement = wks.col1.xinc;

string XUnits$ = wks.col1.xunits$;

string XName$ = wks.col1.xname$;

Note: While these properties will show up in a listing of column properties (Enter wks.col1.= in the Script window

to display the property names for column 1), unless a sampling interval is established:

The strings wks.col1.xunits$ and wks.col1.xname$ will have no value.

The numeric values wks.col1.xinit and wks.col1.xinc will each have a value of 1, corresponding to the initial

value and increment of the row numbers.

13.3.3 Trees

The Origin Project

269

Trees are a data type supported by LabTalk, and we also consider trees a form of metadata since they give

structure to existing data. They were briefly introduced in the section dealing with Data Types and Variables, but

appear again because of their importance to X-functions.

Many X-functions input and output data in tree form. And since X-functions are one of the primary tools

accessible from LabTalk script, it is important to recognize and use tree variables effectively.

13.3.3.1 Access Import File Tree Nodes

After importing data into a worksheet, Origin stores metadata in a special tree-like structure (page.info) at the

page level. Basic information about the file can be retrieved directly from this structure:

string strName, strPath;

double dDate;

// Get the file name, path and date from the structure

strName$ = page.info.system.import.filename$;

strPath$ = page.info.system.import.filepath$;

dDate = page.info.system.import.filedate;

// Both % and $ substitution methods are used

ty File %(strPath$)%(strName$), dated $(dDate,D10);

// Starting with Origin 2019b, there is easier output of formatted file date.

strDate$ = page.info.SYSTEM.IMPORT.FILEDATE$;

//Generates a date-time string using the D9 date format.

This tree structure includes a tree with additional information about the import. This tree can be extracted as a

tree variable using an X-Function:

Tree MyFiles;

impinfo ipg:=[Book2] tr:=MyFiles;

MyFiles.=; // Dump the contents of the tree to the script Window

Note: The contents of the impinfo tree will depend on the function used to import.

If you import multiple files into one workbook (using either New Sheets, New Columns or New Rows) then you

need to load a particular tree for each file as the Organizer only displays the system metadata from the last

import:

Tree trFile;

int iNumFiles;

// Use the function first to find the number of files

impinfo trInfo:=trFile fcount:=iNumFiles;

// Now loop through all files - these are indexed from 0

for(idx = 0 ; idx < iNumFiles ; idx++)

{

 // Get the tree for the next file

 impinfo findex:=idx trInfo:=trFile;

 string strFileName, strLocation;

 //

 strFileName$ = trFile.Info.FileName$;

 strLocation$ = trFile.Info.DataRange$;

 ty File %(strFileName$) was imported into %(strLocation$);

}

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/LabTalk/ref/Page-obj

LabTalk Scripting Guide

270

13.3.3.2 Access Report Page Tree

Analysis Report pages are specially formatted Worksheets based on a tree structure. You can get this structure

into a tree variable using the getresults X-Function and extract results.

// Import an Origin Sample file

string fpath$ = "Samples\Curve Fitting\Gaussian.dat";

string fname$ = SYSTEM.PATH.PROGRAM$ + fpath$;

impasc;

// Run a Gauss fit of the data and create a Report sheet

nlbegin (1,2) gauss;

nlfit;

nlend 1 1;

// An automatically-created string variable, __REPORT$,

// holds the name of the last Report sheet created:

string strLastReport$ = __REPORT$;

// This is the X-Function which gets the Report into a tree

getresults tr:=MyResults iw:=%(strLastReport$);

// So now we can access those results

ty Variable\tValue\tError;

separator 3;

ty y0\t$(MyResults.Parameters.y0.Value)\t$(MyResults.Parameters.y0.Error);

ty xc\t$(MyResults.Parameters.xc.Value)\t$(MyResults.Parameters.xc.Error);

ty w\t$(MyResults.Parameters.w.Value)\t$(MyResults.Parameters.w.Error);

ty A\t$(MyResults.Parameters.A.Value)\t$(MyResults.Parameters.A.Error);

13.3.3.3 User Tree in Page Storage

Information can be stored in a workbook, matrixbook or graph page using a tree structure (page.tree). The

following example shows how to create a section and add subsections and values to the active page storage

area.

// Add values to a treenode;

page.tree.experiment.sample.RunNumber = 45;

page.tree.experiment.sample.Temperature = 273.8;

// Add values to another treenode;

page.tree.experiment.detector.Type$ = "InGaAs";

page.tree.experiment.detector.Cooling$ = "Liquid Nitrogen";

page.tree.=

/*

Output:

 EXPERIMENT

 +---SAMPLE

 | +---RUNNUMBER = 45

 | \---TEMPERATURE = 273.8

 \---DETECTOR

 +---TYPE = InGaAs

 \---COOLING = Liquid Nitrogen

*/

Once the information has been stored, it can be retrieved by simply dumping the storage contents:

// Dump entire contents of page storage

page.tree.=;

// or programmaticaly accessed

temperature = page.tree.experiment.sample.temperature;

https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars
https://www.originlab.com/doc/X-Function/ref/getresults
https://www.originlab.com/doc/LabTalk/ref/Page-obj

The Origin Project

271

string type$ = page.tree.experiment.detector.Type$;

ty Using %(type$) at $(temperature)K;

You can view such trees in the page Organizer for Workbooks and Matrixbooks.

13.3.3.4 User Tree in a Worksheet

Trees stored at the Page level in a Workbook can be accessed no matter what Sheet is active. You can also

store trees at the sheet level:

// Here we add two trees to the active sheet

wks.tree.add(Input);

// Dynamically create a branch and value

wks.tree.input.Min = 0;

// Add another value

wks.tree.input.max = 1;

// Add second tree

wks.tree.add(Output);

// and two more values

wks.tree.output.min = -100;

wks.tree.output.max = 100;

// Now dump the trees

wks.tree.=;

// or access it

ty Input $(wks.tree.input.min) to $(wks.tree.input.max);

ty Output $(wks.tree.output.min) to $(wks.tree.output.max);

// Access a sheet-level tree using a range

range rs = [Book7]Sheet2!;

rs!wks.tree.=;

You can view such trees in the page Organizer for Workbooks and Matrixbooks.

13.3.3.5 User Tree in a Worksheet Column

Individual worksheet columns can also contain metadata stored in tree format. Assigning and retrieving tree

nodes is very similar to the page-level tree.

// Create a COLUMN tree

wks.col2.tree.add(Batch);

// Add a branch

wks.col2.tree.batch.addsection(Mix);

// and two values in the branch

wks.col2.tree.batch.mix.ratio$ = "20:15:2";

wks.col2.tree.batch.mix.BatchNo= 113210;

// Add branch dynamically and add values

wks.col2.tree.batch.Line.No = 7;

wks.col2.tree.batch.Line.Date$ = 3/15/2010;

// Dump the tree to the Script Window

wks.col2.tree.=;

// Or access the tree

batch = wks.col2.tree.batch.mix.batchno;

string strDate$ = wks.col2.tree.batch.Line.Date$;

ty Batch $(batch) made on %(strDate$) [$(date(%(strDate$)))];

LabTalk Scripting Guide

272

You can view these trees in the Column Properties dialog on the User Tree tab.

13.3.3.6 ROI

If a Region Of Interest (ROI) box is created from SVG, ROI created from brain atlas SVG for example, the

metadata can be saved and accessed by binary storage tree roi.info.tree.

Tree Node Description

roi.info.tree.longname$

Assign and retrieve ROI Long Name.

For ROI box craeated from a SVG image, the acronym name will be set as

ROI name and the full name is stroed into Long Name, which can also be

retrieved by this byte.

roi.info.tree.svg$
Access SVG name. Also accessible by user tree, e.g.

layer.info.tree.BrainAtlas.SVG$ in Book Organizer.

roi.info.tree.slice$
Access slice name for the ROI. Also accessible by user tree

layer.info.tree.slice$ in Book Organizer.

13.4 Looping Over Objects

Looping-Over-objs

There may be instances where it is desirable to perform a certain task or set of tasks on every object of a

particular type that exists in the Origin project. For example, you might want to rescale all of your project graph

layers or add a new column to every worksheet in the project. The LabTalk document command (or doc)

facilitates this type of operation. Several examples are shown here to illustrate the doc command.

13.4.1 Looping over Objects in a Project

The document command with the -e or -ef switch (or doc -e command), is the primary means for looping over

various collections of objects in an Origin Project. This command allows user to execute multiple lines of LabTalk

script on each instance of the Origin Object found in the collection.

13.4.1.1 Looping over Workbooks and Worksheets

You can loop through all worksheets in a project with the doc -e LB command. The script below loops through all

worksheets, skipping the matrix layers:

//loop over all worksheets in project to print their names

https://www.originlab.com/doc/LabTalk/ref/Document-cmd
https://www.originlab.com/doc/LabTalk/ref/Document-cmd

The Origin Project

273

//and the number of columns on each sheet

doc -e LB {

 if(exist(%H,2)==0) //not a workbook, must be a matrix

 continue;

 int nn = wks.nCols;

 string str=wks.Name$;

 type "[%H]%(str$) has $(nn) columns";

}

The following example shows how to loop and operate on data columns that reside in different workbooks of a

project.

Open the sample project file available since Origin 8.1 SR2:

\\Samples\LabTalk Script Examples\Loop_wks.opj

In the project there are two folders for two different samples and a folder named Bgsignal for the background

signals alone. Each sample folder contains two folders named Freq1 and Freq2, which correspond to data at a

set frequency for the specific sample.

The workbook in each Freq folder contains three columns including DataX, DataY and the frequency, which is a

constant. The workbook's name in the Bgsignal folder is Bgsig. In the Bgsig workbook, there are three columns

including DataX and two Y columns whose long names correspond to set frequencies in the workbook in each

Freq folder.

The aim is to add a column in each workbook and subtract the background signal for a particular frequency from

the sample data for the same frequency. The following Labtalk script performs this operation.

doc -e LB

{ //Loop over each worksheet.

 if(%H != "Bgsig") //Skip the background signal workbook.

 {

 Freq=col(3)[1]; //Get the frequency.

 wks.ncols=wks.ncols+1; //Add a column in the sample sheet.

 //bg signal column for Freq using long name.

 range aa=[Bgsig]1!col("$(Freq)");

 wcol(wks.ncols)=col(2)-aa; //Subtract the bg signal.

 wcol(wks.ncols)[L]$="Remove bg signal"; //Set the long name.

 }

}

For increased control, you may also loop through the books and then loop through the sheets in your code, albeit

a bit more slowly than the code above.

The following example shows how to loop over all workbooks in the current/active Project Explorer Folder, and

then loop over each sheet inside each book that is found:

int nbooks = 0;

// Get the name of this folder

string strPath;

pe_path path:=strPath;

// Loop over all Workbooks ...

// Restricted to the current Project Explorer Folder View

LabTalk Scripting Guide

274

doc -ef W {

 int nsheets = 0;

 // Loop over all worksheets in each workbook

 doc -e LW {

 type Sheet name: %(layer.name$);

 nsheets++;

 }

 type Found $(nsheets) sheet(s) in %H;

 type %(CRLF);

 nbooks++;

}

type Found $(nbooks) book(s) in folder %(strPath$) of project %G;

Additionally, we can replace the internal loop using Workbook properties:

int nbooks = 0;

// Get the name of this folder

string strPath;

pe_path path:=strPath;

// Loop over all Workbooks ...

// Restricted to the current Project Explorer Folder View

doc -ef W {

 // Loop over all worksheets in each workbook

 loop(ii,1,page.nlayers) {

 range rW = [Book1]$(ii)!;

 type Sheet name: %(rw.name$);

 }

 type Found $(page.nlayers) sheet(s) in %H;

 type %(CRLF);

 nbooks++;

}

// Final report - %G contains the project name

type Found $(nbooks) book(s) in folder %(strPath$) of project %G;

13.4.1.2 Looping Over Graph Windows

Usually after importing data files, the workbook long name is the data file name. If there is data imported and

plotted, the following script will loop over all graph windows, and will rename graph window's long name to the

book's long name, which is the data file name.

doc -e P

{

 page.label$=%(1, @WL); //Or use page.longname$=%(1, @WL) in older

versions

}

The following script prints all the graph windows to the default printer driver.

doc -e P print; //Abbreviation of ''document -each Plot Print''

The following script will loop through all the layers in all graph windows except for the embedded graphs, and

dump the graph's window name and layer's name into the Script Window. If there's no graph long name, the

graph's short name will be dumped.

doc -e LP

{

 //Skip over any embedded graphs or Layout windows

The Origin Project

275

 if(page.IsEmbedded==0&&exist(%H)!=11)

 {

 //Assign the graph's long name to the string variable name

 string name$ = %(page.label$);

 //if there's no graph long name, assign the graph's window short name

to the string variable name

 if(name.Getlength()==0) name$ = %H;

 type [%(name$)]%(layer.name$);

 }

}

13.4.1.3 Looping Over Workbook Windows

The document -e command can be nested as in this example that loops over all Y datasets within all

Worksheets:

doc -e W

{

 int iCount = 0;

 doc -e DY

 {

 iCount++;

 }

 if(iCount < 2)

 { type Worksheet %H has $(wks.ncols) columns,;

 type $(iCount) of which are Y columns; }

 else

 { type Worksheet %H has $(wks.ncols) columns,;

 type $(iCount) of which are Y columns; }

}

13.4.1.4 Looping over Columns and Rows

This example shows how to loop over all columns and delete every nth column

int ndel = 3; // change this number as needed;

int ncols = wks.ncols;

int nlast = ncols - mod(ncols, ndel);

// Need to delete from the right to the left

for(int ii = nlast; ii > 0; ii -= ndel)

{

 delete wcol($(ii));

}

This example shows how to delete every nth rows in a worksheet.

int ndel = 3; // change this number as needed

range rr = col(1); // Get a range for column 1

nrows = rr.GetSize(); // Get the number of rows

int nlast = nrows - mod(nrows, ndel);

// Need to delete from the bottom to the top

for(int ii = nlast; ii > 0; ii -= ndel)

{

 range rr = wcol(1)[$(ii):$(ii)];

 mark -d rr;

}

https://www.originlab.com/doc/LabTalk/ref/Document_Options_Others

LabTalk Scripting Guide

276

This script calculates the logarithm of four columns on Sheet1, placing the result in the corresponding column of

Sheet2:

for(ii=1; ii<=4; ii++)

{

 range ss = [book1]sheet1!col($(ii));

 range dd = [book1]sheet2!col($(ii));

 dd = log(ss);

}

13.4.1.5 Looping Over Graphic Objects

You can loop over all Graphic Objects in the active layer. By wrapping this with two other options we can cover

an entire project.

// For each Plot

doc -e P

{

 // For each Layer in each Plot

 doc -e LW

 {

 // For each Graphic Object in each Layer in each Plot

 doc -e G

 { // Set Legend background to Shadow

 if("%B"=="Legend") %B.background = 2;

 // Set timestamp color to Blue

 if("%B"=="timestamp") %B.color = color(blue);

 // Delete all rectangle objects

 if("%B"=="rect*") label -r %B;

 }

 }

}

13.4.2 Perform Peak Analysis on All Layers in Graph

This example shows how to loop over all layers in a graph and perform peak analysis on datasets in each layer

using a pre-saved Peak Analyzer theme file. It assumes the active window is a multi-layer graph, and each layer

has one data curve. It further assumes a pre-saved Peak Analyzer theme exists.

// Block reminder messages before entering loop.

// This is to avoid either reminder message from popping up

// about Origin switching to the report sheet

type -mb 0;

// Loop over all layers in graph window

doc -e LW

{

 // Perform peak analysis with preset theme

 sec;

 pa theme:="My Peak Fit";

 watch;

 /* sec and watch are optional,

 they print out time taken for fitting data in each layer */

}

// Un-block reminder message

The Origin Project

277

type -me;

13.5 Protecting Project Data

Protecting_Project_Data

LabTalk commands to enable various protections on worksheets and workbooks were introduced in Origin 9.1.

This included a project-level Admin mode to control who could modify object-level protections. You can control

protection attributes of Origin objects (e.g. a workbook) without involving Admin mode, but any such protections

are not secured. Anyone can run LabTalk commands to remove these protections.

To secure protection, you must setup an Admin password for the Origin project and then Origin object

protections cannot be altered until the correct password is entered. When security is not an issue (e.g. you just

want to prevent accidental modification or deletion of a certain book or sheet) you can add object-level

protections without an Admin password. For more information on setting up an Admin password, see Admin

Mode.

13.5.1 Project-level Protections

There are two types of project-level password protections:

You can add a password to the Origin project and prevent unauthorized persons from opening the OPJ. This

method is accessible both from the GUI and from LabTalk script.

You can add an Admin password to the project and prevent unauthorized editing of the OPJ. This method does

not restrict access to the OPJ; nor does it prevent a user from editing and saving the OPJ to a new file name.

This method is LabTalk script-accessible only.

13.5.1.1 Password Protection Against Opening the OPJ

When this type of password protection is enabled, you must enter a password to open the Origin project (OPJ).

This applies to opening by appending, opening by script, etc. To password protect a project from being opened

without permission:

With the project file open, open the Script window or Command window and type

doc -pwd

This opens the Password dialog where you can set or change the project password.

For GUI access to this feature, click Tools: Protection: Protect Project and enter a password.

13.5.1.2 Password Protection against Modifying the OPJ: Admin Mode

The concept of an Admin mode has been added to the Origin Project. Once a project is protected by an Admin

password, the project cannot be modified, nor can workbook and worksheet protection features be changed

without being logged into the OPJ as Admin.

https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/Origin-Help/OPJ-Protect

LabTalk Scripting Guide

278

To establish Admin protections for the OPJ, open the Script window and type:

doc -pwa [password] //adds Admin password ''password'' to the OPJ

As indicated by the square brackets, choosing a password is optional. If you do not choose a password, you will

not be required to supply one when logging into Admin mode.

Once you have created a password, or accepted the default ("origin"), log into Admin mode by entering the

following at the command line:

doc -pw [password] // log into Admin Mode. If password was specifed, give

password

Additional commands:

doc -pwx // logout of Admin Mode. No access to protections

doc -pwr // remove password. Must be logged in to execute

doc -pwta // list all books & sheets with protections enabled

For complete documentation on the document command see the document command.

13.5.1.3 App Title Bar Indication of Admin Mode

The Origin title bar indicates the Admin state of the Origin project:

No Admin mode for OPJ (normal mode).

Admin mode enabled for OPJ but user is not logged in as Admin.

Admin mode enabled for OPJ and user is logged in as Admin.

13.5.1.4 Admin Mode and Saving the OPJ

Once a project has Admin mode enabled, it cannot be overwritten from Origin without logging in. When an

Admin-enabled OPJ is open, you may modify the OPJ in an unprotected area (see Workbook- and Worksheet-

level Protections) without logging in and you will see an asterisk(*) appended to the file name in the Origin title

bar.

Unmodified file

https://www.originlab.com/doc/LabTalk/ref/Document-cmd
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data

The Origin Project

279

Modified file

The asterisk indicates that the OPJ has been modified, but you will not be able to save the OPJ unless you log in

before saving. You can exit the OPJ without saving and without logging in.

13.5.2 Worksheet- and Workbook-level Protections

The following protections can be applied without establishing an Admin mode. However, note that without Admin

mode, there is nothing to prevent others with file access from removing these protections.

Protections can be applied or removed at the sheet level using the following command syntax:

layer -lw hex(hex value)

Protections can be applied or removed at the book level using the following command syntax:

page -lw hex(hex value)

There is a general inheritance rule on protection flags: Once you set protection on a book, then all sheets inside

the book will inherent the flags from the book. The exception to this rule is the Delete flag. You must separately

control book and sheet deletion flags (i.e. You may not want to allow book deletion, but still allow deletion of

individual sheets).

13.5.2.1 Layer and Page Protection Flags

For layer or page protections, hex value takes on the following:

Hex

Value
Description

-- Turn on all protection bits.

0 Remove all protections from the active worksheet/workbook.

2 Data: Include all the cells in a worksheet, data cells or label cells.

80
Structure: Keep the columns in the sheet unchanged. Prevent insert/delete columns or

moving columns, but allow rows to be changed.

100 Rename: Prevent changing sheet name (not supported for workbook).

https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data

LabTalk Scripting Guide

280

400 Delete: Prevent object from being deleted.

Note: Before applying protections, please read the note on Exclusion Zones.

13.5.2.2 Layer and Page Protection Examples

The following examples demonstrate that multiple protection flags can be combined (hex values are additive) to

give greater control over what is protected.

13.5.2.2.1 Examples: Setting worksheet write access flags

lay -lw hex(82); //set active sheet to protect data and structure

lay -lw; //protect everything

lay -lw 2; //protect only data

lay -lw hex(180); //no insert/del cols/rows, no sheet rename

lay -lw 0; //remove all protections on the current sheet

... where hex value is derived from values in the above table.

13.5.2.2.2 Examples: Setting workbook write access flags

page -lw; //lock book and all sheets, no changes, cannot delete book or

sheets

page -lw hex(482); //lock delete, structure change and data edit

// prepare the book for locking active sheet but

// allow analysis results to be added to book

lay -lw hex(582); //no del, no rename, no add/insert/move col/rows, no edit

page -lw hex(400); //no del book

... where hex value is derived from values in the above table.

Note: As of Origin 2015 SR1, the command ...

page -lw; // lock book and all sheets

... does not prevent renaming of the workbook.

13.5.2.3 Print out current protection flags

layer -lt // print out current sheet protection flags

page -lt // print out current page protection flags

For complete documentation on the layer command see the layer command.

https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/guide/Protecting_Project_Data
https://www.originlab.com/doc/LabTalk/ref/Layer-cmd

The Origin Project

281

For complete documentation on the page command see the page command.

13.5.2.4 Exclusion Zones on a Read-Only Sheet

When you have locked a worksheet from modifications, all the cells in the sheet become read-only. There may

be instances -- e.g. you are setting up a sheet as a form -- where you want users to be able to selectively modify

the sheet. The following explains how to create and manage sheet Exclusion Zones.

13.5.2.4.1 Commands to manage Exclusion Zones

layer -les n

... where n can be one of the following:

Value Description

0 Clear all Exclusion Zones from the active sheet.

1 Add the current selection, one range or multiple via CTRL+select, as new Exclusion Zones.

2 List the Exclusion Zones in the Script window.

Note: You can only make Exclusion Zone modifications when the sheet is unprotected. To set the sheet up

as a form, you should (1) add all the needed Exclusion Zones, then (2) protect the sheet from modification

with lay -lw

13.5.2.5 Protecting Graphs

Although the script commands outlined here were implemented for workbooks and worksheets, the Delete flag is

general and can be used to protect graphs, as in the following example:

repeat 10 {win -t plot}; //create 10 graph windows

win -o graph4 {page -lw hex(400)}; //set graph4 protection

doc -e P {win -c}; //loop to delete all graph in opj. Graph4 will be

protected.

13.5.2.6 Script Example

https://www.originlab.com/doc/LabTalk/ref/Page-cmd

LabTalk Scripting Guide

282

The following script sets up a workbook with a locked data sheet and protects the workbook from deletion. The

OPJ can then be saved and shared with others who can view, graph, and analyze the data, but cannot edit or

delete.

Analysis results are output to additional sheets, so routines that generate output such as Smooth should be

configured to send output to another sheet, as the data sheet in this example will be protected from

modifications.

// Import a sample file

newbook;

string fname$=system.path.program$+"Samples\Curve Fitting\Gaussian.dat";

impasc;

// Set password and login - change mypwd to your desired password string

doc -pwa mypwd;

doc -pw mypwd;

// Protect data sheet structure, prevent editing, deleting

lay -lw hex(482);

// Protect page from deletion

page -lw hex(400);

// logout

doc -pwx;

// Now you can save the OPJ and others can view data, graph, and also analyze

// Analysis results can go into new sheets, not new cols in same sheet

283

14 Analysis and Applications

14.1 Analysis and Applications

Analysis-and-Applications

Origin supports functions that are valuable to certain types of data analysis and specific mathematic and

scientific applications. The following sections provide examples on how to use some of these functions, broken

down by categories of use.

Topics covered in this section:

• LT Mathematics

• LT Statistics

• LT Curve Fitting

• Signal Processing

• Peaks and Baseline

• Image Processing

14.2 Mathematics

14.2.1 Mathematics

Mathematics

In this section we feature examples of four common mathematical tasks in data processing:

Topics covered in this section:

• Average Multiple Curves

• Differentiation

• Integration

• Interpolation

14.2.2 Average Multiple Curves

https://www.originlab.com/doc/LabTalk/guide/Mathematics
https://www.originlab.com/doc/LabTalk/guide/Statistics
https://www.originlab.com/doc/LabTalk/guide/Curve-Fitting
https://www.originlab.com/doc/LabTalk/guide/Signal-Processing
https://www.originlab.com/doc/LabTalk/guide/Peaks-and-Baseline
https://www.originlab.com/doc/LabTalk/guide/Image-Processing
https://www.originlab.com/doc/LabTalk/guide/Average-Curves
https://www.originlab.com/doc/LabTalk/guide/Differentiation
https://www.originlab.com/doc/LabTalk/guide/Integration
https://www.originlab.com/doc/LabTalk/guide/Interpolation

LabTalk Scripting Guide

284

Average-Curves

Multiple curves (XY data pairs) can be averaged to create a single curve, using the avecurves X-Function. This

X-Function provides several options such as using the input X values for the output curve, or generating

uniformly spaced X values for the output and then interpolating the input Y data before averaging.

The following example demonstrates averaging with linear interpolation:

// Load sample data using existing 'loadDSC.ogs' script

string fpath$ = "Samples\LabTalk Script Examples\LoadDSC.ogs";

string LoadPath$=system.path.program$ + fpath$;

// If the data does not load properly, then stop script execution.

if(!run.section(%(LoadPath$), Main, 0)) break 1;

// Data should now be loaded now into the active workbook ...

// Get the name of the active workbook, %H points to the active workbook

string dscBook$=%H;

// Perform average on all data using linear interpolation

avecurves iy:=[dscBook$](1:end)!(1,2)

 rd:=[<input>]<new name:="Averaged Data">!

 method:=ave

 interp:=linear;

Once averaged, the data and the result can be plotted:

// plot all the data and the averaged curve, using the plotxy X-Function:

plotxy [dscBook$](1:end)!(1,2) plot:=200;

14.2.3 Differentiation

Differentiation

14.2.3.1 Finding the Derivative

The following example shows how to calculate the derivative of a dataset. Note that the differentiate X-Function

is used, and that it allows higer-order derivatives as well:

// Import the data

newbook;

fname$ = system.path.program$ + "\Samples\Spectroscopy\HiddenPeaks.dat";

impasc;

// Calculate the 1st and 2nd derivatives of the data in Column 2:

// Output defaults to the next available column, Column 3

differentiate iy:=Col(2);

// Output goes into Column 4 by default

differentiate iy:=Col(2) order:=2;

// Plot the source data and the results

// Each plot uses Column 1 as its x-values

plotstack iy:=((1,2), (1,3), (1,4)) order:=top;

14.2.3.2 Finding the Derivative with Smoothing

https://www.originlab.com/doc/X-Function/ref/avecurves
https://www.originlab.com/doc/X-Function/ref/differentiate

Analysis and Applications

285

The differentiate X-Function also allows you to obtain the derivatives using Savitsky-Golay smoothing. If you

want to use this capability, set the smooth variable to 1. Then you can customize the smoothing by specifying

the polynomial order and the points of window used in the Savitzky-Golay smoothing method. The example

below illustrates this.

// Import a sample data with noise

newbook;

fpath$ = "\Samples\Signal Processing\fftfilter1.DAT";

fname$ = system.path.program$ + fpath$;

impasc;

bkname$=%h;

// Differentiate using Savitsky-Golay smoothing

differentiate iy:=col(2) smooth:=1 poly:=1 npts:=30;

// Plot the source data and the result

newpanel row:=2;

plotxy iy:=[bkname$]1!2 plot:=200 ogl:=1;

plotxy iy:=[bkname$]1!3 plot:=200 ogl:=2;

14.2.4 Integration

Integration

The integ1 X-Function is capable of finding the area under a curve using integration. Both mathematical and

absolute areas can be computed. In the following example, the absolute area is calculated:

//Import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Mathematics\Sine Curve.dat";

impasc;

//Calculate the absolute area of the curve and plot the integral curve

integ1 iy:=col(2) type:=abs plot:=1;

Once the integration is performed, the results can be obtained from the integ1 tree variable:

// Dump the integ1 tree

integ1.=;

// Get a specific value

double area = integ1.area;

The X-Function also allows specifying variable names for quantities of interest, such as:

double myarea, ymax, xmax;

integ1 iy:=col(2) type:=abs plot:=1 area:=myarea y0:=ymax x0:=xmax;

type "area=$(myarea) %(CRLF)ymax=$(ymax) %(CRLF)xmax=$(xmax)";

Integration of two-dimensional data in a matrix can also be performed using the integ2 X-Function. This X-

Function computes the volume beneath the surface defined by the matrix, with respect to the z=0 plane.

// Perform volume integration of 1st matrix object in first matrixsheet

range rmat=[MBook1]1!1;

integ2 im:=rmat integral:=myresult;

type "Volume integration result: $(myresult)";

https://www.originlab.com/doc/X-Function/ref/differentiate
https://www.originlab.com/doc/X-Function/ref/Integ1
https://www.originlab.com/doc/X-Function/ref/integ2Pro

LabTalk Scripting Guide

286

14.2.5 Interpolation

Interpolation

Interpolation is one of the more common mathematical functions performed on data, and Origin supports

interpolation in two ways: (1) interpolation of single values and datasets through range notation and (2)

interpolation of entire curves by X-Functions.

14.2.5.1 Interpolation at Given Index Values

The following example show how to perform interpolation at given index values to find interpolated y values.

// Using datasets

dataset d1={10,20,30,40,50,60,70,80,90,100};

dataset d2={3,7,2,6,8};

dataset d3;

d3=d1(d2); // Perform interpolation of d1 at index values from d2

type $(d3); //d3={30,70,20,60,80};

// Using ranges

newbook;

wks.ncols = 3;

range r1 = 1; // Column 1 in active worksheet

r1 = {10,20,30,40,50,60,70,80,90,100};

range r2 = 2; // Column 2 in active worksheet to put index values;

r2 = {3,7,2,6,8};

range r3 = 3; // Column 3 in active worksheet;

r3 = r1(r2);

// Using columns

col(3)=col(1)(col(2));

14.2.5.2 Finding Interpolated Y at Given X Values

14.2.5.2.1 Using XY Range

An XY Range (subrange specified by X values is available) once declared can be used as a function. The

argument to this function can be a scalar - which returns a scalar - or a vector - which returns a vector. In either

case, the X dataset should be increasing or decreasing. For example:

newbook;

wks.ncols = 4;

col(1) = data(1,0,-.05);

col(2) = gauss(col(1),0,.5,.2,100);

range rxy = (1,2);

rxy(.67)=;

range newx = 3; // Use column as X column data

newx = {0, 0.3333, 0.6667, 1.0}; // Create our new X data

range newy = 4; // This is the empty column we will interpolate into

newy = rxy(newx);

https://www.originlab.com/doc/LabTalk/guide/Range-Notation

Analysis and Applications

287

You can then use such range variables as a function with the following form:

XYRangeVariable(RangeVariableOrScalar[,connect[,param]])

where connect is one of the following options:

line

straight line connection

spline

spline connection

bspline

b-spline connection

and param is smoothing parameter, which applies only to bspline connection method. If param=-1, then a simple

bspline is used, which will give same result as bspline line connection type in line plots. If 'param >=0, the NAG

nag_1d_spline_function is used.

Notes: When using XY range interpolation, you should guarantee there are no duplicated x values if you

specify spline or bspline as the connection method. Instead, you can use interpolation X-Functions.

14.2.5.2.1.1 From Worksheet Data

The following examples show how to perform interpolation using range as function, with data from a worksheet

as the argument.

Example1: The following code illustrates the usage of the various smoothing parameters for bspline:

col(1)=data(1,9); // Fill column 1 with row data

col(2)=normal(9); // Fill column 2 with random values

col(3)=data(1,9,0.01); // Fill Col(3) with desired X values

wks.col3.type = 4;

range bb=(1,2); // Declare range using cols 1,2;

// Compute interpolated values using different parameter settings

loop(i, 4, 10) {

 wcol(i)=bb(col(3), bspline, $(i*0.1));

}

Example2: With an XY range, new Y values can be obtained at any X value using code such as:

// Generate some data

newbook;

wcol(1)={1, 2, 3, 4};

wcol(2)={2, 3, 5, 6};

// Define XYrange

range rr =(1,2);

// Find Y value by linear interpolation at a specified X value.

LabTalk Scripting Guide

288

rr(1.23) = ; // ANS: rr(1.23)=2.23

// Find Y value by linear interpolation for an array of X values.

wcol(3)={1.5, 2.5, 3.5};

range rNewX = col(3);

// Add new column to hold the calculated Y values

wks.addcol();

wcol(4) = rr(rNewX);

Example3: To find X values given Y values, simply reverse the arguments in the examples above. In the case

of finding X given Y, the Y dataset should be increasing or decreasing.

// Generate some data

newbook;

wcol(1)={1, 2, 3, 4};

wcol(2)={2, 3, 5, 6};

// Define XYrange

range rr =(2,1); //swapping the X and Y

// Find X value by linear interpolation at a specified Y value.

rr(2.23) = ; // ANS: rr(2.23)=1.23;

// Add new column to hold the calculated X values

wks.addcol();

range rNewX = wcol(3);

// Find X value by linear interpolation for an array of Y values:

wcol(4)={2.5, 3.5, 5.5};

range rNewY = wcol(4);

rNewX = rr(rNewY);

14.2.5.2.1.2 From Graph

You can also use range interpolation when a graph page is active.

Example 1: Interpolate an array of values.

// Define range on active plot:

range rg = %C;

// Interpolate for a scalar value using the line connection style:

rg(3.54)=;

// Interpolate for an array of values:

// Give the location of the new X values:

range newX = [Book2]1!1;

// Give the location where the new Y values (output) should go:

range newY = [Book2]1!2;

// Compute the new Y values:

newY = rg(newX);

Example 2: Specify the interpolation method.

// Define range on specific plot:

range -wx rWx = 2; // Use X of 2nd plot in active layer

range -w rWy = 2; // Use Y of 2nd plot in active layer

range rr = (rWx,rWy); // Construct an XY range from two ranges

// Give the location where the new X values (output) should go:

range newX = [Book2]1!1;

newX = {5,15,25};

range newY1 = [Book2]1!2; // Range for new Y

range newY2 = [Book2]1!3; // Range for new Y

// Find new Y values by linear interpolation for an array of X values:

Analysis and Applications

289

newY1 = rr(newX);

// Find new Y values by bspline interpolation for an array of X values:

newY2 = rr(newX,bspline);

14.2.5.2.2 Using Arbitrary Dataset

For two arbitrary datasets with the same length, where both are increasing or decreasing, Origin allows you to

interpolate from one dataset to the other at a given value. The datasets can be a range variable, dataset

variable, or column. The form to perform such interpolation is:

dataset1(value, dataset2)

which will perform interpolation on the group of XY data constructed by dataset2 and dataset1, and it will return

the so-called Y (dataset1) value at the given so-called X (dataset2) value. For example:

// Using datasets

dataset ds1 = {1, 2, 3, 4};

dataset ds2 = {2, 3, 5, 6};

// Return interpolated value in ds2 where X in ds1 is 1.23

ds2(1.23, ds1) = ; // Return 2.23

// Return interpolated value in ds1 where X in ds2 is 5.28

ds1(5.28, ds2) = ; // Return 3.28

// Using ranges

newbook;

wks.ncols = 3;

range r1 = 2; // Column 2 in active worksheet

r1 = {1, 2, 3, 4};

range r2 = 3; // Column 3 in active worksheet;

r2 = {2, 3, 5, 6};

r2(1.23, r1) = ;

r1(5.28, r2) = ;

// Using columns

col(3)(1.23, col(2)) = ;

col(2)(5.28, col(3)) = ;

14.2.5.3 Creating Interpolated Curves

14.2.5.3.1 X-Functions for Interpolation of Curves

Origin provides three X-Functions for interpolating XY data and creating a new output XY data pair:

Name Brief Description

interp1xy Perform interpolation of XY data and generate output at uniformly spaced X

interp1 Perform interpolation of XY data and generate output at a given set of X values

https://www.originlab.com/doc/X-Function/ref/interp1xy
https://www.originlab.com/doc/X-Function/ref/interp1

LabTalk Scripting Guide

290

interp1trace Perform interpolation of XY data that is not monotonic in X

14.2.5.3.2 Using Existing X Dataset

The following example shows how to use an existing X dataset to find interpolated Y values:

// Create a new workbook with specific column designations

newbook sheet:=0;

newsheet cols:=4 xy:="XYXY";

// Import a sample data file

fname$ = system.path.program$ + "Samples\Mathematics\Interpolation.dat";

impasc;

// Interpolate the data in col(1) and col(2) with the X values in col(3)

range rResult=col(4);

interp1 ix:=col(3) iy:=(col(1), col(2)) method:=linear ox:=rResult;

//Plot the original data and the result

plotxy iy:=col(2) plot:=202 color:=1;

plotxy iy:=rResult plot:=202 color:=2 size:=5 ogl:=1;

14.2.5.3.3 Uniformly Spaced X Output

The following example performs interpolation by generating uniformly spaced X output:

//Create a new workbook and import a data file

fname$ = system.path.program$ + "Samples\Mathematics\Sine Curve.dat";

newbook;

impasc;

//Interpolate the data in column 2

interp1xy iy:=col(2) method:=bspline npts:=50;

range rResult = col(3);

//Plot the original data and the result

plotxy iy:=col(2) plot:=202 color:=1;

plotxy iy:=rResult plot:=202 color:=2 size:=5 ogl:=1;

14.2.5.3.4 Interpolating Non-Monotonic Data

The following example performs trace interpolation on data where X is not monotonic:

//Create a new workbook and import the data file

fname$ = system.path.program$ + "Samples\Mathematics\circle.dat";

newbook;

impasc;

//Interpolate the circular data in column 2 with trace interpolation

interp1trace iy:=Col(2) method:=bspline;

range rResult= col(4);

//Plot the original data and the result

https://www.originlab.com/doc/X-Function/ref/interp1trace

Analysis and Applications

291

plotxy iy:=col(2) plot:=202 color:=1;

plotxy iy:=rResult plot:=202 color:=2 size:=1 ogl:=1;

Note that the interpolation X-Functions can also be used for extrapolating Y values outside of the X range of the

input data.

14.2.5.4 Matrix Interpolation

The minterp2 X-Function can be used to perform interpolation/extrapolation of matrices.

// Create a new matrixbook and import sample data;

newbook mat:=1;

filepath$ = "Samples\Matrix Conversion and Gridding\Direct.dat";

string fname$=system.path.program$ + filepath$;

impasc;

// Interpolate to a matrix with 10 times the x and y size of the original

range rin = 1; // point to matrix with input data;

int nx, ny;

nx = rin.ncols * 10;

ny = rin.nrows * 10;

minterp2 method:=bicubic cols:=nx rows:=ny ;

OriginPro also offers the interp3 X-Function which can be used to perform interpolation on 4-dimensional scatter

data.

Origin 2022 makes it easier to get 2D interpolation Z values from a named range

range mm=1!1;

mm[1,1]=; //to get element by index

mm(1.5, 1.7)=; // return interpolated value, matrix XY mapping

mm(1.5, 1.7, spline)=; //3rd argument supports same items as XF minterp2

14.3 Statistics

14.3.1 Statistics

Statistics

This is an example-based section demonstrating support for several types of statistical tests implemented in

script through X-Function calls.

Topics covered in this section:

• Descriptive statistics

• Hypothesis Testing

• Nonparametric Tests

• Survival Analysis

https://www.originlab.com/doc/X-Function/ref/minterp2
https://www.originlab.com/doc/X-Function/ref/interp3
https://www.originlab.com/doc/LabTalk/guide/Descriptive-statistics
https://www.originlab.com/doc/LabTalk/guide/Hypothesis-Testing
https://www.originlab.com/doc/LabTalk/guide/Nonparametric-Tests
https://www.originlab.com/doc/LabTalk/guide/Survival-Analysis

LabTalk Scripting Guide

292

14.3.2 Descriptive statistics

Descriptive-statistics

Origin provides several X-Functions to compute descriptive statistics, some of the most common are:

Name Brief Description

colstats Columnwise statistics

corrcoef

(Pro Only)
Correlation Coefficient

freqcounts Frequency counts of a data set.

mstats

(Pro Only)
Compute descriptive statistics on a matrix

rowstats Statistics of a row of data

stats Treat selected columns as a complete dataset; compute statistics of the dataset.

For a full description of each of these X-Functions and its inputs and outputs, please see the Descriptive

Statistics.

14.3.2.1 Descriptive Statistics on Columns and Rows

The colstats X-Function can perform statistics on columns. By default, it outputs the mean, the standard

deviation, the number of data points and the median of each input column. But you can customize the output by

assigning different values to the variables. In the following example, colstats is used to calculate the means, the

standard deviations, the standard errors of the means, and the medians of four columns.

//Import a sample data with four columns

newbook;

fname$ = system.path.program$ + "Samples\Statistics\nitrogen_raw.txt";

impasc;

//Perform statistics on column 1 to 4

colstats irng:=1:4 sem:=<new> n:=<none>;

The rowstats X-Function can be used in a similar way. The following example calculates the means of the active

worksheet; the results are placed in a new added column at the first of the worksheet.

https://www.originlab.com/doc/X-Function/ref/colstats
https://www.originlab.com/doc/X-Function/ref/corrcoefPro
https://www.originlab.com/doc/X-Function/ref/freqcounts
https://www.originlab.com/doc/X-Function/ref/mstatsPro
https://www.originlab.com/doc/X-Function/ref/rowstats
https://www.originlab.com/doc/X-Function/ref/stats
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Descriptive-Statistics
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Descriptive-Statistics
https://www.originlab.com/doc/X-Function/ref/colstats
https://www.originlab.com/doc/X-Function/ref/rowstats

Analysis and Applications

293

Note: mean and sd are defaulted to be <new> in output, if not needed, set to <none>.

newbook;

fname$ = system.path.program$ + "Samples\Statistics\engine.txt";

impasc; //Import a sample data

wunstackcol irng1:=1 irng2:=2; //Unstack columns

wtranspose type:=all ow:=<new>; //Transpose worksheet

range rr1 = 1:2;

delete rr1;

range rr2 = 2;

delete rr2; //delete empty columns

int nn = wks.ncols;

wks.addcol();

wks.col$(nn+1).lname$ = Mean;

wks.col$(nn+1).index = 2; //Add mean column

wks.addcol();

wks.col$(nn+2).lname$ = Sum;

wks.col$(nn+2).index = 3; //Add sum column

//Row statistics to get sum and average, saved to corresponding column.

rowstats irng:=4[1]:end[end] sum:=3 mean:=2 sd:=<none>;

14.3.2.2 Frequency Count

If you want to calculate the frequency counts of a range of data, use the freqcounts X-Function.

//Open a sample workbook

%a = system.path.program$ + "Samples\Statistics\Body.ogw";

doc -a %a;

//Count the frequency of the data in column 4

freqcounts irng:=4 min:=35 max:=75 stepby:=increment intervals:=5;

14.3.2.3 Correlation Coefficient

corrcoef X-Function can be used to compute the correlation coefficient between two datasets.

//import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\automobile.dat";

impasc;

//Correlation Coefficient

corrcoef irng:= (col(c):col(g)) rt:= <new name:=corr>

14.3.3 Hypothesis Testing

Hypothesis-Testing

Origin/OriginPro supports the following set of X-Functions for hypothesis testing:

https://www.originlab.com/doc/X-Function/ref/freqcounts
https://www.originlab.com/doc/X-Function/ref/corrcoefPro

LabTalk Scripting Guide

294

Name Brief Description

rowttest2 (Pro

Only)
Perform a two-sample t-test on rows.

ttest1 Compare the sample mean to the hypothesized population mean.

ttest2 Compare the sample means of two samples.

ttestpair
Determine whether two sample means are equal in the case that they are

matched.

vartest1

(Pro Only)
Determine whether the sample variance is equal to a specified value.

vartest2

(Pro Only)
Determine whether two sample variances are equal.

For a full description of these X-functions, including input and output arguments, please see the Hypothesis

Testing.

14.3.3.1 One-Sample T-Test

If you need to know whether the mean value of a sample is consistent with a hypothetical value for a given

confidence level, consider using the one-sample T-test. Note that this test assumes that the sample is a

normally distributed population. Before we apply the one-sample T-test, we should verify this assumption.

//Import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\diameter.dat";

impasc;

//Normality test

swtest irng:=col(a) prob:=p1;

if (p1 < 0.05)

{

 type "The sample is not likely to follow a normal distribution."

}

else

{

 // Test whether the mean is 21

 ttest1 irng:=col(1) mean:=21 tail:=two prob:=p2;

https://www.originlab.com/doc/X-Function/ref/rowttest2Pro
https://www.originlab.com/doc/X-Function/ref/ttest1
https://www.originlab.com/doc/X-Function/ref/ttest2
https://www.originlab.com/doc/X-Function/ref/ttestpair
https://www.originlab.com/doc/X-Function/ref/vartest1Pro
https://www.originlab.com/doc/X-Function/ref/vartest2Pro
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Hypothesis-Testing
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Hypothesis-Testing

Analysis and Applications

295

 if (p2 < 0.05) {

 type "At the 0.05 level, the population mean is";

 type "significantly different from 21."; }

 else {

 type "At the 0.05 level, the population mean is NOT";

 type "significantly different from 21."; }

}

14.3.3.2 Two-Sample T-Test

The ttest2 X-Function is provided for performing two-sample t-test. The example below shows how to use it

and print the results.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\time_raw.dat";

string fname$ = system.path.program$ + fpath$;

impAsc;

// Perform two-sample t-test on two columns

// Sample variance is not assumed to be equal

ttest2 irng:=(col(1), col(2)) equal:=0;

// Type some results

type "Value of t-test statistic is $(ttest2.stat)";

type "Degree of freedom is $(ttest2.df)";

type "P-value is $(ttest2.prob)";

type "Conf. levels in 95% is ($(ttest2.lcl), $(ttest2.ucl))";

The rowttest2 X-Function can be used to perform a two-sample T-test on rows. The following example

demonstrates how to compute the corresponding probability value for each row:

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\ANOVA\Two-Way_ANOVA_raw.dat";

fname$ = system.path.program$ + fpath$;

impasc;

// Two-sample T-test on a row

rowttest2 irng1:=(col(a):col(c)) irng2:=(col(d):col(f))

 tail:=two prob:=<new>;

14.3.3.3 Pair-Sample T-Test

Origin provides the ttestpair X-Function for pair-sample t-test analysis, so to determine whether the means of

two same-sized and dependent samples from a normal distribution are equal or not, and calculates the

confidence interval for the difference between the means. The example below first imports a data file, and then

perform pair-sample t-test, and then output the related results.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\abrasion_raw.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

https://www.originlab.com/doc/X-Function/ref/ttest2
https://www.originlab.com/doc/X-Function/ref/rowttest2Pro
https://www.originlab.com/doc/X-Function/ref/ttestpair

LabTalk Scripting Guide

296

// Perform pair-sample t-test one two columns

// Hypothetical means difference is 0.5

// And Tail is upper tailed

ttestpair irng:=(col(1), col(2)) mdiff:=0.5 tail:=upper;

// Type the results

type "Value of paired-sample t-test statistic is $(ttestpair.stat)";

type "Degree of freedom for the paired-sample t-test is $(ttestpair.df)";

type "P-value is $(ttestpair.prob)";

type "Conf. levels in 95% is ($(ttestpair.lcl), $(ttestpair.ucl))";

14.3.3.4 One-Sample Test for Variance

X-Function vartest1 is used to perform a chi-squared variance test, so to determine whether the sample from a

normal distribution could have a given hypothetical vaiance value. The following example will perform one-

sample test for variance, and output the P-value.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\vartest1.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Perform F-test

// Tail is two tailed

// Test variance is 2.0

// P-value stored in variable p

vartest1 irng:=col(1) var:=2.0 tail:=two prob:=p;

// Ouput P-value

p = ;

14.3.3.5 Two-Sample Test for Variance (F-Test)

F-test, also called two-sample test for variance, is performed by using vartest2 X-Function.

// Import sample data

newbook;

string fpath$ = "Samples\Statistics\time_raw.dat";

string fname$ = system.path.program$ + fpath$;

impasc;

// Perform F-test

// And Tail is upper tailed

vartest2 irng:=(col(1), col(2)) tail:=upper;

// Output the result tree

vartest2.=;

14.3.4 Nonparametric Tests

Nonparametric-Tests

https://www.originlab.com/doc/X-Function/ref/vartest1Pro
https://www.originlab.com/doc/X-Function/ref/vartest2Pro

Analysis and Applications

297

Hypothesis tests are parametric tests when they assume the population follows some specific distribution (such

as normal) with a set of parameters. If you don't know whether your data follows normal distribution or you have

confirmed that your data do not follow normal distribution, you should use nonparametric tests.

Origin provides support for the following X-Functions for non-parametric analysis, they are available in OriginPro

Name Brief Description

signrank1
Test whether the location (median) of a population distribution is the same with

a specified value

signrank2/sign2
Test whether or not the medians of the paired populations are equal. Input

data should be in raw format.

mwtest/kstest2
Test whether the two samples have identical distribution. Input data should be

Indexed.

kwanova/mediantest
Test whether different samples' medians are equal, Input data should be

arranged in index mode.

friedman
Compares three or more paired groups. Input data should be arranged in

index.

As an example, we want to compare the height of boys and girls in high school.

//import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\body.dat";

impasc;

//Mann-Whitney Test for Two Sample

//output result to a new sheet named mynw

mwtest irng:=(col(c), col(d)) tail:=two rt:=<new name:=mynw>;

//get result from output result sheet

page.active$="mynw";

getresults tr:=mynw;

//Use the result to draw conclusion

if (mynw.Stats.Stats.C3 <= 0.05); //if probability is less than 0.05

{

 type "At 0.05 level, height of boys and girls are differnt.";

https://www.originlab.com/doc/X-Function/ref/signrank1Pro
https://www.originlab.com/doc/X-Function/ref/signrank2Pro
https://www.originlab.com/doc/X-Function/ref/mwtestPro
https://www.originlab.com/doc/X-Function/ref/kwanovaPro
https://www.originlab.com/doc/X-Function/ref/friedmanPro

LabTalk Scripting Guide

298

 //if median of girls height is larger than median of boy's height

 if (mynw.DescStats.R1.Median >= mynw.DescStats.R2.Median)

 type "girls are taller than boys.";

 else

 type "boys are taller than girls."

}

else

{

 type "The girls are as tall as the boys."

}

14.3.5 Survival Analysis

Survival-Analysis

Survival Analysis is widely used in the biosciences to quantify survivorship in a population under study. Origin

supports three widely used tests, they are available in OriginPro:

Name Brief Description

kaplanmeier Kaplan-Meier (product-limit) Estimator

phm_cox Cox Proportional Hazards Model

weibullfit Weibull Fit

For a full description of these X-functions, including input and output arguments, please see the Survival

Analysis.

14.3.5.1 Kaplan-Meier Estimator

If you want to estimate the survival ratio, create survival plots and compare the quality of survival functions, use

the kaplanmeier X-Function. It uses product-limit method to estimate the survival function, and supports three

methods for testing the equality of the survival function: Log Rank, Breslow and Tarone-Ware.

As an example, scientists are looking for a better medicine for cancer resistance. After exposing some rats to

carcinogen DMBA, they apply different medicine to two different groups of rats and record their survival status for

the first 60 hours. They wish to quantify the difference in survival rates between the two medicines.

// Import sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\SurvivedRats.dat";

impasc;

//Perform Kaplan-Meier Analysis

kaplanmeier irng:=(1,2,3) censor:=0 logrank:=1

https://www.originlab.com/doc/X-Function/ref/kaplanmeierPro
https://www.originlab.com/doc/X-Function/ref/phm_CoxPro
https://www.originlab.com/doc/X-Function/ref/weibullfitPro
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Survival-Analysis
https://www.originlab.com/doc/X-Function/ref/X-Functions-for-Survival-Analysis
https://www.originlab.com/doc/X-Function/ref/kaplanmeierPro

Analysis and Applications

299

 rd:=<new name:="sf">

 rt:=<new name:="km">;

//Get result from survival report tree

getresults tr:=mykm iw:="km";

if (mykm.comp.logrank.prob <= 0.05)

{

 type "The two medicines have significantly different"

 type "effects on survival at the 0.05 level ...";

 type "Please see the survival plot.";

 //Plot survival Function

 page.active$="sf";

 plotxy iy:=(?, 1:end) plot:=200 o:=[<new template:=survivalsf>];

}

else

{

 type "The two medicines are not significantly different.";

}

14.3.5.2 Cox Proportional Hazard Regression

The phm_cox X-Function can be used to obtain the parameter estimates and other statistics associated with the

Cox Proportional hazards model for fixed covariates. It can then forecast the change in the hazard rate along

with several fixed covariates.

For example, we want to study on 66 patients with colorectal carcinoma to determine the effective prognostic

parameter and the best prognostic index (a prognostic parameter is a parameter that determines whether a

person has a certain illness). This script implements the phm_cox X-Function to get the relevant statistics.

//import a sample data

newbook;

string fpath$ = "Samples\Statistics\ColorectalCarcinoma.dat";

fname$ = system.path.program$ + fpath$;

impasc option.hdr.LNames:=1

 option.hdr.units:=0

 option.hdr.CommsFrom:=2

 option.hdr.CommsTo:=2;

//Perform Cox Regression

phm_Cox irng:=(col(1),col(2),col(3):end) censor:=0 rt:=<new name:="cox">;

//Get result from report tree

page.active$="cox";

getresults tr:=cox;

type "Prognostic parameters determining colorectal carcinoma are:";

page.active$="ColorectalCarcinoma";

loop(ii, 1, 7)

{

 // If probability is less than 0.05,

 // we can say it is effective for survival time.

https://www.originlab.com/doc/X-Function/ref/phm_CoxPro

LabTalk Scripting Guide

300

 if (cox.paramestim.param$(ii).prob<=0.05)

 type wks.col$(ii+2).comment$;

}

14.3.5.3 Weibull Fit

If it is known apriori that data are Weibull distributed, use the weibullfit X-Function to estimate the weibull

parameters.

//import a sample data

newbook;

fname$ = system.path.program$ + "Samples\Statistics\Weibull Fit.dat ";

impasc;

//Perform Weibull Fit

weibullfit irng:=(col(a), col(b)) censor:=1;

14.4 Curve Fitting

14.4.1 Curve Fitting

Curve-Fitting

The curve fitting features in Origin are some of the most popular and widely used. Many users do not realize that

the X-Functions performing the fitting calculations can be used just as easily from script as they can from Origin's

graphical user interfaces. The following sections address curve fitting using LabTalk Script.

Topics covered in this section:

• Linear, Polynomial and Multiple Regression

• Non-linear Fitting

14.4.2 Linear, Polynomial and Multiple Regression

Linear-Fitting

In LabTalk scripts, three simple quick use X-Functions, fitLR, fitPoly, and fitMR, are available for performing

linear regression, polynomial regression, and multiple linear regression, respectively. And the -h switch can be

used to see the argument list.

14.4.2.1 Linear Regression

 fitLR finds a best fit straight line to a given dataset.

https://www.originlab.com/doc/X-Function/ref/weibullfitPro
https://www.originlab.com/doc/LabTalk/guide/Linear-Fitting
https://www.originlab.com/doc/LabTalk/guide/Non-linear-Fitting
https://www.originlab.com/doc/X-Function/ref/fitLR
https://www.originlab.com/doc/X-Function/ref/fitpoly
https://www.originlab.com/doc/X-Function/ref/fitMR
https://www.originlab.com/doc/X-Function/ref/fitLR

Analysis and Applications

301

newbook; // create a new book

// file name

string strFile$ = system.path.program$ + "Samples\Curve Fitting\Linear

Fit.dat";

impasc fname:=strFile$; // import the data

int nn = wks.ncols;

wks.addcol(); // Add a new column

wks.col$(nn+1).lname$ = FitData; // Assign a long name to the new column

// perform linear fit on the first ten points of column 1 (X) and column 2

(Y)

// and the fitted data is output to FitData column

fitLR iy:=(1,2) oy:=col("FitData");

// a tree object named fitLR is created, and contains the output values

fitLR.a = ; // output the fitted intercept

fitLR.b = ; // output the fitted slope

fitLR.= ; // output all the results, which include fitted intercept and

slope

More examples about linear regression can be found in Curve Fitting sample page, or under Fitting category in

XF Script Dialog (press F11 to open).

14.4.2.2 Polynomial Regression

 Polynomial fitting is a special case wherein the fitting function is mathematically non-linear, but an analytical

(non-iterative) solution is obtained. In LabTalk, fitPoly is used to control polynomial fitting.

newbook; // create a new book;

// file name

string strFile$ = system.path.program$ + "Samples\Curve Fitting\Polynomial

Fit.dat";

impasc fname:=strFile$; // import data

page.xlcolname = 0; // turn off Spreadsheet Cell Notation firstly

wks.addcol(PolyCoef); // add a new column for polynomial coefficients

wks.addcol(FittedX); // add a new column for fitted X values

wks.addcol(FittedY); // add a new column for fitted Y values

// perform polynomial fitting on column 1 (X) and column 3 (Y)

// polynomial order is 3

fitPoly iy:=(1,3) polyorder:=3 coef:=col(PolyCoef)

oy:=(col(FittedX),col(FittedY));

// the results are stored in the tree named fitPoly, output it

fitPoly.= ;

Additionally, fitPoly provides the outputs for adjusted residual sum of squares, coefficient of determination, and

errors in polynomial coefficients. For more detailed examples, please refer to Curve Fitting sample page, or

Fitting category in XF Script Dialog (press F11 to open).

https://www.originlab.com/doc/LabTalk/examples/Curve-Fitting
https://www.originlab.com/doc/X-Function/ref/fitpoly
https://www.originlab.com/doc/X-Function/ref/fitpoly
https://www.originlab.com/doc/LabTalk/examples/Curve-Fitting

LabTalk Scripting Guide

302

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more information.

14.4.2.3 Multiple Linear Regression

Multiple linear regression studies the relationship between several predictor variables and a response variable,

which is an extension of simple linear regression.

// create a new book and import some data

newbook;

fn$ = system.path.program$ + "Samples\Curve Fitting\Multiple Linear

Regression.dat";

impasc fn$;

page.xlcolname = 0; //turn off Spreadsheet Cell Notation firstly

wks.addcol(FitValue); // add a column for fitted values of dependent

// perform multiple linear regression

// column D is dependent, and column A, B, and C are independents

// the output results are stored in a tree, tr

fitMR dep:=col(D) indep:=col(A):col(C) mrtree:=tr odep:=col(FitValue);

tr.= ; // output the result tree

For more examples, please refer to Curve Fitting sample page, or Fitting category in XF Script Dialog (press

F11 to open).

For the Spreadsheet Cell Notation in the workbook, please see FAQ-849 for more information.

14.4.2.4 Run Operation Classes to Perform Regression

The X-Functions depicted above are for simple quick use only to perform linear, polynomial and multiple

regression. That is to say, some quantities are not available when using these three X-Functions. For full access

to all quantities, the X-Function xop is provided to invoke the internal menu commands (operation commands),

so to run the corresponding operation classes to perform regression. The following example shows how to use

the X-Function xop to perform linear fit, and generate a report.

// create a new book and import data

newbook;

fname$ = system.path.program$ + "Samples\Curve Fitting\Linear Fit.dat";

impasc fname$;

tree lrGUI; // GUI tree for linear fit

// initialize the GUI tree, with the FitLinear class

xop execute:=init classname:=FitLinear iotrgui:=lrGUI;

// specify the input data in the GUI tree

lrGUI.GUI.InputData.Range1.X$ = col(A);

https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation
https://www.originlab.com/doc/LabTalk/examples/Curve-Fitting
https://www.originlab.com/doc/Origin-Help/Column-Short-Names-Restrict
https://www.originlab.com/doc/Quick-Help/Turn-off-spreadsheet-cell-notation
https://www.originlab.com/doc/X-Function/ref/xop
https://www.originlab.com/doc/X-Function/ref/xop

Analysis and Applications

303

lrGUI.GUI.InputData.Range1.Y$ = col(C);

// perform linear fit and generate a report with the prepared GUI tree

xop execute:=report iotrgui:=lrGUI;

xop execute:=cleanup; // clean up linear fit operation objects after fitting

14.4.3 Non-linear Fitting

Non-linear-Fitting

Non-linear fitting in LabTalk is X-function based and proceeds in three steps, each calling (at least) one X-

function:

nlbegin: Begin the fitting process. Define input data, type of fitting function, and input parameters.

nlfit: Perform the fit calculations

nlend Choose which parameters to output and in what format

Besides nlbegin, you can also start a fitting process according to your fitting model or data by the following X-

Functions:

nlbeginr: Fitting multiple dependnet/independent variables' model

nlbeginm: Fitting a matrix

nlbeginz: Fitting XYZ worksheet data

14.4.3.1 Script Example

Here is a script example of the steps outlined above:

// Begin non-linear fitting, taking input data from Column 1 (X) and

// Column 2 (Y) of the active worksheet,

// specifying the fitting function as Gaussian,

// and creating the input parameter tree named ParamTree:

nlbegin iy:=(1,2) func:=gauss nltree:=ParamTree;

// Optional: let the peak center be fixed at X = 5

ParamTree.xc = 5; // Assign the peak center an X-value of 5.

ParamTree.f_xc = 1; // Fix the peak center (f_xc = 0 is unfixed).

// Perform the fit calculations:

nlfit;

// Optional: report results to the Script Window.

type Baseline y0 is $(ParamTree.y0),;

type Peak Center is $(ParamTree.xc), and;

type Peak width (FWHM) is $(ParamTree.w);

// end the fitting session without a Report Sheet

nlend;

14.4.3.2 Notes on the Parameter Tree

https://www.originlab.com/doc/X-Function/ref/nlbegin
https://www.originlab.com/doc/X-Function/ref/nlfit
https://www.originlab.com/doc/X-Function/ref/nlend
https://www.originlab.com/doc/X-Function/ref/nlbeginr
https://www.originlab.com/doc/X-Function/ref/nlbeginmPro
https://www.originlab.com/doc/X-Function/ref/nlbeginzPro

LabTalk Scripting Guide

304

The data tree that stores the fit parameters has many options besides the few mentioned in the example above.

The following script command allows you to see all of the tree nodes (names and values) at one time, displaying

them in the Script Window.

// To see the entire tree structure with values:

ParamTree.=;

Note: since the non-linear fitting procedure is iterative, parameter values for the fit that are not fixed (by setting

the fix option to zero in the parameter tree) can and will change from their initial values. Initial parameters can be

set manually, as illustrated in the example above by accessing individual nodes of the parameter tree, or can be

set automatically by Origin (see the nlfn X-function in the table below).

14.4.3.3 Table of X-functions Supporting Non-Linear Fitting

In addition to the three given above, there are a few other X-functions that facilitate non-linear fitting. The

following table summarizes the X-functions used to control non-linear fitting:

Name Brief Description

nlbegin

Start a LabTalk nlfit session on XY data from worksheet or graph.

Note:

This X-Function fits one independent/dependent model only. For multiple

dependent/independent functions, use nlbeginr instead.

nlbeginr
Start a LabTalk nlfit session on worksheet data. It is used for fitting multiple

dependent/independent variables functions.

nlbeginm Start a LabTalk nlfit session on matrix data from matrix object or graph

nlbeginz Start a LabTalk nlfit session on XYZ data from worksheet or graph

nlfn Set Automatic Parameter Initialization option

nlpara Open the Parameter dialog for GUI editing of parameter values and bounds

nlfit Perform iterations to fit the data

https://www.originlab.com/doc/X-Function/ref/nlbegin
https://www.originlab.com/doc/X-Function/ref/nlbeginr
https://www.originlab.com/doc/X-Function/ref/nlbeginmPro
https://www.originlab.com/doc/X-Function/ref/nlbeginzPro
https://www.originlab.com/doc/X-Function/ref/nlfn
https://www.originlab.com/doc/X-Function/ref/nlpara
https://www.originlab.com/doc/X-Function/ref/nlfit

Analysis and Applications

305

nlend End the fitting session and optionally create a report

For a full description of each of these X-functions and its inputs and outputs, please see the X-function

Reference.

14.4.3.4 Qualitative Differences from Linear Fitting

Unlike linear fitting, a non-linear fit involves solving equations to which there is no analytical solution, thus

requiring an iterative approach. But the idea---calling X-functions to perform the analysis---is the same. Whereas

a linear fit can be performed in just one line of script with just one X-function call (see the Linear Fitting section),

a non-linear fit requires calling at least three X-functions.

14.5 Signal Processing

Signal-Processing

Origin provides a collection of X-functions and LabTalk functions for signal processing, ranging from smoothing

noisy data to Fourier Transform (FFT), Inverse Fourier Transform (IFFT), Short-time FFT, Convolution and

Correlation, FFT Filtering, and Wavelet analysis.

The X-Functions are available under the Signal Processing category and can be listed by typing the following

command:

lx cat:="signal processing*";

Some functionality such as Short-time FFT and Wavelets are only available in OriginPro.

The LabTalk functions for signal processing are available under Signal Processing Functions, which are used to

separately compute FFT results such as amplitude, phase, etc., for multiple datasets and arrange their results in

desired columns. Meanwhile, one can utilize these functions to compare DC offset removed magnitudes among

different datasets.

The following sections provide some short examples of calling the signal processing X-Functions and LabTalk

functions from script.

14.5.1 Smoothing

Smoothing noisy data can be performed by using the smooth X-Function.

// Smooth the XY data in columns 1,2 of the worksheet

// using SavitzkyGolay method with a third order polynomial

range r=(1,2); // assume worksheet active with XY data

smooth iy:=r meth:=sg poly:=3;

To smooth all plots in a layer, you can loop over the plots as below:

// Count the number of data plots in the layer and save result in

//variable "count"

https://www.originlab.com/doc/X-Function/ref/nlend
https://www.originlab.com/doc/X-Function/ref/Fitting
https://www.originlab.com/doc/X-Function/ref/Fitting
https://www.originlab.com/doc/LabTalk/guide/Linear-Fitting
https://www.originlab.com/doc/LabTalk/ref/signal-processing-functions
https://www.originlab.com/doc/X-Function/ref/smooth

LabTalk Scripting Guide

306

layer -c;

// Get the name of this Graph page

string gname$ = %H;

// Create a new book named smooth - actual name is stored in bkname$

newbook na:=Smoothed;

// Start with no columns

wks.ncols=0;

loop(ii,1,count) {

 // Input Range refers to 'ii'th plot

 range riy = [gname$]!$(ii);

 // Output Range refers to two, new columns

 range roy = [bkname$]!($(ii*2-1),$(ii*2));

 // Savitsky-Golay smoothing using third order polynomial

 smooth iy:=riy meth:=sg poly:=3 oy:=roy;

}

14.5.2 FFT and IFFT

The following example shows how to individually obtain the FFT results by LabTalk functions listed under Signal

Processing Functions.

newbook;

// Import the signal data

string fname$ = system.path.program$ + "Samples\Signal

Processing\fftfilter1.DAT";

impASC fname:=fname$;

// Add 5 columns to store different quantities

worksheet -a 5;

// Set column label to distinguish

col(B)[L]$ = "Raw Signal";

// Set data type to complex prior to store complex results from FFT analysis

wks.col3.numerictype = 11;

col(C)[L]$ = "FFT Complex";

// Calculate FFT complex results

col(C) = fftc(col(B)); //with no shift

col(D)[L]$ = "Frequency";

wks.col4.type = 4; //Set X column type

// Compute the frequencies based on time data in column A

col(D) = fftfreq(col(A)[2]-col(A)[1], wks.col1.nrows);

col(E)[L]$ = "Magnitude";

// Get FFT magnitude results

col(E) = fftmag(col(C)); // Use fftmag(col(C), 2) to obtain Two-Sided and

Shifted magnitude

col(F)[L]$ = "Phase";

col(F) = fftphase(col(C)); // Use fftphase(col(C), 2, 1, 0) to obtain Two-

sided, unwrapped phase with radian unit

wks.col7.numerictype = 11;

https://www.originlab.com/doc/LabTalk/ref/signal-processing-functions
https://www.originlab.com/doc/LabTalk/ref/signal-processing-functions

Analysis and Applications

307

col(G)[L]$ = "Shifted FFT Complex";

col(G) = fftshift(col(C));

// Update sparklines for calculated results

sparklines sel:=0 c1:=4 c2:=6;

// Auto adjust column width to fit content

wautosize;

The following example shows how to obtain the IFFT result from shifted FFT complex result.

//Continue from the example above, suppose we have shifted FFT results in

column G

// Add 2 more columns to store different quantities

worksheet -a 2;

// Label columns to distinguish

col(H)[L]$ = "Unshifted FFT Complex";

// Set the data type to be complex

wks.col8.numerictype = 11;

// Unshift the shifted FFT results before doing IFFT

col(H) = ifftshift(col(G));

col(I)[L]$ = "IFFT result";

wks.col9.numerictype = 11;

// Compute inverse FFT from unshifted FFT results

col(I) = invfft(col(H));

The following example shows how to specify a window in FFT analysis.

newbook;

// Import the signal data

string fname$ = system.path.program$ + "Samples\Signal Processing\Chirp

Signal.dat.";

impASC fname:=fname$;

// Define a range variable for input signal

range rSignal = col(B);

int wSize = rSignal.nrows;

col(C)[L]$ = "Apply Blackman window";

col(C) = col(B) * windata(6, wSize); // Apply Blackman window

col(D)[L]$ = "Amplitude";

col(D) = fftamp(fftc(col(C))); //Without Origin window correction

The following example shows how to perform fft analysis on multiple columns using loop and arrange obtained

amplitude and phase columns side by side. You can also calculate FFT results for multiple columns directly on

worksheet by selecting multiple columns on the worksheet, and right click to select Set Multiple Columns

Values....

//Prepare multiple column data for FFT analysis

newbook;

int nc = 5, ii;

wks.ncols = 4*nc+2;

//Fill x column with time data

col(A) = data(0, 1-1e-3, 1e-3);

//Fill five columns with sum of an f1 Hz sinusoid and an f2 Hz sinusoid

for(ii = 1; ii<=nc; ii++)

LabTalk Scripting Guide

308

{

double f1, f2;

f1 = 50 + 20*ii;

f2 = 100 + 20*ii;

wcol(ii+1)[L]$ = "Data$(ii)";

wcol(ii+1) = (2+ii)*sin(2*pi*f1*col(A))+(8-ii)*sin(2*pi*f2*col(A))+rnd();

}

//Subtract mean before FFT to remove DC offset

for(ii = 1; ii<=nc; ii++)

{

wcol(nc+ii+1)[C]$ = "Subtract mean of Data$(ii)";

wcol(nc+ii+1) = wcol(ii+1)-mean(wcol(ii+1));

}

//Calculate frequency for FFT results

wks.col$(2*nc+2).type = 4; //Set X column type

wcol(2*nc+2)[L]$ = "Frequency";

wcol(2*nc+2) = fftfreq(col(A)[2]-col(A)[1], wks.col1.nrows);

//Calculate FFT amplitude and phase for five columns

for(ii = 1; ii<=nc; ii++)

{

//FFT amplitude result

wcol(2*nc+ii+2)[L]$ = "Amplitude";

wcol(2*nc+ii+2)[C]$ = "Data$(ii)";

wcol(2*nc+ii+2) = fftamp(fftc(wcol(nc+ii+1)));

//FFT phase result

wcol(3*nc+ii+2)[L]$ = "Phase";

wcol(3*nc+ii+2)[C]$ = "Data$(ii)";

wcol(3*nc+ii+2) = fftphase(fftc(wcol(nc+ii+1)));

}

//Plot FFT amplitude and phase results for five columns in two layers

plotstack iy:=($(2*nc+2),$(2*nc+3):$(4*nc+2)) portrait:=0 order:=0 layer:=2

number:="5 5";

14.5.3 FFT and Filtering

The following example shows how to perform 1D FFT of data using the fft1 X-Function.

// Import a sample file

newbook;

fname$ = system.path.program$ + "Samples\Signal Processing\fftfilter1.dat";

impasc;

// Perform FFT and get output into a named tree

Tree myfft;

fft1 ix:=2 rd:=myfft rt:=<none>;

// You can list all trees using the command: list vt

Once you have results in a tree, you can do further analysis on the output such as:

https://www.originlab.com/doc/X-Function/ref/fft1

Analysis and Applications

309

// Copy desired tree vector nodes to datasets

// Locate the peak and mean frequency components

dataset tmp_x=myfft.fft.freq;

dataset tmp_y=myfft.fft.amp;

// Perform stats and output results

percentile = {0:10:100};

diststats iy:=(tmp_x, tmp_y) percent:=percentile;

type "The mean frequency is $(diststats.mean)";

The following example shows how to perform signal filtering using the fft_filters X-Function:

// Import some data with noise and create graph

newbook;

string filepath$ = "Samples\Signal Processing\";

string filename$ = "Signal with High Frequency Noise.dat";

fname$ = system.path.program$ + filepath$ + filename$;

impasc;

plotxy iy:=(1,2) plot:=line;

// Perform low pass filtering

fft_filters filter:=lowpass cutoff:=1.5;

14.6 Peaks and Baseline

Peaks-and-Baseline

This section deals with Origin's X-Functions that perform peak and baseline calculations, especially valuable for

analyses pertaining to spectroscopy.

14.6.1 X-Functions For Peak Analysis

The following table lists the X-Functions available for peak analysis. You can obtain more information on these

functions from the X-Function Reference help file.

Name Brief Description

pa Perform peak analysis with a pre-saved Peak Analyzer theme file.

paMultiY Perform batch processing of peak analysis on multiple Y datasets

pkFind Pick peaks.

fitpeaks Fit multiple peaks.

https://www.originlab.com/doc/X-Function/ref/fft_filters
https://www.originlab.com/doc/X-Function/ref/pa
https://www.originlab.com/doc/X-Function/ref/paMultiY
https://www.originlab.com/doc/X-Function/ref/pkFind
https://www.originlab.com/doc/X-Function/ref/fitpeaks

LabTalk Scripting Guide

310

blauto Create baseline anchor points.

interp1xy Interpolate the baseline anchor points to create baseline.

subtract_ref Subtract existing baseline dataset from source data.

smooth Smooth the input prior to performing peak analysis.

integ1 Perform integration on the selected range or peak.

For peaks that do not require baseline treatment or other advanced options, you can also

use peak functions to perform nonlinear fitting. For more information on non-linear fitting

from script, please see the Curve Fitting section.

The following sections provide examples on peak analysis.

14.6.2 Creating a Baseline

This example imports a sample data file and creates baseline anchor points using the blauto X-Function.

newbook;

filepath$ = "Samples\Spectroscopy\Peaks on Exponential Baseline.dat";

fname$ = system.path.program$ + filepath$;

impASC;

//Create 20 baseline anchor points

range rData = (1,2), rBase =(3, 4);

blauto iy:=rData number:=20 oy:=rBase;

Plot the data and anchor points in same graph:

// plot a line graph of the data

plotxy rData 200 o:=[<new>];

// plot baseline pts to same layer as scatter

plotxy rBase 201 color:=2 o:=1!;

14.6.3 Finding Peaks

This example uses the pkFind X-Function to find peaks in XY data:

// Import sample pulse data

newbook;

fname$ = system.path.program$ + "Samples\Spectroscopy\Sample Pulses.dat";

https://www.originlab.com/doc/X-Function/ref/blauto
https://www.originlab.com/doc/X-Function/ref/interp1xy
https://www.originlab.com/doc/X-Function/ref/subtract_ref
https://www.originlab.com/doc/X-Function/ref/smooth
https://www.originlab.com/doc/X-Function/ref/Integ1
https://www.originlab.com/doc/LabTalk/guide/Curve-Fitting
https://www.originlab.com/doc/X-Function/ref/blauto
https://www.originlab.com/doc/X-Function/ref/pkFind

Analysis and Applications

311

impASC;

// Find all positive peaks above a peak height value of 0.2

range rin=(1,2);

range routx = 3, routy=4;

pkfind iy:=rin dir:=p method:=max npts:=5 filter:=h value:=0.2

 ocenter:=<none> ocenter_x:=routx ocenter_y:=routy;

Now graph the data as line plot and the peak x,y as scatter:

plotxy iy:=rin plot:=200;

// Set x output column as type X and plot the Y column

routx.type = 4;

plotxy iy:=routy plot:=201 color:=2 o:=1;

14.6.4 Integrating and Fitting Peaks

X-Functions specific to the goals of directly integrating peaks, or fitting multiple peaks, do not exist. Therefore, to

perform peak fitting or integration, one must first use the Peak Analyzer dialog to create and save a theme file.

Once a theme file has been saved, the pa or paMultiY X-Functions can be utilized to perform integration and

peak fitting from script.

14.7 Image Processing

Image-Processing

Origin 8 offers enhanced image processing capabilities compared with earlier versions of Origin. A few examples

of basic image processing are shown below, along with LabTalk scripts for performing the necessary tasks.

To view a list of all X-Functions available for image processing, please type the following command:

lx cat:="image*";

Some of the X-Functions are only available in OriginPro.

14.7.1 Rotate and Make Image Compact

https://www.originlab.com/doc/X-Function/ref/pa
https://www.originlab.com/doc/X-Function/ref/paMultiY

LabTalk Scripting Guide

312

This example rotates, trims the margins, and applies an auto-level to make the image more compact and clear.,

//Create a new folder in the Project Explorer

pe_mkdir RotateTrim path:=aa$;

pe_cd aa$;

//Create a matrix and import an image into it

window -t m;

string fpath$ = "samples\Image Processing and Analysis\rice.bmp";

string fname$ = System.path.program$ + fpath$;

impimage;

window -r %h Original;

//Get the dimension of the original image

matrix -pg DIM nCol1 nRow1;

window -d; //Duplicate the image

window -r %h Modified;

imgRotate angle:=42;

imgTrim t:=17;

matrix -pg DIM nCol2 nRow2; //Get the dimension of the modified iamge

imgAutoLevel;// Apply auto leveling to image

window -s T; //Tile the windows horizontally

//Report

window -n n Report;

old = type.redirection;

type.redirection = 2;

type.notes$=Report;

type "Dimension of the original image: ";

type " $(nCol1) * $(nRow1)\r\n"; // "754 * 668"

type "Dimension of the modified image: "; // "688 * 601"

type " $(nCol2) * $(nRow2)\r\n";

Analysis and Applications

313

type.redirection = old;

We can also rotate, resize, and adjust the color scale of the image in new image window.

Minimum Origin Version Required: 2016 SR0

fname$ = SYSTEM.PATH.PROGRAM$ + "Samples\Image Processing and

Analysis\Rice.bmp";

cvopen fname:=fname$; //open the image in new image window;

cvRotate angle:=-42 interp:=0 resize:=0 trim:=1; //rotate and resize the

image

cvGray img:=<active>;

cvHistEq img:=<active>; //equalizes the histogram

14.7.2 Edge Detection

Subtract background from Cells image then detect the edges.

//Create a new folder in the Project Explorer

pe_mkdir EdgeDetection path:=aa$;

pe_cd aa$;

//Create a matrix and import the cell image into it

window -t m;

LabTalk Scripting Guide

314

string fpath$ = "samples\Image Processing and Analysis\cell.jpg";

string fname$ = System.path.program$ + fpath$;

impimage;

cell$ = %h;

//Create a matrix and import the background image into it

window -t m;

string fpath$ = "samples\Image Processing and Analysis\bgnd.jpg";

string fname$ = System.path.program$ + fpath$;

impimage;

cellbk$ = %h;

//Subtract background and pre-processing

//x, y is the offset of Image2

imgSimpleMath img1:=cellbk$ img2:=cell$ func:=sub12 x:=7 y:=13 crop:=1;

//specify the lowest and highest intensity to be convert to binary 0 or 1.

imgBinary t1:=65 t2:=255;

// the dimensions of median filter is 18

imgMedian d:=18;

//Edge detection

// the threshold value 12 used to determine edge pixels,

// and shv(Sobel horizontal & vertical) Edge detection filter is applied.

imgEdge t:=12 f:=shv;

edge$ = %h;

//Add the edges back to the cell image

imgSimpleMath img1:=edge$ img2:=cell$ func:=add;

window -z;

14.7.3 Apply Rainbow Palette to Gray Image

This example shows how to convert a gray image to rainbow color.

pe_mkdir Conversion path:=aa$;

Analysis and Applications

315

pe_cd aa$;

//Create a matrix and import a sample image

window -t m;

path$ = System.path.program$;

fname$ = path$ + "samples\Image Processing and Analysis\myocyte8.tif";

impimage;

window -r %h Original;

window -d; //Duplicate the image

window -r %h newimage;

imgC2gray; //Convert to gray

//Apply pallete

fname$ = System.path.program$ + "palettes\Rainbow.PAL";

imgpalette palfile:=fname$;

window -s T; //Tile the windows horizontally

Add Palettes to gray scale image in new image window

Minimum Origin Version Required: 2016 SR0

fname$ = SYSTEM.PATH.PROGRAM$ + "Samples\Image Processing and

Analysis\cell.jpg";

cvopen fname:=fname$; //open the image in new image window;

cvGray img:=<active>;

cvPalette img:=<active> fname:="C:\Program

Files\OriginLab\Origin2016\Palettes\Lite Cyan.pal";

14.7.4 Converting Image to Data

When an image is imported into a matrix object, it is kept as type Image, indicated by the icon I on the top right

corner of the window. For certain mathematical operations such as 2D FFT the type needs to be converted to

Data, which would then be indicated by the icon D at the top right corner.

This script example shows importing multiple images into a matrixbook and converting them to type data:

// Find files using wildcard

string path$=system.path.program$+"Samples\Image Processing and Analysis";

findFiles ext:="*tif*";

// Create a new matrixbook and import all images as new sheets

newbook mat:=1;

impImage options.FirstMode:=0 options.Mode:=4;

// Loop over all sheets and convert image to byte data

doc -e LW {

 img2m om:=<input> type:=1;

}

317

15 User Interaction

15.1 User Interaction

User-Interaction

There may be times when you would like to provide a specific type of input to your script that would be difficult to

automate. For instance, you wish to specify a particular data point on a graph, or a certain cell in a worksheet as

input to one or more functions called from script. To do this, LabTalk supports ways of prompting the user for

input while running a script.

In general, consecutive lines of a script are executed until such a user prompt is encountered. Execution of the

script then halts until the user has entered the desired information, and then proceeds. The following sections

demonstrate several examples of programming for this type of user interaction:

Topics covered in this section:

• Getting Numeric and String Input

• Getting Points from Graph

• Bringing Up a Dialog

15.2 Getting Numeric and String Input

Getting-Numeric-and-String-Input

 This section gives examples of prompting for three types of user input during script execution:

Yes/No response

Single String

Multi-Type Input (GetN)

 The User Interface Module (UIM) alllows users to build complex

user interface controls. See the UIM Objects page.

15.2.1 Get a Yes/No Response

The GetYesNo command can be used to get a Yes or No response from the user. The command takes three

arguments:

https://www.originlab.com/doc/LabTalk/guide/Getting-Numeric-and-String-Input
https://www.originlab.com/doc/LabTalk/guide/Getting-Points-from-Graph
https://www.originlab.com/doc/LabTalk/guide/Bringing-Up-a-Dialog
https://www.originlab.com/doc/LabTalk/ref/UIM

LabTalk Scripting Guide

318

Syntax: getyesno stringMessageToUser numericVariableName windowTitle

For example, entering the following line in the Script Window will generate a pop-up window titled Check Sign of

X and ask the user the Yes/No question Should X be positive? with the options Yes, No, and Cancel as

clickable buttons. If Yes is selected, xpos will be assigned a value of 1. If No is selected, xpos will be assigned

the value 0. If Cancel is selected, #Command Error! will be printed, and script execution will stop.

getyesno "Should X be positive?" xpos "Check Sign of X"

If additional script processing is required in any event, this command should be called from elsewhere and the

numeric value can be tested. In the following example, getyesno is called from Main section of code and two

string inputs are passed as arguments to the section.

[Main]

// Here is the calling code

int iVal = -1;

run.section(,myGetYesNo,"Create a Graph of results?" "Graphing Option");

if(iVal > 0)

{

 type "Graph generated"; // Yes response

}

else

{

 type "Graph NOT generated"; // No or Cancel response

}

// 'myGetYesNo' section

[myGetYesNo]

getyesno (%1) iVal (%2);

Because the above LabTalk Script contains two sections, Main and myGetYesNo, it can't run directly in Script

window. Please save it as an OGS file and then type run.section(test.ogs,main) and press ENTER key to run it

in Script window. See Sections in an OGS File.

15.2.2 Get a String

GetString can be used for user entry of a single string.

%B = "";

GetString (Enter as Last, First) Last (Your Name);

// Cancel stops here unless using technique as in GetYesNo

if("%B"!="Last")

{

 type User entered %B.;

}

else

{

 type User clicked OK, but did not modify text;

}

15.2.3 Get Multiple Values

https://www.originlab.com/doc/LabTalk/guide/From-Files

User Interaction

319

The GetN or GetNumber dialog prompts a user for a number, a string, a list entry, or a control selection (in early

versions of Origin only numeric values were possible, hence the name). Prior to version 8.1, GetNumber

supported only string registers (e.g. %A) for string input. In Origin 8.1 and later versions, GetNumber accepts

both string variables (e.g. string str1$) and string registers. GetN currently accepts up to 50 variables in addition

to the dialog title.

Note that strings must first be declared. It is always a good practice to create variables by declaration rather than

by assignment alone; for more see Scope of (String) Variables. For example:

// First, declare the variables to be used:

double nn = 3.2;

string measurement$="length", units$="inches", event$="Experiment #2";

// Use GetN dialog to collect user data:

getn

(Value) nn

(Measurement Type) measurement$

(Units) units$

(Event Name) event$

(Dialog Title);

brings up the following dialog, prompting the user for input:

The values entered in this dialog will be assigned to the declared variables. If the variables have an initial value

(before GetN is called), that value will show up in the input box, otherwise the input box will appear blank. In

either case, the initial value can be changed or kept.

To check the data entered, run the following line of script:

// Output the data:

type In %(event$), the %(measurement$) was $(nn) %(units$);

This next example script assumes a Graph is the active window and prompts for information then draws a line

and labels it. The call to GetN uses string registers and pre-defined lists as inputs.

https://www.originlab.com/doc/LabTalk/ref/GetNumber-cmd
https://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

LabTalk Scripting Guide

320

%A=Minimum;

iColor = 15;

dVal = 2.75;

iStyle = 2;

// Opens the GetN dialog ...

// The extra %-sign in front of %A interprets the string register

// literally, instead of treating it as a variable name.

getn (Label Quantile) %%A

(Color) iColor:@C

(Style) iStyle:@D

(Value) dVal

(Set Quantile);

draw -n %A -l -h dVal; // Draws a horzontal, named line

%A.color = iColor; // Sets the line color

%A.linetype = iStyle; // Sets the line style

// Creates a text label named QLabel at the right end of the

// line

label -s -a x2 dVal -n QLabel %A;

%A.Connect(QLabel,1); // Connects the two objects

Note : The script requires that %A should be a single word and that object QLabel does not exist.

The following character sequences, beginning with the @ character, access pre-defined lists for GetN

arguments:

List Description

 :@B List of Object Background attributes

 :@C Basic Color List

 :@D Line Style List

 :@P Pattern List

 :@S Font Size List

 :@T Font List

User Interaction

321

 :@W Line Width List

 :@Z Symbol Size List

Note that the value returned when a list item is selected within the GetN dialog is the index of the item in the list.

For instance, if one of your GetN entries is:

(Font Size) fs:@S

and you select 18 from the drop-down list in the dialog, the variable fs will hold the value 8, since 18 is the 8th

item in the list.

Below is another example script that allows a user to change a Symbol Plot to a Line + Symbol Plot or the

reverse:

get %C -z iSymbolSize; // Get current Symbol Size

get %C -cl iLineColor; // Get current Line color

iUseLine = 0;

// Now open the dialog to the user

getn (Symbol Size) iSymbolSize

 (Use Line) iUseLine:2s

 (Line Color) iLineColor:@C

 (Set Plot Style);

// If User asked for Line

if(iUseLine == 1)

{

 set %C -l 1; // Turn on the line

 set %C -cl iLineColor; // Set the line color

}

// .. if not

else

 set %C -l 0; // Turn off line

set %C -z iSymbolSize; // Set Symbol size

15.3 Getting Points from Graph

Getting-Points-from-Graph

 Any of the Tools in the Origin Tools Toolbar can be initiated from script, but three can be linked to macros and

programmed to do more.

To program tools, define the pointproc macro to execute appropriate code. The pointproc macro runs when the

user double-clicks or single-clicks and presses the Enter key.

LabTalk Scripting Guide

322

15.3.1 Screen Reader

This script puts a label on a graph using the Screen Reader tool.

dotool 2; // Start the Screen Reader Tool

dotool -d; // Allow a single click to act as double click

// Here we define our '''pointproc''' macro

def pointproc {

 label -a x y -n MyLabel Hello;

 dotool 0; // Reset the tool to Pointer

 done = 1; // Set the variable to allow infinite loop to end

}

// Script does not stop when using a tool,

// so further execution needs to be prevented.

// This infinite loop waits for the user to select the point

for(done = 0 ; done == 0;) sec -p .1;

// A .1 second delay gives our loop something to do:

type Continuing script ...;

// Once the macro has run, our infinite loop is released

15.3.2 Data Reader

The Data Reader tool is similar to the Screen Reader, but the cursor locks on to actual data points. If defined, a

quittoolbox macro runs if user presses Esc key or clicks the Pointer Tool to stop the Data Reader.

This example assumes a graph window is active and expects the user to select three points on their graph.

@global = 1;

dataset dsx, dsy; // Create two datasets to hold the X and Y values

dotool 3; // Start the tool

// Define the macro that runs for each point selection

def pointproc {

 dsx[count] = x; // Get the X coordinate

 dsy[count] = y; // Get the Y coordinate

 count++; // Increment count

 if(count == 4) dotool 0; // Check to see if we have three points

 else type -a Select next point;

}

// Define a macro that runs if user presses Esc key,

// or clicks the Pointer Tool:

def quittoolbox {

 // Error : Not enough points

 if(count < 4) ty -b You did not specify three datapoints;

 else

 {

 draw -l {dsx[1],dsy[1],dsx[2],dsy[2]};

 draw -l {dsx[2],dsy[2],dsx[3],dsy[3]};

 draw -l {dsx[3],dsy[3],dsx[1],dsy[1]};

 double ds12 = dsx[1]*dsy[2] - dsy[1]*dsx[2];

 double ds13 = dsy[1]*dsx[3] - dsx[1]*dsy[3];

 double ds23 = dsy[3]*dsx[2] - dsy[2]*dsx[3];

 area = abs(.5*(ds12 + ds13 + ds23));

 type -b Area is $(area);

 }

}

count = 1; // Initial point

User Interaction

323

type DoubleClick your first point (or SingleClick and press Enter);

The following example allows user to select arbitrary number of points until Esc key is pressed or user clicks on

the Pointer tool in the Tools toolbar.

@global = 1;

dataset dsx, dsy; // Create two datasets to hold the X and Y values

dotool 3; // Start the tool

// Define the macro that runs for each point selection

def pointproc {

 count++; // Increment count

 dsx[count] = x; // Get the X coordinate

 dsy[count] = y; // Get the Y coordinate

}

// Define a macro that runs if user presses Esc key,

// or clicks the Pointer Tool:

def quittoolbox {

 count=;

 for(int ii=1; ii<=count; ii++)

 {

 type $(ii), $(dsx[ii]), $(dsy[ii]);

 }

}

count = 0; // Initial point

type "Click to select point, then press Enter";

type "Press Esc or click on Pointer tool to stop";

Pressing Enter key to select a point works more reliably than double-clicking on the point.

You can also use the getpts command to gather data values from a graph.

15.3.3 Data Selector

The Data Selector tool is used to set a Range for a dataset. A range is defined by a beginning row number

(index) and an ending row. You can define multiple ranges in a dataset and Origin analysis routines will use

these ranges as input, excluding data outside these ranges.

Here is a script that lets the user select a range on a graph.

 // Start the tool

 dotool 4;

 // Define macro that runs when user is done

 def pointproc {

 done = 1;

 dotool 0;

 }

 // Wait in a loop for user to finish by pressing ...

 // (1) Enter key or (2) double-clicking

 for(done = 0 ; done == 0 ;)

 {

 sec -p .1;

https://www.originlab.com/doc/LabTalk/ref/GetPts-cmd

LabTalk Scripting Guide

324

 }

 // Additional script will run once user completes tool.

 ty continuing ..;

When using the Regional Data Selector or the Regional Mask Tool you can hook into the quittoolbox macro

which triggers when a user presses Esc key:

 // Start the Regional Data Selector tool with a graph active

 dotool 17;

 // Define macro that runs when user is done

 def quittoolbox {

 done = 1;

 }

 // Wait in a loop for user to finish by pressing ...

 // (1) Esc key or (2) clicking Pointer tool:

 for(done = 0 ; done == 0 ;)

 {

 sec -p .1;

 }

 // Additional script will run once user completes tool.

 ty continuing ..;

And we can use an X-Function to find and use these ranges:

// Get the ranges into datasets

dataset dsB, dsE;

mks ob:=dsB oe:=dsE;

// For each range

for(idx = 1 ; idx <= dsB.GetSize() ; idx++)

{

 // Get the integral under the curve for that range

 integ %C -b dsB[idx] -e dsE[idx];

 type Area of %C from $(dsB[idx]) to $(dsE[idx]) is $(integ.area);

}

List of Tools in Origin Tools Toolbar. Those in bold are useful in programming.

Tool

Number
Description

0
Pointer - The Pointer is the default condition for the mouse and makes the mouse act

as a selector.

1
ZoomIn - A rectangular selection on a graph will rescale the axes to the rectangle.

(Graph only)

2 Screen Reader - Reads the location of a point on a page.

User Interaction

325

3 Data Reader - Reads the location of a data point on a graph. (Graph only)

4 Data Selector - Sets a pair of Data Markers indicating a data range. (Graph only)

5 Draw Data - Allows user the draw data points on a graph. (Graph only)

6 Text - Allows text annotation to be added to a page.

7 Arrow - Allows arrow annotation to be added to a page.

8 Curved Line - Allows curved line annotation to be added to a page.

9 Line - Allows line annotation to be added to a page.

10 Rectangle - Allows rectangle annotation to be added to a page.

11 Circle - Allows circle annotation to be added to a page.

12 Closed Polygon - Allows closed polygon annotation to be added to a page.

13 Open Polygon - Allows open polygon annotation to be added to a page.

14 Closed Region - Allows closed region annotation to be added to a page.

15 Open Region - Allows open region annotation to be added to a page.

16 ZoomOut - Zooms out (one level) when clicking anywhere in a graph. (Graph only)

17 Regional Data Selector - Allows selection of a data range. (Graph only)

18 Regional Mask Tool - Allows masking a points in a data range. (Graph only)

LabTalk Scripting Guide

326

15.4 Bringing Up a Dialog

Bringing-Up-a-Dialog

15.4.1 X-Function dialogs

X-Functions whose names begin with dlg may be called in your scripts to facilitate dialog-based interaction.

Name Brief Description

dlgChkList Prompt to select from a list

dlgFile Prompt with an Open File dialog

dlgPath Prompt with an Open Path dialog

dlgRowColGoto Go to specified row and column

dlgSave Prompt with a Save As dialog

dlgTheme Select a theme from a dialog

Possibly the most common such operation is to select a file from a directory. The following line of script brings up

a dialog that pre-selects the PDF file extension (group), and starts at the given path location (init):

dlgfile group:=*.pdf init:="C:\MyData\MyPdfFiles";

type %(fname$); // Outputs the selected file path to Script Window

The complete filename of the file selected in the dialog, including path, is stored in the variable fname$. If init is

left out of the X-Function call or cannot be found, the dialog will start in the User Files folder.

The dlgsave X-Function works for saving a file using a dialog.

dlgsave ext:=*.ogs;

type %(fname$); // Outputs the saved file path to Script Window

15.4.2 Origin C dialogs

The type.remind() method provides another way to open a dialog for user interaction. This method creates a

private reminder message dialog. An Ini file is used to initialize the dialog. Each section in the ini file is used for a

single message. The same functionality can be created in Origin C using the global function

PrivateReminderMessage.

https://www.originlab.com/doc/X-Function/ref/dlgChkList
https://www.originlab.com/doc/X-Function/ref/dlgFile
https://www.originlab.com/doc/X-Function/ref/dlgPath
https://www.originlab.com/doc/X-Function/ref/dlgRowColGoto
https://www.originlab.com/doc/X-Function/ref/dlgSave
https://www.originlab.com/doc/X-Function/ref/dlgTheme
https://www.originlab.com/doc/X-Function/ref/dlgSave
https://www.originlab.com/doc/OriginC/ref/PrivateReminderMessage

User Interaction

327

For more information, see type.remind().

https://www.originlab.com/doc/LabTalk/ref/Type-obj

329

16 Working with Excel

Working-with-Excel

Origin can use Excel Workbooks directly within the Origin Workspace. The Excel Workbooks can be stored

within the project or linked to an external Excel file (*.xls, *.xlsx). An external Excel Workbook which was opened

in Origin can be converted to internal, and an Excel Workbook created within Origin can be saved to an external

Excel file.

16.1 Open Excel Workbook

16.1.1 Internal Excel Workbook

To create a new Excel Workbook within Origin ..

window -tx;

The titlebar will include the text [Internal] to indicate the Excel Workbook will be saved in the Origin Project file.

16.1.2 External Excel Workbook

To open an external Excel file ..

document -append D:\Test1.xls;

The titlebar will include the file path and name to indicate the Excel file is saved external to the Origin Project file.

16.2 Save Excel Workbook

16.2.1 Internal Excel Workbook

Though the internal Excel workbook can be saved automatically with Origin project, you can save this internal

Excel Workbook as an external file at which point it becomes a linked external file instead.

// The Excel window must be active. win -o can temporarily make it active

window -o Book5 {

 // You must include the file path and the .xls extension

 save -i D:\Test2.xls;

}

16.2.2 External Excel Workbook

You can re-save an external Excel Workbook to a new location creating a new file and link leaving the original

file on disk ..

// Assume the Excel Workbook is active

// %X holds the path of an opened Origin Project file

save -i %XNewBook.xls;

16.3 Update Origin When Excel Workbook Changes

LabTalk Scripting Guide

330

When you type or paste data into an Excel workbook sheet, you can update Origin by set -ui. For example:

//Select File: New: Excel from Origin menu

//Enter 123 in Row1 ColumnA in Excel worksheet

set Book2 -ui; // Update Origin

col(A)[1]=; //Get value in Row1 ColumnA

In Origin's GUI, you can also update Origin by right clicking on the title bar or Excel

workbook and then selecting Update Origin... in the context menu.

16.4 Connect Excel Workbook

If you want to link Excel files to Origin project, you can use the Microsoft DDE protocol by dde command. For

example:

// Before running the following example, launch Excel workbook manually or

use the run -e command.

dde -c Excel|[Test1.xls]Sheet1 id; //Connect to Excel worksheet

[Test1.xls]Sheet1

if(id>=0) //Check if the connection is successful

{

 // Send data in columns A through F and rows 12 through 25

 // of Excel worksheet to Origin worksheet and start from column 1 and

row 1.

 dde -rc id R2C1:R11C2 [Book1]Sheet1!R1C1;

}

dde -d id; //Disconnect

See also dde command.

16.5 Run Excel Macro

Origin uses an excel object method excel.runto run Excel macros from Origin.

//SheetName is the name of the Excel worksheet containing the macro

//No more than five arguments

excel.run(SheetName.MacroName, Arg1, Arg2, Arg3..., Arg5);

Or

excel.run(ModuleName.MacroName,Arg1, Arg2, Arg3..., Arg5);

You may need to select and activate a range for running Excel Macro, try the method excel.runrange of

excel object. For example:

//It will activate Sheet2 of the (active) Excel workbook

//and select columns A through F and rows 12 through 25.

excel.runRange(Sheet2,A12:F25);

See also excel object

https://www.originlab.com/doc/Origin-Help/Work-Excel-Basic
https://www.originlab.com/doc/LabTalk/ref/DDE-cmd
https://www.originlab.com/doc/LabTalk/ref/Excel-obj

Working with Excel

331

16.6 Invoke Visual Basic Function

In Origin, the excel object also provides script access for invoking Visual Basic application functions. Similar to

running excel macro in Origin, you can invoke Visual Basic function by:

Excel.Run(FunctionName, Arg1, Arg2,..., Arg5)

For example, there is a Visual Basic function as below:

Sub Hello()

 MsgBox ("Hello, world!")

End Sub

You can invoke this function by:

//Keep the workbook containing the function above active

excel.run(Hello); //A message box will show up

See also excel object

https://www.originlab.com/doc/LabTalk/ref/Excel-obj

333

17 Running R in Origin

17.1 Running R in Origin

LT-Running-R

There are a couple of ways to interact with R from Origin.

Using the R Console and the Rserve Console. These tools allow Origin users to issue R commands within the

Origin environment and transfer data between the two applications either using a dialog interface, or by using

commands. For examples, see Data Analysis in Origin with R Console.

Using the LabTalk objects R and RS (RServe) . The R and RS LabTalk objects can execute R commands and

pass variables and datasets between Origin and R.

To make use of the R object and R Console, you need to have R installed locally. To use the RS object and the

Rserve Console, you will need to have the R packages installed on the server side, and communicate to the

server computer with Origin on the client side.

For information on obtaining and installing R locally, see this topic.

For information on setting up an R server, see this topic.

Minimum Origin Version Required: 2016 SR0

17.1.1 Execute R Command in Script Window

We can use LabTalk objects R and RS to execute R commands and pass variables between LabTalk and R. The

examples below work for both R and RServe (replace "R" with "RS").

17.1.1.1 Initialize R or RS

Before running R command in Labtalk, you can initialize the R application by running:

if(R.Init()<0)

 {

 type -b "Please install R software first.";

 return;

 }

in the Script Window.

To initialize the RS object, please refer to Script below, and view this page for parameters setting.

if(RS.Init(***.***.**.**, 12306, user, password)<0) // Address is Rserve PC

IP, e.g: 192.168.18.75

 {

https://www.originlab.com/doc/Origin-Help/R-Rserve-Console
https://www.originlab.com/doc/Origin-Help/Analysis-Origin-Rconsole
https://www.originlab.com/doc/LabTalk/ref/R-obj
https://www.originlab.com/doc/LabTalk/ref/Rserve-obj
https://www.originlab.com/doc/Origin-Help/R-Rserve-Console
https://www.originlab.com/doc/Origin-Help/Setup-R-Server
https://www.originlab.com/doc/Origin-Help/Setup-R-Server

LabTalk Scripting Guide

334

 type -b "Initialize failed.";

 return;

 }

17.1.1.2 Execute R and RS command

Execute R command

R.Exec(rand<-sample(x = 1:6, size = 50, replace = TRUE));

R.Exec(rand);

and perform analysis:

R.Exec(sum<-summary(rand));

R.Exec(sum);

The summary could be shown in this way:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 2.00 3.50 3.56 5.00 6.00

Execute Multiple R Command Lines

R.Exec("array<-1:25;dim(array)<-c(5,5);array") // Run multiple R command

lines separated by semicolon

Execute RS command

string fname$ = system.path.program$ + "Samples\Curve Fitting\Sensor01.dat";

impasc;

range r1 = 1:2;

//send data from worksheet to R vector

RS.Send(%(r1), RR, 2); //send the range to R data.frame

RS.Exec(fit<-lm(RR$Sensor.Output~RR$Displacement)); //perform linear fit

RS.Exec(fit);

17.1.1.2.1 Execute R/RS command example

In addition, a practical example is introduced in this page Perform Logistic regression in R by using LabTalk.

17.1.1.3 Execute .R file

If you want to execute a *.R file in your computer, you can use the syntax below in Script Window:

R.Exec(source(".R file path"));

For example:

R.Exec(source("D:\\RData\\test.R"));

17.1.1.4 Send Origin Dataset to R Console

//Active a workbook

R.Send("1!1", arr1, 0); // Send Column 1 in Sheet 1 current workbook to R as

variable ''array'' (type vector)

range rx=1; // Use range notation rx to refer to column 1 in active worksheet

https://www.originlab.com/doc/LabTalk/guide/R-Console-Example

Running R in Origin

335

R.Send(%(rx), rlabel, 0); // Send column 1 to R as variable rlabel (type

vector)

// Suppose the values of first columns are: 1, 2, 3, --

range rr = 1; // Refer to first column in active worksheet

R.Send(%(rr), temp, 0); // Send first column as R variable temp

17.1.1.5 Receive R Variable as Origin Dataset

R.Receive("1!1",RMat,1) // Receive R Matrix Variable RMat to first matrix

object in current matrixbook and first matrix sheet

R.Receive("1!1",df$vec1,0); //Receive data member 'vec1' in R data frame 'df'

to column as a vector

//Suppose there is a logical vector temp with value [1] FALSE FALSE TRUE

range rl=1;

R.Receive(%(rl),temp,0); // Column 1 in active sheet would be 0,0,1 instead

17.1.1.6 Pass Variables between Labtalk and R

R and RS objects have four member functions: GetReal, SetReal, GetStr, and SetStr which are used to pass

numeric and string variables between Labtalk and R, for example:

You define numeric or string variable in R Serve Console,

Rvar=16

Rstr="height"

e1=list(name="Apple", a=3)

You can pass value to LabTalk variable in this way:

R.GetReal(LTVar, Rvar)

R.GetStr(LTStr$, Rstr)

//pass a real number in a R list 'e1' to a Labtalk variable

R.GetReal(LTVar,e1$a);

Or you define a numeric or string variable in LabTalk, you can pass the value to R variable in this way:

R.SetReal(LTVar2, Rvar)

R.SetStr(LTStr2$, Rstr)

17.1.2 Utilizing R Console or Rserve Console

We can use the R Console (or Rserve Console) to run R commands directly in the dialog input box, then, pass

the resulting values into an Origin worksheet using buttons << and >>. Data can be exchanged in multiple

formats (vector, matrix, data.frame) between R and Origin worksheet (or matrix sheet) by using R console (or

Rserve Console).

The following graph shows how to generate random data with a binomial distribution and pass it to an Origin

worksheet.

https://www.originlab.com/doc/LabTalk/ref/R-obj
https://www.originlab.com/doc/LabTalk/ref/Rserve-obj

LabTalk Scripting Guide

336

17.2 Examples: Perform Logistic regression in R by using LabTalk

R-Console-Example

Logistic regression models a relationship between predictor variables and a categorical response variable. The

following example shows how to perform a Logistic regression on data

Origin2016\Samples\Statistics\LogRegData.dat by using Labtalk R object and RS objectin Script window.

We first read data into Origin worksheet, and send the data as R data frame. Then perform Logistic Regression

on imported data by using R command glm, finally create a new Origin worksheet as the summary table for

fitting results, and send the results including parameters, residual, aic and dispersion...calculated by R into

summary table worksheet.

17.2.1.1 R Object

//R object example to call R in LabTalk

//run.section(testRex,LogisticRoex)

//Import sample data

newbook;

string fn = system.path.program$ + "Samples\Statistics\LogRegData.dat";

impasc fname:=fn$ options.sparklines:=0;

//Check whether R is installed

if(R.Init()<0)

{

https://www.originlab.com/doc/LabTalk/ref/R-obj
https://www.originlab.com/doc/LabTalk/ref/Rserve-obj
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

Running R in Origin

337

 type -b "Please install R software first.";

 return;

}

//Send imported data in Origin to R's data frame variable dfy

//Data frame dfy includes four columns: Age, Salary, Gender and Career_Change

//Gender and Career_Change columns are category data

R.Send("!", dfy, 2);

//Perform Logistic Regression on imported data

//Results are stored in R's list variable yr

R.Exec("yf<-glm(Career_Change ~ Age + Salary + Gender,

family=binomial(logit), data=dfy)");

R.Exec("yr<-summary(yf)");

//New a workbook to output R's result

newbook;

page.longname$ = "Logistic Regression Result";

//Send R's coefficients matrix in list object to Origin's worksheet

//and start at 1st column in the worksheet

R.Receive("1", yr$coefficients);

int nc = wks.ncols;

wks.ncols = nc + 6;

//Calculate the exp of parameters

wcol(nc+1)[L]$ = "Exp of Parameter";

wcol(nc+1) = exp(wcol(2));

//Set label and column Long Name for calculated result

wcol(nc+2)[1]$ = "Residual";

wcol(nc+3)[L]$ = "DF";

wcol(nc+4)[L]$ = "Deviance";

wcol(nc+5)[L]$ = "AIC";

wcol(nc+6)[L]$ = "Dispersion Parameter for Binomial Family";

//Send R's residual info to Origin's worksheet

double dfr, devr, aic, rlev;

//Get LabTalk double variables from list object's element variables in R

R.GetReal(dfr, yr$df.residual);

R.GetReal(devr, yr$deviance);

R.GetReal(aic, yr$aic);

R.GetReal(rlev, yr$dispersion);

//Set worksheet's cells with LabTalk double variables

wcol(nc+3)[1] = dfr;

wcol(nc+4)[1] = devr;

wcol(nc+5)[1] = aic;

wcol(nc+6)[1] = rlev;

//Clear all R variables

R.Reset();

17.2.1.2 RS Object

LabTalk Scripting Guide

338

You need to Setup R Serve before running this example.

//RS example to call Rserve in LabTalk

//Import sample data

newbook;

string fn = system.path.program$ + "Samples\Statistics\LogRegData.dat";

impasc fname:=fn$ options.sparklines:=0;

//Connect Rserve. An Rserve should be set up first.

if(RS.Init(***.***.***.***, 12306)<0) //input the IP address of the

server side here

{

 type -b "Fail to connect R server.";

 return;

}

//Send imported data in Origin to R's data frame variable dfy

//Data frame dfy includes four columns: Age, Salary, Gender and Career_Change

//Gender and Career_Change columns are category data

RS.Send("!", dfy, 2);

//Perform Logistic Regression on imported data

//Results are stored in R's list variable yr

RS.Exec("yf<-glm(Career_Change ~ Age + Salary + Gender,

family=binomial(logit), data=dfy)");

RS.Exec("yr<-summary(yf)");

//New a workbook to output R's result

newbook;

page.longname$ = "Logistic Regression Result";

//Send R's coefficients matrix in list object to Origin's worksheet

//and start at 1st column in the worksheet

RS.Receive("1", yr$coefficients);

int nc = wks.ncols;

wks.ncols = nc + 6;

//Calculate the exp of parameters

wcol(nc+1)[L]$ = "Exp of Parameter";

wcol(nc+1) = exp(wcol(2));

//Set label and column Long Name for calculated result

wcol(nc+2)[1]$ = "Residual";

wcol(nc+3)[L]$ = "DF";

wcol(nc+4)[L]$ = "Deviance";

wcol(nc+5)[L]$ = "AIC";

wcol(nc+6)[L]$ = "Dispersion Parameter for Binomial Family";

//Send R's residual info to Origin's worksheet

double dfr, devr, aic, rlev;

//Get LabTalk double variables from list object's element variables in R

RS.GetReal(dfr, yr$df.residual);

RS.GetReal(devr, yr$deviance);

RS.GetReal(aic, yr$aic);

RS.GetReal(rlev, yr$dispersion);

https://www.originlab.com/doc/Origin-Help/Setup-R-Server

Running R in Origin

339

//Set worksheet's cells with LabTalk double variables

wcol(nc+3)[1] = dfr;

wcol(nc+4)[1] = devr;

wcol(nc+5)[1] = aic;

wcol(nc+6)[1] = rlev;

//Clear all R variables

RS.Reset();

341

18 Working with Python

work-with-python

Origin provides an embedded Python environment for interacting with Origin objects such as worksheets,

matrixsheets and graphs. Access to calling Python functions, executing Python code, and installing packages are

all supported from LabTalk.

For details, please refer to the Embedded Python documentation.

https://www.originlab.com/doc/python/Run-Python-in-Origin

343

19 Automation and Batch Processing

19.1 Automation and Batch Processing

Automation-and-Batch-Processing

This chapter demonstrates using LabTalk script to automate analysis in Origin by creating Analysis Templates,

and using these templates to perform batch processing of your data:

Topics covered in this section:

• Analysis Templates

• Using Set Column Values to Create an Analysis Template

• Batch Processing

19.2 Analysis Templates

Analysis-Templates

 Analysis Templates are pre-configured workbooks which can contain multiple sheets including data sheets,

report sheets from analysis operations, and optional custom report sheets for presenting results. The analysis

operations can be set to recalculate on data change, thus allowing repeat use of the analysis template for batch

processing or manual processing of multiple data files.

The following script example opens a built-in Analysis Template, Dose Response Analysis.ogw, and imports a

data file into the data sheet. The results are automatically updated based on the new data.

string fPath$ = system.path.program$ + "Samples\Curve Fitting\";

string fname$ = fPath$ + "Dose Response Analysis.ogw";

// Append/open the analsys template to current project

doc -a %(fname$);

string bn$ = %H;

win -o bn$ {

 // Import no inhibitor data

 fname$ = fPath$ + "Dose Response - No Inhibitor.dat";

 impASC options.Names.FNameToSht:=0

 options.Names.FNameToBk:=0

 options.Names.FNameToBkComm:=0

 orng:=[bn$]"Dose Response - No Inhibitor";

 // Import inhibitor data

 fname$ = fPath$ + "Dose Response - Inhibitor.dat";

 impASC options.Names.FNameToSht:=0

 options.Names.FNameToBk:=0

 options.Names.FNameToBkComm:=0

 orng:=[bn$]"Dose Response - Inhibitor";

https://www.originlab.com/doc/LabTalk/guide/Analysis-Templates
https://www.originlab.com/doc/LabTalk/guide/Using-Set-Column-vals-to-Create-an-Analysis-Template
https://www.originlab.com/doc/LabTalk/guide/Batch-Processing

LabTalk Scripting Guide

344

 // Active the result worksheet

 page.active$ = result;

}

To learn how to create Analysis Templates, please refer to the Origin tutorial: Creating and Using Analysis

Templates.

19.3 Using Set Column Values to Create an Analysis Template

Using-Set-Column-vals-to-Create-an-Analysis-Template

 Many analysis tools in Origin provide a Recalculate option, allowing for results to update when source data is

modified, such as when importing new data to replace existing data. A workbook containing such operations can

be saved as an Analysis Template for repeated use with Batch Processing.

The Set Column Values feature can also be used to create such Analysis Templates when custom script is

needed for your analysis.

In order to create Analysis Templates using the Set Column Values feature, the following steps are

recommended:

Set up your data sheet, such as importing a representative data file.

Add an extra column to the data sheet, or to a new sheet in the same workbook.

Open the Set Column Values dialog from this newly added column.

Enter the desired analysis script in the Before Formula Scripts panel. Note that your script can call X-Functions

to perform multiple operations on the data.

In you script, make sure to reference at least one column or cell of your data sheet that will get replaced with new

data. You can do this by defining a range variable that points to a data column and then use that range variable

in your script for computing your custom analysis output.

Set the Recalculate drop-down in the dialog to either Manual or Auto, and press OK.

Use the File: Save Workbook as Analysis Template... menu item to save the Analysis Template.

For an example on setting up such a template using script, please refer to the Origin tutorial: Creating Analysis

Templates using Set Column Value.

19.4 Batch Processing

Batch-Processing

One may often encounter the need to perform batch processing of multiple sets of data files or datasets in Origin,

repeating the same analysis procedure on each set of data. This can be achieved in three different ways, and the

following sections provide information and examples of each.

https://www.originlab.com/doc/Tutorials/AnalysisTemplate-Create-Use
https://www.originlab.com/doc/Tutorials/AnalysisTemplate-Create-Use
https://www.originlab.com/doc/Tutorials/AnalysisTemplate-SetColVal
https://www.originlab.com/doc/Tutorials/AnalysisTemplate-SetColVal

Automation and Batch Processing

345

19.4.1 Processing Each Dataset in a Loop

One way to achieve batch processing is to loop over multiple files or datasets, and within the loop process each

dataset by calling appropriate X-Functions and other script commands to perform the necessary data processing.

The following example shows how to import 10 files and perform a curve fit operation and print out the fitting

results:

// Find all files using wild card

string path$ = system.path.program$ + "Samples\Batch Processing"; // Path to

find files

// Find the files in the folder specified by path$ variable (default)

// The result file names are stored in the string variable fname$

// Separated by CRLF (default). Here wild card * is used, which means

// all files start with "T", and with the extension "csv"

findFiles ext:="T*.csv";

// Start a new book with no sheets

newbook sheet:=0;

// Loop over all files

for(int iFile = 1; iFile <= fname.GetNumTokens(CRLF); iFile++)

{

 // Get file name

 string file$ = fname.GetToken(iFile, CRLF)$;

 // Import file into a new sheet

 newsheet;

 impasc file$;

 // Perform gaussian fitting to col 2 of the current data

 nlbegin iy:=2 func:=gaussamp nltree:=myfitresult;

 // Just fit and end with no report

 nlfit;

 nlend;

 // Print out file name and results

 type "File Name: %(file$)";

 type " Peak Center= $(myfitresult.xc)";

 type " Peak Height= $(myfitresult.A)";

 type " Peak Width= $(myfitresult.w)";

}

19.4.2 Using Analysis Template in a Loop

Custom templates for analysis can be created in Origin by performing the necessary data processing from the

GUI on a representative dataset and then saving the workbook, or the entire project, as an Analysis Template.

The following example shows how to make use of an existing analysis template to perform curve fitting on 10

files:

// Find all files using wild card

string fpath$ = "Samples\Batch Processing\";

string path$ = system.path.program$ + fpath$; // Path to find files

// Find the files in the folder specified by path$ variable (default)

// The result file names are stored in the string variable fname$

// Separated by CRLF (default). Here wild card * is used, which means

// all files start with "T", and with the extension "csv"

findFiles ext:="T*.csv";

LabTalk Scripting Guide

346

// Set path of Analysis Template

string templ$ = path$ + "Peak Analysis.OGW";

// Loop over all files

for(int iFile = 1; iFile <= fname.GetNumTokens(CRLF); iFile++)

{

 // Open an instance of the analysis template

 doc -a %(templ$);

 // Import current file into first sheet

 page.active = 1;

 impasc fname.GetToken(iFile, CRLF)$

}

// Issue a command to update all pending operations

// in case the operations were set to manual recalculate in the template

run -p au;

19.4.3 Using Batch Processing X-Functions

Origin provides script-accessible X-Functions to perform batch processing, where there is no need to loop over

files or datsets. One simply creates a list of desired data to be processed and calls the relevant X-Function. The

X-Function then either uses a template or a theme to process all of the specified data. Some of these X-

Functions can also create an optional summary report that contains results from each file/dataset that were

marked for reporting by the user, in their custom analysis template.

The table below lists X-Functions available for batch analysis:

Name Brief Description

batchProcess
Perform batch processing of multiple files or datasets using Analysis Template, with

optional summary report sheet

paMultiY Perform peak analysis of multiple Y datasets using Peak Analyzer theme

The following script shows how to use the batchProcess X-Function to perform curve fitting of data from 10 files

using an analysis template, with a summary report created at the end of the process.

// Find all files using wild card

string path$ = system.path.program$ + "Samples\Batch Processing\"; // Path

to find files

// Find the files in the folder specified by path$ variable (default)

// The result file names are stored in the string variable fname$

// Separated by CRLF (default). Here wild card * is used, which means

// all files start with "T", and with the extension "csv"

findFiles ext:="T*.csv";

// Set path of Analysis Template

string templ$ = path$ + "Peak Analysis.OGW";

https://www.originlab.com/doc/X-Function/ref/batchProcess
https://www.originlab.com/doc/X-Function/ref/paMultiY
https://www.originlab.com/doc/X-Function/ref/batchProcess

Automation and Batch Processing

347

// Call the Batch Processing X-Function

// Keep only the final summary sheet, delete intermediate books

batchProcess batch:=1 name:=templ$ data:=0 fill:="Raw Data"

 append:="Summary" remove:=1 method:=impASC;

Batch processing using X-Functions can also be performed by calling Origin from an external console; for more

see Running Scripts From Console.

https://www.originlab.com/doc/LabTalk/guide/From-Console

349

20 Function Reference

20.1 Function Reference

Function-Reference

This section provides reference lists of functions, X-Functions and Origin C Functions that are supported in

LabTalk scripting:

Topics covered in this section:

• LabTalk-Supported Functions

• LabTalk-Supported X-Functions

20.2 LabTalk-Supported Functions

LT-Supported-Functions

20.2.1 String Functions

Note: All of the following functions are available only in the Origin 8 SR6 or later version!

Name Brief Description

Between(str$, str1$, str2$)$

Extracts string or characters between str1$ and str2$

in str$. examples:

Between([Results]"March

2009"!"Average

Return"[1:31],"!","[")$ returns

"Average Return".

Char(number)$
Takes an integer 1-255, returns the ASCII character.

examples:

https://www.originlab.com/doc/LabTalk/guide/LT-Supported-Functions
https://www.originlab.com/doc/LabTalk/guide/LT-Supported-XFs
https://www.originlab.com/doc/LabTalk/ref/Between-func
https://www.originlab.com/doc/LabTalk/ref/Char-func

LabTalk Scripting Guide

350

char(65)$ returns A.

char(col(B))$ returns ASCII characters

corresponding to integer values in col(B).

Code(str$)

Takes a string, returns ASCII code for the first

character. examples:

str$ = "abc"; code(str$) returns 97.

code(col(D)) returns integers corresponding to

the ASCII code for the first character in the string in

col(D).

Compare(str1$, str2$ [,Case])

Takes two strings, returns 1 (identical) or 0 (not

identical). Option Case controls case sensitivity: 1 =

true (default), 0 = false. examples:

str1$ = "ABC"; str2$ = "abc";

compare(str1$,str2$,0) returns 1.

compare(col(F), col(G),1) returns "0"

when string or case does not match, or "1" when

string and case do match.

CompareNoCase(str$, str2$)

Takes two strings, returns 0 (identical), -1 (str$ is

less than str2$ in the alphabetical order), or 1(str$ is

greater than str2$). examples:

str1$ = "ABC"; str2$ = "abc";

comparenocase(str1$,str2$) returns 0.

comparenocase("ijk","ab") returns 1

comparenocase("ijk","xyz") returns -1

EnvVar(variableName$)

Takes a string, returns the string value stored in the

corresponding Windows environment variable. if this

string is not a valid Windows environment variable

string, missing will be returned. examples:

EnvVar("appdata")$ returns the directory path

https://www.originlab.com/doc/LabTalk/ref/Code-func
https://www.originlab.com/doc/LabTalk/ref/Compare-func
https://www.originlab.com/doc/LabTalk/ref/CompareNoCase-func
https://www.originlab.com/doc/LabTalk/ref/EnvVar-func

Function Reference

351

to the Application Data folder.

Exact(str1$, str2$)

Takes two strings, returns 1 (identical, including case)

or 0 (not identical). examples:

str1$ = "ABC"; str2$ = "abc";

exact(str1$,str2$) returns 0.

exact(col(F), col(G)) returns "0" if not an

exact string match or "1" if exact match (incl. case).

Find(within$,find$[,StartPos])

Searches within$ for find$, returns the position from

the first character in within$ (found) or -1 (not found).

 Option StartPos controls start search position

(default = 1). Case sensitive. No wildcards.

examples:

str1$ = "abcde"; str2$ = "bc";

find(str1$,str2$) returns 2.

find(col(G),col(J)) searches the col(G)

string for the col(J) string, starting from the first

character; if found, returns the position of the col(J)

string, in the col(G) string.

FindOneOf(within$,find$)

Searches find$ for the first character that is found in

within$, if found, returns the 1-base index of the first

found character. Case sensitive. No wildcards.

examples:

str1$ = "abcde"; str2$ = "xb";

findOneOf(str1$,str2$) returns 2.

GetAt(str$,index)

Returns a single character specified by index in str$.

examples:

str$ = "sss abc"; GetAt(str1$,5)

returns 97.

GetFileExt(strFile$)$
Get the file extension from the full path strFile$.

examples:

https://www.originlab.com/doc/LabTalk/ref/Exact-func
https://www.originlab.com/doc/LabTalk/ref/Find-func
https://www.originlab.com/doc/LabTalk/ref/FindOneOf-func
https://www.originlab.com/doc/LabTalk/ref/GetAt-func
https://www.originlab.com/doc/LabTalk/ref/GetFileExt-func

LabTalk Scripting Guide

352

GetFileExt("origin.ini")$ returns

"ini".

GetFileName(strFile$,bRemoveExt)$

Get the file name (without extension if bRemoveExt

= 1) from the full path strFile$. examples:

GetFileName("%Yorigin.ini")$ returns

"origin.ini".

GetFilePath(strFile$)$

Get the path from the full path strFile$. examples:

GetFilePath("%Yorigin.ini")$ returns the

path string.

GetLength(str$)

Get the length of a str$. examples:

GetLength("origin.ini")$ returns 10.

GetToken(str$,n,chDelimiter)$

Returns the nth token where a token is separated by

chDelimiter. examples:

GetToken("sss|abc|def|xyz", 3,"|")$

returns "def".

IsEmpty(str$)

Similar to MS Excel's ISBLANK function. Used to

determine whether a worksheet cell is empty or not.

Argument str can be a cell address or a column of

values. example:

isempty(col(A)[2]$)=; // return 0

if cell row 2, col 1 contains a

value; or 1 if empty.

IsFile(str$)

Test whether str is a valid full path file name

example:

IsFile("origin.ini")=; // return 1

if the file exist.

IsFormula(str$)
Determine whether a worksheet cell contains cell

formula or not. example:

https://www.originlab.com/doc/LabTalk/ref/GetFileName-func
https://www.originlab.com/doc/LabTalk/ref/GetFilePath-func
https://www.originlab.com/doc/LabTalk/ref/GetLength-func
https://www.originlab.com/doc/LabTalk/ref/GetToken-func
https://www.originlab.com/doc/LabTalk/ref/IsEmpty-func
https://www.originlab.com/doc/LabTalk/ref/IsFile-func
https://www.originlab.com/doc/LabTalk/ref/IsFormula-func

Function Reference

353

isformula(A2)=; // return 1 if cell

row 2, col 1 contains cell formula;

otherwise return 0.

IsPath(str$)

Test whether str is a valid file path example:

IsPath(%Y)=; .

Left(str$, n)$

Takes a string str$, returns the leftmost n characters.

 examples:

str$ = "abcde"; Left(str$,3)$ returns

abc.

left(col(G),3)$ returns the leftmost 3

characters in the col(G) string.

Len(str$)

Takes a string str$, returns the number of

characters. examples:

str$ = "abc ABC"; Len(str$) returns 7.

len(col(G)) returns the number of characters in

the col(G) string.

Lower(str$)$

Takes a string str$, converts it to

lowercase. examples:

str1$ = "ABCDE"; str2$ =

Lower(str1$)$ returns abcde.

lower(col(F))$ returns the strings in col(F) in

lower case.

MakeCSV(str$[, quote, output_delim,

input_delim$])$

Takes a delimited string, converts it to CSV. Option

quote to enclose output: 0 (default) = no quotes, 1 =

single quotes, 2 = double quotes. Option

output_delim: 0 = comma, 1 = semicolon. Option

input_delim$ specifies source string delimiter (not

needed if white space). examples:

str$ = "This is a test value";

https://www.originlab.com/doc/LabTalk/ref/IsPath-func
https://www.originlab.com/doc/LabTalk/ref/Left-func
https://www.originlab.com/doc/LabTalk/ref/Len-func
https://www.originlab.com/doc/LabTalk/ref/Lower-func
https://www.originlab.com/doc/LabTalk/ref/MakeCSV-func
https://www.originlab.com/doc/LabTalk/ref/MakeCSV-func

LabTalk Scripting Guide

354

MakeCSV(str$, 1, 0)$ returns

'This','is','a','test','value'.

makecsv(col(N),0,0)$ takes a space-

separated string in col(N) and returns a string of

comma-separated values.

Match(within$,find$[,Case])

(2015 SR0)

This function compares the string find$ with another

string within$ to see whether their contents match

with each other. It returns 1 (True, match) or 0 (False,

not match). Note that wildcard characters "*" and "?"

are supported in the find$ string variable. Optionally

you can use case sensitive check, the option Case

controls case sensitivity: 0 (default) = false, 1 = true.

examples:

str1$ = "From: test@Originlab.com";

str2$ = "F*com";

Match(str1$,str2$); returns 1.

MatchBegin(within$,find$[,StartPos,Case])

Search string within$, return an integer

corresponding to the start position of find$ or -1 (not

found). Supports "*"' and "?" wildcards. Option

StartPos specifies the position of the character at

which to start the search: 1 (default) = search from

1st character. Option Case controls case sensitivity: 0

(default) = false, 1 = true. examples:

str1$ = "From: test@Originlab.com";

str2$ = "From*@";

MatchBegin(str1$,str2$,1); returns 1.

matchbegin(col(a)," ") returns the starting

position of the of the first white space in col(a) or if

none found, returns -1.

MatchEnd(within$, find$[, StartPos, Case])

Search string within$, return an integer

corresponding to the end position of find$ or -1 (not

found). Supports "*" and "?" wildcards. Option

StartPos specifies the position of the character at

https://www.originlab.com/doc/LabTalk/ref/Match-func
https://www.originlab.com/doc/LabTalk/ref/MatchBegin-func
https://www.originlab.com/doc/LabTalk/ref/MatchEnd-func

Function Reference

355

which to start the search: 1 (default) = search from

1st character. Option Case controls case sensitivity: 0

(default) = false, 1 = true. examples:

str1$ = "From: test@Originlab.com";

str2$ = "From*@";

MatchEnd(str1$,str2$,1); returns 11.

MatchEnd(col(A),col(B)) returns the ending

position of the col(b) string in col(a) or if no match,

returns -1.

Mid(str$, StartPos [, n])$

Takes a string str$, returns n characters from

StartPos or if n not specified, returns everything from

StartPos. examples:

str$ = "aabcdef"; Mid(str$,2,3)$

returns abc.

str$ = "aabcdef"; Mid(str$,2)$ returns

abcdef.

mid(col(a),1,3)$ returns the first three

characters of string in col(a).

NumberValue(str$ [, Decimal$, Group$])

Takes a string or vector of strings and returns as

numeric. Option Decimal used to interpret string

decimal separator. Option Group used to interpret

group separator. Enclose string and options in

quotes. examples:

numbervalue("1,000.05")=; //

returns 1000.05 (US regional

settings)

numbervalue("5.000,0", ",", ".")=;

// returns 5000 (US regional

settings)

NumBreak(str$ [, offset])
It scans a mixed string str$ from the given index

offset (optional) and returns the position where the

https://www.originlab.com/doc/LabTalk/ref/Mid-func
https://www.originlab.com/doc/LabTalk/ref/NumberValue-func
https://www.originlab.com/doc/LabTalk/ref/NumBreak-func

LabTalk Scripting Guide

356

(2026) character type first switches between digit and non-

digit. examples:

numbreak("abc123")=; //returns 4

numbreak("Club45North", 5)=;

//returns 7 since it scan from "4"

NumExtract(str$ [, count])

(2026)

It takes a mixed string str$ and returns the count-th

consecutive digit block. If count is omitted it defaults

to 1 (i.e. return the first block); count = 0 returns the

last block. examples:

numextract("1-413-586-2013",2)$=;

//returns 413

numextract("1-413-586-2013",0)$=;

//returns 2013

Replace(within$, StartPos, n, replace$)$

Replace n characters in within$, starting from

StartPos, with string replace$. String replace$ may

differ in length from n. examples:

Replace(abcdefghijklmn,3,5,123456)$

returns ab123456hijklmn.

replace(col(a),1,4,"Replacement

string ")$ replaces the first four characters in

col(a) with string "Replacement string " (including

spaces).

Right(str$, n)$

Takes a string str$, returns the rightmost n

characters. examples:

str$ = "abcde"; Right(str$,n)$ returns

cde.

right(col(d),8) returns the rightmost 8

characters in the string in col(d).

Search(within$, find$[, StartPos]) Returns position of string find$ within string within$,

or if not found returns -1. Not case sensitive. No

https://www.originlab.com/doc/LabTalk/ref/NumExtract-func
https://www.originlab.com/doc/LabTalk/ref/Replace-func
https://www.originlab.com/doc/LabTalk/ref/Right-func
https://www.originlab.com/doc/LabTalk/ref/Search-func

Function Reference

357

wildcards. Option StartPos controls where to start

search (default = 1). examples:

within$ = "abcde"; find$ = "BC";

Search(within$,find$) returns 2.

search(col(c),"sample") returns the

position of the word "sample" in the string in col(c).

SpanExcluding(source$, strEx$)

Extracts and returns all characters preceding the first

occurrence of a character from strEx; Case sensitive.

examples:

str1$= "Hello World! Goodbye!";

str2$ = "ho"; SpanExcluding(str1$,

str2$)$= ; returns Hell.

SpanIncluding(source$, strIn$)

Extracts characters from the string source, starting

with the first character that are in the set of characters

identified by strIn; Case sensitive. examples:

str1$= "cabinet"; str2$ = "acB";

SpanIncluding(str1$, str2$)$= ;

returns ca.

Substitute(within$,sub$,find$ [, n])$

Search string within$ for string find$, replace with

sub$. Option to substitute only the nth found

instance. examples:

Substitute(abcdefabcdef,12,bcd,0)$

returns a12efa12ef.

substitute(col(c),"experiment:

","expt.",1) searches string in col(a) and

substitutes "experiment: " for "expt.", replacing only

the first instance found.

Text(d[,fmt$])$

(9.1 SR0)

Converts a double to string. Option fmt$ formats

output; if not specified, uses column's format settings.

Use empty string "" to use @SD digits. Use "*" to use

Origin's global setting. examples:

https://www.originlab.com/doc/LabTalk/ref/SpanExcluding-func
https://www.originlab.com/doc/LabTalk/ref/SpanIncluding-func
https://www.originlab.com/doc/LabTalk/ref/Substitute-func
https://www.originlab.com/doc/LabTalk/ref/Text-Format-func

LabTalk Scripting Guide

358

Text(2.01232,"*3")$ returns 2.01.

Text(Date(7/10/2014),D1)$ returns

Thursday, July 10, 2014.

text(date(col(b)),D1)$ takes a column of

date data and returns a string in the format of

"Wednesday, March 05, 2014"

Token(str$,iToken[, iDelimiter])$

"(ASCII 124) can be directly used as iDelimiter.

examples:

str1$="This is my string";

Token(str1$,3)$ returns my.

token(col(c),2) returns the second token (as

delimited by white space) in the string in col(c).

token(col(b), 3, ":") returns the third

token as delimited by colon in the string in col(b).

Note: some symbol chars might not be directly used

by iDelimiter but their ASCII values always apply.

Trim(str$[, n])$

Takes string str$ and removes spaces. Parameter n

controls how space is removed: 0 (default) = leading

+ trailing, 1 = remove all. examples:

str1$ = " abc ABC "; Trim(str1$,0)$

returns abc ABC.

trim(col(a),0) returns the string in col(c) with

leading and trailing spaces controlled.

Upper(str$)$

Takes string str$, returns as uppercase. examples:

str1$ = "abcde"; Upper(str1$)$ returns

ABCDE.

upper(col(c))$ returns the string in col(c) in

uppercase letters.

https://www.originlab.com/doc/LabTalk/ref/Token-func
https://www.originlab.com/doc/LabTalk/ref/Trim-func
https://www.originlab.com/doc/LabTalk/ref/Upper-func

Function Reference

359

Value(str$)

Takes string number str$, returns it as double.

examples:

str$ = "+.50"; Value(str$) returns 0.5.

Note: see the atof() function.

value(col(e)) takes a string number in col(e)

and returns it as a numeric of type double.

20.2.1.1.1 A note on the "$" notation and string functions

Note: Use of the "$" when working with strings can be confusing:

aa$=col(b)[1];

aa$=;

// returns

col(b)[1]

aa$=col(b)[1]$;

aa$=;

// returns

Buick

aa$=upper(col(b)[1]$);

aa$=;

// returns

upper(col(b)[1]$)

aa$=upper(col(b)[1]$)$;

aa$=;

// returns

BUICK

20.2.2 Math Functions

Name Brief Description

https://www.originlab.com/doc/LabTalk/ref/Value-func

LabTalk Scripting Guide

360

abs(x)

Returns the absolute value of x. example:

abs(-2.5) returns 2.5; abs(0/0) returns -- (missing

value);

abs(col(b)) returns absolute value of every element in

col(b).

ceil(x[, sig])

(2019 SR0)

Returns a value by adjusting the given value x away from 0

and to the multiple of sig nearest to x. example:

ceil(2.5, 2) returns 4;

ceil(-2.5, 2) returns -2.

Combina(n,k)

(2019 SR0)

Given n elements, return the number of combinations of k

elements with repetitions. example:

combina(4,2) returns 10.

Combine(n1,n2)

Given n1 elements, return the number of combinations of n2

elements. example:

combine(4,2) returns 6.

combine(col(a),2 returns the number of combinations

of 2 elements for the value in col(a).

Distance(px1, py1, px2, py2)

Takes the XY coordinates of two points, returns the shortest

distance. examples:

distance(0,0,0,1) returns 1.

distance(col(g),col(h),col(i),col(j)) could

also return 1.

Distance3D(px1, py1, pz1, px2, py2,

pz2)

Takes the XYZ coordinates of two points, returns the shortest

3D distance. examples:

distance3d(0,0,1,0,0,2) returns 1.

distance3d(col(a),col(b),col(c),col(d),co

l(e),col(f)) could also return 1.

https://www.originlab.com/doc/LabTalk/ref/Abs-func
https://www.originlab.com/doc/LabTalk/ref/Ceil-func
https://www.originlab.com/doc/LabTalk/ref/Combina-func
https://www.originlab.com/doc/LabTalk/ref/Combine-func
https://www.originlab.com/doc/LabTalk/ref/Distance-func
https://www.originlab.com/doc/LabTalk/ref/Distance3D-func
https://www.originlab.com/doc/LabTalk/ref/Distance3D-func

Function Reference

361

exp(x)

Returns e raised to the x power. Note: x > 667 returns

missing value. examples:

exp(0) returns 1.

exp(col(a)) returns e raised to the value in col(a).

expm1(x)

Returns the value of exp(x)-1 accurately for the small values

of x. examples:

expm1(0.00574) returns 0.0057565053651536.

fact(n)

Returns the factorial of a non-negative integer. Note: n > 170

returns missing value; see the Log_gamma function.

examples:

fact(3) returns 6.

fact(col(a)) returns factorial of value in col(a).

factdouble(n)

Returns the double factorial of a non-negative integer.

If n = odd, sequence is 1*3*5...(n-2)*n; if n = even, sequence

is 2*4*6...(n-2)*n; if n = 0, evaluates to 1. If n > 299, returns

missing value. examples:

factdouble(6) returns 48;

factdouble(col(a)) returns the double factorial of

value in col(a).

floor(x[, sig])

(2019 SR0)

Returns a value by adjusting the given value x towards 0 and

to the multiple of significance nearest to x. example:

floor(2.5, 2) = ; returns 2;

floor(-2.5, -2) = ; returns -2.

gcd(n1, n2[, ...])

(2019 SR0)

Returns the greatest common divisor of a group of given

integers n1, n2, n3, etc. example:

gcd(360, 15) returns 15;

https://www.originlab.com/doc/LabTalk/ref/Exp-func
https://www.originlab.com/doc/LabTalk/ref/Expm1-func
https://www.originlab.com/doc/LabTalk/ref/Fact-func
https://www.originlab.com/doc/LabTalk/ref/Log-gamma-func
https://www.originlab.com/doc/LabTalk/ref/FactDouble-func
https://www.originlab.com/doc/LabTalk/ref/Floor-func
https://www.originlab.com/doc/LabTalk/ref/gcd-func

LabTalk Scripting Guide

362

frac(x)

Returns the fractional part of a double.

example:

frac(3.1415) = ; returns 0.1415.

HaversineDistance(lon1,lat1,lon2,lat

2,r[,degree])

(2017 SR0)

Takes the longitudes and latitudes of two points on a sphere

with radius r, returns the great-circle distances between them.

Option degree determines whether to use degree or radian

as the unit of longitudes and latitudes (default is degree).

 example:

HaversineDistance(120, 30, 0, -60, 5000)

returns 11388.7402734106;

int(x)

Takes a double x and returns the truncated integer.

examples:

int(7.9) returns 7.

int(col(a)) returns the truncated integer in col(a).

ln(x) Return the natural logarithm of x.

ln1p(x) Return the natural logarithm of x when x is very close to 1.

log(x) Return the base 10 logarithm of x.

mod(n, m)

Returns the integer modulus of integer n divided by integer m

(quotient rounds toward 0). examples:

mod(16,7) returns 2.

mod(col(a),col(b)) returns the integer modulus of the

value in col(a) divided by the value in col(b).

mod2(n,m)

Returns the integer modulus of integer n divided by integer m

(quotient rounds toward minus infinity). Quotient of , which

is used to calculate modulus, rounds toward . When the

input(s) are negative, the return may differ from mod (it

https://www.originlab.com/doc/LabTalk/ref/Frac-func
https://www.originlab.com/doc/LabTalk/ref/HaversineDistance-func
https://www.originlab.com/doc/LabTalk/ref/HaversineDistance-func
https://www.originlab.com/doc/LabTalk/ref/Int-func
https://www.originlab.com/doc/LabTalk/ref/Ln-func
https://www.originlab.com/doc/LabTalk/ref/Ln1p-func
https://www.originlab.com/doc/LabTalk/ref/Log-func
https://www.originlab.com/doc/LabTalk/ref/Mod-func
https://www.originlab.com/doc/LabTalk/ref/Mod2-func
https://www.originlab.com/doc/LabTalk/ref/Mod-func

Function Reference

363

calculates quotient of rounds toward 0). examples:

mod(5,-3) returns -1

mod(col(a),col(b)) returns the integer mod2 of the

value in col(a) divided by the value in col(b).

nint(x)

Takes a double x and rounds up/down to the nearest integer.

The nint(x) function returns the same result as round(x, 0).

permut(n, k)

(2019 SR0)

Returns the number of permutations for a specified k

elements from a given set of n elements. examples:

permut(4, 2) returns 12

prec(x, n)

Takes a value or a dataset, returns it with n significant

figures. examples:

x = 1234567; prec(x, 3) returns 1230000.

prec(col(b), 3) assigns the values in col(b) to the

target column, to 3 significant figures.

product(vd)

Multiplies all the numbers from vd and returns the product.

examples:

product(col(a))

rmod(x, y)

Returns the real modulus of double x divided by double y

(quotient rounds toward 0). Quotient of rounds toward .

examples:

rmod(4.5, 2) returns 0.5.

rmod(col(a),3) returns the rmod of col(a) divided by 3.

rmod2(x, y)

Returns the real modulus of double x divided by double y

(quotient rounds toward minus infinity). Quotient of rounds

toward . examples:

https://www.originlab.com/doc/LabTalk/ref/Nint-func
https://www.originlab.com/doc/LabTalk/ref/Round-func
https://www.originlab.com/doc/LabTalk/ref/Permut-func
https://www.originlab.com/doc/LabTalk/ref/Prec-func
https://www.originlab.com/doc/LabTalk/ref/Product-func
https://www.originlab.com/doc/LabTalk/ref/Rmod-func
https://www.originlab.com/doc/LabTalk/ref/Rmod2-func

LabTalk Scripting Guide

364

rmod2(-4.5, 2) returns 1.5.

rmod(col(a),3) returns the rmod2 of col(a) divided by 3.

round(x, n)

Takes a value or dataset, returns the value or dataset to n

decimal places. Note: Origin 9.1 introduced a new rounding

algorithm. System variable @RNA toggles between old and

new methods (old behavior is @RNA=0; new behavior is

@RNA=1 (default)). examples:

round(1.156, 1) returns 1.2.

round(col(a),2) returns the values in col(a), rounded to

2 decimal places.

sign(x)
Takes a real number x and returns its sign. If x > 0, returns

1; If x < 0, returns -1; If x = 0, returns 0.

sqrt(x) Takes a double x and returns the square root.

Derivative(vd[,n])

Takes a vector vd, returns the derivative of the data list. No

smoothing is performed. Option n is derivative order (default

= 1).

DerivativeXY(vx, vy [, n])
Takes two vectors vx and vy, returns the derivative of the

curve. Option n is derivative order (default = 1).

Integral(integrand,lowerlimit,upperli

mit[, arg1, arg2, ...])

Perform one dimension integration value, and returns the

integral value.

Integrate(vd)

Integrate the area under a curve. Uses the Trapezoid

Rule.

IntegrateXY(vx, vy)
Integrate the area under curve (vx, vy). Vector vx contains x

coordinates of curve; vy contains y coordinates.

Interp(x,vX,vY[,method,bound,smoo Takes x coordinates vx and y coordinates vy and

https://www.originlab.com/doc/LabTalk/ref/Round-func
https://www.originlab.com/doc/LabTalk/ref/Sign-func
https://www.originlab.com/doc/LabTalk/ref/Sqrt-func
https://www.originlab.com/doc/LabTalk/ref/Derivative-func
https://www.originlab.com/doc/LabTalk/ref/DerivativeXY-func
https://www.originlab.com/doc/LabTalk/ref/Integral-func
https://www.originlab.com/doc/LabTalk/ref/Integral-func
https://www.originlab.com/doc/LabTalk/ref/Integrate-func
https://www.originlab.com/doc/Origin-Help/Math-Integrate
https://www.originlab.com/doc/Origin-Help/Math-Integrate
https://www.originlab.com/doc/LabTalk/ref/IntegrateXY-func
https://www.originlab.com/doc/LabTalk/ref/Interp-func

Function Reference

365

th,extrap])

(2015 SR0)

interpolates/extrapolates a y coordinate at a given coordinate

x. Option method = 0 (linear, default), 1 (cubic spline), 2

(cubic B-spline), 3 (Akima spline). When method = 1, bound

can equal 0 (natural) or 1 (not-a-knot). When method = 2,

smooth = non-negative value for smoothness. Option extrap

can be applied when X values are outside reference range: 0

(default) = extrapolate Y using last two points; 1 = set all Y as

missing values; 2 = use the Y value of the closest input X.

permutationa(n, k)

(2019 SR0)

Returns the number of permutations (with repetitions) for a

specified k elements from a given set of n elements.

examples:

permutationa(4, 2) returns 16

20.2.3 Special Math Functions

Name Brief Description

beta(a, b)

Beta Function with parameters a and b.

incbeta(x, a, b)

Incomplete Beta Function with parameters x, a, b.

incf(x, m, n)

The incomplete F-table function. Parameter x is the upper limit of

integration; parameter m is the degrees of freedom of the numerator

variance; parameter n is the degrees of freedom of the denominator

variance.

incgamma(a,x)

Compute Incomplete Gamma function at x, with parameter a.

where is the value of Gamma function at a. a > 0 and x ≥ 0.

https://www.originlab.com/doc/LabTalk/ref/Interp-func
https://www.originlab.com/doc/LabTalk/ref/Permutationa-func
https://www.originlab.com/doc/LabTalk/ref/Beta-func
https://www.originlab.com/doc/LabTalk/ref/IncBeta-func
https://www.originlab.com/doc/LabTalk/ref/IncF-func
https://www.originlab.com/doc/LabTalk/ref/Incgamma-func
https://www.originlab.com/doc/LabTalk/ref/Gamma-func

LabTalk Scripting Guide

366

inverf(x) Computes the inverse error function at x.

j0(x) Zero Order Bessel Function.

j1(x) First Order Bessel Function.

jn(x, n)

Bessel function of order n.

where is the gammaln(x) function.

y0(x) Zero order Bessel function of second kind.

y1(x) First order Bessel function of second kind.

yn(x, n)

nth order Bessel function of second kind.

where

20.2.4 Trigonometric/Hyperbolic Functions

Note: Angular units (radians, degrees, gradians) depend upon system.math.angularunits property (also

set in Preference: Options: Numeric Format).

Name Brief Description

acos(x) Returns the arccosine of x. If x < -1 or x > 1, missing value ("--") is returned.

acosh(x) Returns the inverse hyperbolic cosine of x. If x is < 1, missing value ("--") is returned.

https://www.originlab.com/doc/LabTalk/ref/Inverf-func
https://www.originlab.com/doc/LabTalk/ref/J0-func
https://www.originlab.com/doc/LabTalk/ref/J1-func
https://www.originlab.com/doc/LabTalk/ref/Jn-func
https://www.originlab.com/doc/LabTalk/ref/Gammaln-func
https://www.originlab.com/doc/LabTalk/ref/Y0-func
https://www.originlab.com/doc/LabTalk/ref/Y1-func
https://www.originlab.com/doc/LabTalk/ref/Yn-func
https://www.originlab.com/doc/LabTalk/ref/Acos-func
https://www.originlab.com/doc/LabTalk/ref/Acosh-func

Function Reference

367

acot(x)
Returns the arccotangent of x. Input x can be any value. Values are returned in the first or

second quadrants.

acoth(x) Returns the inverse hyperbolic cotangent of |x| > 1.

acsc(x)
Returns the arccosecant of |x|. If |x| is < 1, returns missing value ("--"). Values are returned

in the first or fourth quadrants.

acsch(x)
Returns the inverse hyperbolic cosecant of x. If x = 0 or x > ~3E153, returns missing value

("--").

angle(x, y)
Returns the angle (radians), measured between the positive X axis and the line joining a

point (x,y) and the origin (0,0).

Angleint1(p

x1, py1,

px2, py2 [,

unit,

direction])

Takes two pairs of x,y coordinates, returns the angle between the line defined by the two

points and the X axis. Option unit: 0 = radians default) or 1 (degrees); Option direction: 0

(default) constrains the returned angular value to the first (+x,+y) and fourth (+x,-y)

quadrants; or 1, returns values from 0–2pi radians or 0–360 degrees. examples:

angleint1(1,1,3,3,1) returns 45.

angleint1(col(a),col(b),col(c),col(d),1,1) returns the angle in degrees

(0 - 360) between the line defined by two pairs of xy coordinates and the X axis.

Angleint2(p

x1, py1,

px2, py2,

px3, py3,

px4, py4 [,

unit,

direction])

Returns the angle between two lines, one with endpoints (px1, py1) and (px2, py2), the

other with endpoints (px3, py3) and (px4, py4). If option unit = 0 (default), returns radians;

if unit = 1 returns degrees. Option direction specifies direction of return value. If option

direction = 0 (default), constrains the returned angular value to the first (+x,+y) and fourth

(+x,-y) quadrants; if direction = 1, returns values from 0–2pi radians or 0–360 degrees.

examples:

angleint2(0,0,1,0,0,1,0,0,1,1) returns 90.

angleint2(col(a),col(b),col(c),col(d),col(e),col(f),col(g),co

l(h),1,1) returns the angle (degrees, 0 - 360) between two lines defined by endpoints

in col(a) - col(h).

asec(x)
Returns the arcsecant of x. If |x| is < 1, returns missing value ("--"). Values are returned in

the first or second quadrant.

https://www.originlab.com/doc/LabTalk/ref/Acot-func
https://www.originlab.com/doc/LabTalk/ref/Acoth-func
https://www.originlab.com/doc/LabTalk/ref/Acsc-func
https://www.originlab.com/doc/LabTalk/ref/Acsch-func
https://www.originlab.com/doc/LabTalk/ref/Angle-func
https://www.originlab.com/doc/LabTalk/ref/Angleint1-func
https://www.originlab.com/doc/LabTalk/ref/Angleint1-func
https://www.originlab.com/doc/LabTalk/ref/Angleint1-func
https://www.originlab.com/doc/LabTalk/ref/Angleint1-func
https://www.originlab.com/doc/LabTalk/ref/Angleint1-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Angleint2-func
https://www.originlab.com/doc/LabTalk/ref/Asec-func

LabTalk Scripting Guide

368

asech(x)
Returns the inverse hyperbolic secant of x. 0 < x ≤ 1. Other values of x return a missing

value ("--").

asin(x) Returns the arcsine of x. -1 ≤ x ≤ 1. Other values of x return a missing value ("--").

asinh(x) Returns the inverse hyperbolic sine of x (any real number).

atan(x) Returns the arctangent of x (any real number).

atan2(y,x)

Takes coordinates x,y (doubles), returns the angle between the positive X axis and the

point (x,y). A variation of the atan(x) function. Returns value between -π and π. Angle is (+)

for counter-clockwise angles (y > 0) and (-) for clockwise angles (y < 0).

atanh(x)
Returns the inverse hyperbolic tangent of x. -1 < x < 1. Other values of x return a missing

value ("--").

cos(x) Returns the cosine of x.

cosh(x) Returns the hyperbolic cosine of x.

cot(x) Returns the cotangent of x.

coth(x)
Returns the hyperbolic cotangent of x. Value x is any non-zero number. Note that numbers

of absolute value > 710 (approx.) return a missing value ("--").

csc(x) Returns the cosecant of x. If x = 0, returns missing value ("--").

csch(x)
Returns the hyperbolic cosecant of x. Value x is any non-zero number. Note: when x > 710

(approx.), returns a missing value ("--").

Degrees(ang

le)

Takes angle in radians and returns degrees.

Radians(ang

le)

Takes angle in degrees and returns radians.

https://www.originlab.com/doc/LabTalk/ref/Asech-func
https://www.originlab.com/doc/LabTalk/ref/Asin-func
https://www.originlab.com/doc/LabTalk/ref/Asinh-func
https://www.originlab.com/doc/LabTalk/ref/Atan-func
https://www.originlab.com/doc/LabTalk/ref/Atan2-func
https://www.originlab.com/doc/LabTalk/ref/Atanh-func
https://www.originlab.com/doc/LabTalk/ref/Cos-func
https://www.originlab.com/doc/LabTalk/ref/Cosh-func
https://www.originlab.com/doc/LabTalk/ref/Cot-func
https://www.originlab.com/doc/LabTalk/ref/Coth-func
https://www.originlab.com/doc/LabTalk/ref/Csc-func
https://www.originlab.com/doc/LabTalk/ref/Csch-func
https://www.originlab.com/doc/LabTalk/ref/Degrees-func
https://www.originlab.com/doc/LabTalk/ref/Degrees-func
https://www.originlab.com/doc/LabTalk/ref/Radians-func
https://www.originlab.com/doc/LabTalk/ref/Radians-func

Function Reference

369

secant(x)
Returns the secant of x. Note: Do not confuse with the sec() function which returns the

seconds value of a date.

sech(x)
Returns the hyperbolic secant of x. Note that numbers of absolute value > 710 (approx.)

return a missing value ("--").

sin(x) Returns the sine of x.

sinh(x) Returns the hyperbolic sine of x.

tan(x) Returns the tangent of x.

tanh(x) Returns the hyperbolic tangent of x.

20.2.5 Date and Time Functions

Note: Beginning with Origin 2019, there are three date-time systems in Origin. The default system remains the

long-time, adjusted Julian Date system as explained in Dates and Times in Origin. The examples in the table

below assume the long-time, default date-time system and when you see "Julian-date value", this refers to

Origin's adjusted date value. These following functions should work with the alternate systems ...

date2str(today(), "MM/dd/yyyy")$ = 09/27/2018 // default date-time system

date2str(today(), "MM/dd/yyyy")$ = 09/27/2018 // "2018" system, @DSP=2018

... but keep in mind that the numeric values that equate to a given calendar date will differ between systems:

date(9/27/2018) = 2458388 // default date-time system

date(9/27/2018) = 269 // "2018" system, @DSP=2018

For information on Origin's alternate date-time schemes, see Alternate Date-Time Systems in Origin.

Name Brief Description

AddDay(vv)

(2021)

Takes a time vector vv and returns the day-added data when

hours wrap after 24. examples:

addday(col(A)) adds day information to time data in

col(A) and returns date and time data .

Date(MM/dd/yyHH:mm:ss.##[,forma

t$])

Takes a date-time string and returns Julian-date value. If

format$ is not specified, string is interpreted using system

short date format. Can take values 1 = default (MM/dd/yyyy) ,

2 (dd/MM/yyyy) or 3 (yyyy/MM/dd) to control format for date

https://www.originlab.com/doc/LabTalk/ref/Secant-func
https://www.originlab.com/doc/LabTalk/ref/Sech-func
https://www.originlab.com/doc/LabTalk/ref/Sin-func
https://www.originlab.com/doc/LabTalk/ref/Sinh-func
https://www.originlab.com/doc/LabTalk/ref/Tan-func
https://www.originlab.com/doc/LabTalk/ref/Tanh-func
https://www.originlab.com/doc/Origin-Help/DateTime-in-Origin
https://www.originlab.com/doc/Origin-Help/DateTime-in-Origin
https://www.originlab.com/doc/Origin-Help/DateTime-in-Origin
https://www.originlab.com/doc/LabTalk/ref/AddDay-func
https://www.originlab.com/doc/LabTalk/ref/Date-func
https://www.originlab.com/doc/LabTalk/ref/Date-func

LabTalk Scripting Guide

370

portion of first argument, without specifying format$ string.

examples:

date(24-09-2009,"dd-MM-yyyy") returns

2455098.

date(3/5/14) returns 2456721 (US) but

date(5/3/14) returns 2456721 (UK).

date(2/1/1986 13:13, 2) returns

2446432.5506944 but date(2/1/1986 13:13,

1) returns 2446462.5506944.

date(col(a)) returns a Julian-date value for the date-

time string in col(a).

Date(yy,MM,dd)

Takes doubles yy as year, MM as month, dd as day and

returns the Julian-date value. examples:

date(20,8,31) returns 2459092.

Date2str(d,format$)$

Takes a Julian-date value and returns a date string.

examples:

date2str(2456573.123, "dd/MM/yyyy

HH:mm")$ returns 08/10/2013 02:57).

date2str(col(b), "dd/MM/yyyy HH:mm")$

returns a date string in the format "dd/MM/yyyy HH:mm".

DateDif(start_date,end_date,unit$)

(2026)

Takes 2 Julian-date value (double) start_date and

end_date, returns the number of days, months, or years

between these two dates, determined by unit$. examples:

datedif(date(1/1/2001),date(1/1/2003),"Y

")=; returns 2.

DatePart(datepart$, d [, n])

(2016 SR1)

Takes a Julian-date value (double) d and returns a portion of

the date specified by datepart$, as a double. Option n

specifies start of week for datepart$ = w or ww.

 examples:

https://www.originlab.com/doc/LabTalk/ref/Date-func
https://www.originlab.com/doc/LabTalk/ref/Date2str-func
https://www.originlab.com/doc/LabTalk/ref/DateDif-func
https://www.originlab.com/doc/LabTalk/ref/Datepart-func
https://www.originlab.com/doc/LabTalk/ref/Datepart-func

Function Reference

371

datepart("yyyy", 2457360.5107885) returns

2015.

datepart("yyyy", A) returns the year portion of the

date-time data in column A.

datepart("y", Today())=; returns the day number

of the current year (e.g. if today() = 2457363 = 12/7/2015

= 341).

datepart("w", 2457360.5107885, 1)=; returns

6 but datepart(w, 2457360.5107885)=; returns

5.

Day(d[,n])

Takes a Julian-date value, returns the day number. If option

n = 1, returns 1 to 31 (month); if n = 2, returns 1 to 366

(year). examples:

(Day(2454827.5982639, 2) returns 362.

day(col(b),1) takes a Julian-date value and returns the

day of the month.

Hour(d)

Takes a Julian-date value, returns the hour as an integer.

Returns 0 to 23 (0 = 12:00 A.M., 23 = 11:00 P.M.).

examples:

Hour(0.6997854) returns 16.

hour(col(b)) returns the hour from Julian-date value in

col(b).

Minute(d)

Takes a Julian-date value, returns the minutes as an integer

(0 to 59). examples:

Minute(2454827.5982639) returns 21.

minute(col(b)) returns the minute from the Julian-date

value in col(b).

Month(d)
Takes a Julian-date value, returns the month as an integer (0

to 12). examples:

https://www.originlab.com/doc/LabTalk/ref/Day-func
https://www.originlab.com/doc/LabTalk/ref/Hour-func
https://www.originlab.com/doc/LabTalk/ref/Minute-func
https://www.originlab.com/doc/LabTalk/ref/Month-func

LabTalk Scripting Guide

372

month(2454821) returns 12.

month(col(b) returns the month of the Julian-date value

in col(b).

MonthName(d[,n])$

Takes a Julian-date value, returns the month name. Month

format specified by option n: 1 = single character; 3(default)

= 3 characters; 0 = full month name; -1 = 3 character English

regardless of language settings. examples:

MonthName(2454827.5982639, 0)$ returns

December.

monthname(col(b),0)$ returns the full month name

for Julian-date values in col(b).

Now()

Returns the current date-time as a Julian-date value.

examples:

time2str(now()-date(col(a)),"HH:mm")$

returns a time string (HH:mm) elapsed between current time

and the date string in col(a).

Quarter(d)

Takes a Julian-date value, returns a quarter of the year.

examples:

Quarter(2454829.5745718) returns 4.

quarter(col(b)) returns the quarter of the Julian-date

value in col(b).

Second(d[,n])

Takes a Julian-date value or real number, returns the

seconds as a real value in the range 0 to 59.9999. Option n =

0 displays more than 3 decimal digits but the precision of

Julian date values is limited to 0.0001 seconds when

rounded at the fourth decimal digit. examples:

second(2454827.5982639) returns 30.001.

second(2454827.5982639, 0) returns

30.000942349434.

https://www.originlab.com/doc/LabTalk/ref/MonthName-func
https://www.originlab.com/doc/LabTalk/ref/Now-func
https://www.originlab.com/doc/LabTalk/ref/Quarter-func
https://www.originlab.com/doc/LabTalk/ref/Second-func

Function Reference

373

second(A) returns the seconds of Julian dates in col(a).

Time(HH,mm,ss) and

Time(HH:mm:ss[,Format$])

Takes either HH,mm,ss or custom date-time string

(HH:mm:ss = default) and returns the Julian-date value.

Optional Format$ argument specifies custom string format.

examples:

time(20:50:25) returns 0.8683449; time("2

20,50,25", "DDD hh,mm,ss") returns

2.8683449.

time(col(a)) returns Julian-date values for time data

formatted as HH:mm:ss in col(a).

Time2str(d,format$)$

Takes a Julian-date value, returns a time string of a specified

format. examples:

time2str(0.1875, "HH:mm")$ returns 04:30.

time2str(col(b),"DDD:HH")$ returns a time string

formatted as DDD:HH.

Today() Returns the current date as a Julian-date value.

UnixTime(d1[, d2, n])

(2021)

Convert between Unix timestamp values and Julian-date

values. If optional parameter n = 0 (default), convert d1 (Unix

timestamp) to Julian-date; if n = 1, convert d1 (Julian-date) to

Unix timestamp. Optional parameter d2 is timezone offset.

Note that when converting Julian-date to to Unix timestamp,

you must specify both optional parameters (if no offset, d2 =

0). Unix timestamp units = seconds. examples:

unixtime(0) returns an adjusted Julian-date value of

2440587.

unixtime(2459011.27604,0,1) returns a Unix

timestamp of 1591857450.

WeekDay(d[,n])

Takes a Julian-date value, returns the day of the week.

 Option n specifies week start and end values: 0 (default) =

Sunday (0-6), 1 = Sunday (1-7), 2 = Monday (0-6), or 3 =

https://www.originlab.com/doc/LabTalk/ref/Time-func
https://www.originlab.com/doc/LabTalk/ref/Time-func
https://www.originlab.com/doc/LabTalk/ref/Time2str-func
https://www.originlab.com/doc/LabTalk/ref/Today-func
https://www.originlab.com/doc/LabTalk/ref/UnixTime-func
https://www.originlab.com/doc/LabTalk/ref/WeekDay-func

LabTalk Scripting Guide

374

Monday (1-7). examples:

weekday(2454825, 1) returns 5.

weekday(col(b)) takes Julian-date values in col(b) and

returns the day of the week as a number.

WeekDayName(d[,n1,n2])$

Takes a Julian-date value (including time) or number defined

by n2, returns the weekday. Option n1 controls output string

length: -1 = 3 char cap; 0 = full name, 1st cap; 1 = 1 char

cap; 3(default)= 3 char, 1st cap. Option n2 controls week

start and end values: 0 = 0(Sun) - 6(Sat); 1 = 1(Sun) - 7

(Sat); 2 = 0(Mon) - 6(Sun); 3(default) = 1(Mon) - 7(Sat).

examples:

WeekDayName(2454825,-1,0)$ returns THU.

weekdayname(col(b),3,0)$ returns the day of the

week name, formatted as 3 char, 1st letter cap.

WeekNum(d[,n1,n2])

Takes a Julian-date value, returns the calendar week number

of the year (1 to 53). Option n1 to specify week start

(Sunday vs Monday) and n2 first week of year. examples:

weeknum(date(1/11/2009)) returns 3.

weeknum(date(col(c))) takes a column of date data

formatted as "MM/dd/yyyy" (col(c)), interprets it as a Julian-

date value using the date() function and then returns a week

number using the weeknum() function.

Year(d)

Takes a Julian-date value, returns the year as an

integer(0100-9999). examples:

year(2454821) returns 2008.

year(date(col(c))) takes a column of date data

formatted as "MM/dd/yyyy" (col(c)), interprets it as a Julian-

date value using the date() function and then returns the four-

digit year.

YearName(d[,n])$ Takes a Julian-date value, returns year as a string. Form of

https://www.originlab.com/doc/LabTalk/ref/WeekDayName-func
https://www.originlab.com/doc/LabTalk/ref/WeekNum-func
https://www.originlab.com/doc/LabTalk/ref/Year-func
https://www.originlab.com/doc/LabTalk/ref/YearName-func

Function Reference

375

string is specified by option n: 0 = 2 digits, 1(default) = 2

digits preceded by an apostrophe, or 2 = 4 digits. examples:

YearName(2454827.5982639, 1)$ returns '08.

yearName(date(col(c)),0)$ takes a column of date

data formatted as "MM/dd/yyyy" (col(c)), interprets it as a

Julian-date value using the date() function and then returns

the two-digit year.

20.2.6 Logical Functions

Name Brief Description

if(con,val_true[,val_false])[$]

(2019 SR0)

Evaluate conditional expression con and

returns val_true if the comparison is TRUE,

val_false if FALSE. Example

if(A>B,1,0) will return 1 if col(A)>col(B),

otherwise return 0.

if(A$==B$,1,0) will return 1 if string in

col(A) matches string in col(B), otherwise

returns 0.

if(A==1,100," ") will return 100 if

col(A)[i]=1, otherwise leave cell blank.

ifs(con1,val1[,con2,val2,]...[,con40,val40])[$]

(2019 SR0)

Evaluate multiple conditions conn and returns

the corresponding d/str of the first TRUE

condition. Example

Ifs(A>0.5,"Large",A<0.3,"Small"

,1,"Other")$, if values in col(A) is larger

than 0.5, return Large, if smaller than 0.3,

returns Small, the rest in between will return

Other.

ifna(val,val_na)[$]

(2019 SR0)

Calculate the given value val and return the

specified string/numeric val_na if the result is

missing, otherwise return the string display of

https://www.originlab.com/doc/LabTalk/ref/If-func
https://www.originlab.com/doc/LabTalk/ref/Ifs-func
https://www.originlab.com/doc/LabTalk/ref/IfNA-func

LabTalk Scripting Guide

376

val/numeric value val. Example

IfNA(col(A)/col(B),"not

found")$, return "not found" if col(A)/col(B)

is missing, otherwise return the string display of

col(A)/col(B)

switch(expression,val1,res1[,val2,res2]...[,val39,r

es39][,default])[$]

(2019 SR0)

Evaluate value expression with a set of values

val,and if there is a matched value valn, return

the corresponding resn. Example

switch(A,1,"A1",2,"B1",3,"C1","

Other")$

20.2.7 Signal Processing Functions

Name Brief Description

fftamp(cx [,side])

(2015 SR1)

Takes a complex vector cx (usually FFT complex result), returns the

amplitude. Option side defines the output spectrum (1 = one-sided, 2 =

two sided and shift). examples:

fftamp(fftc(col(B)), 2) returns the amplitude of the FFT

complex result(two-sided) of input signal in column B.

col(C) = col(B)-mean(col(B));

fftamp(fftc(col(C))) returns the amplitude result with DC

offset removed (one-sided).

fftc(cx)

(2015 SR1)

Takes a vector cx, returns the complex FFT result. Note that the data

type of output column needs to be set as complex (16) in advance.

examples:

fftc(col(B)) returns the FFT complex result of input signal in

column B

fftc(rSignal) returns the FFT complex result of input signal in

range variable rSignal

fftfreq(time, n[, side , shift]) Takes the sampling interval time and signal size n, returns the

frequencies for the FFT result. Option side defines the output spectrum

https://www.originlab.com/doc/LabTalk/ref/Switch-func
https://www.originlab.com/doc/LabTalk/ref/Switch-func
https://www.originlab.com/doc/LabTalk/ref/fftamp-func
https://www.originlab.com/doc/LabTalk/ref/fftc-func
https://www.originlab.com/doc/LabTalk/ref/fftfreq-func

Function Reference

377

(2015 SR1) (1 = one-sided, 2 = two sided), shift defines whether to shift for two-

sided. (0 = no shift, 1 = shift).examples:

fftfreq(0.001, 100) returns a dataset that starts from 0 to 500

with interval 10 (one-sided, no shift)

fftfreq(0.01, 100, 2, 1) returns the two-sided and shifted

frequency for sampling interval 0.01.

fftmag(cx [,side])

(2015 SR1)

Takes a complex vector cx (usually FFT complex result), returns the

magnitude. Option side defines the output spectrum (1 = one-sided, 2 =

two sided and shift).examples:

fftmag(fftc(col(B)), 2) returns the magnitude of the FFT

complex result(two-sided) of input signal in column B.

col(C) = col(B)-mean(col(B));

fftmag(fftc(col(C))) returns the magnitude result with DC

offset removed (one-sided).

fftphase(cx[, side, unwrap,

unit])

(2015 SR1)

Takes a complex vector cx (usually FFT complex result), returns the

phase. Option side defines the output spectrum (1 = one-sided, 2 = two

sided and shift), unwrap defines whether to unwrap phase angle (0 =

wrap, 1 = unwrap), unit defines the unit (0 = radians, 1 =

degrees).examples:

fftphase(fftc(col(B))) returns the phase of the FFT complex

result (one-sided, unwrapped, in degrees) of input signal in column B

fftphase(fftc(col(B)), 2, 0, 0) returns the phase of the

FFT complex result (two-sided, wrapped, in radians) of input signal in

column B

fftshift(cx)

(2015 SR1)

Takes a complex vector cx (usually FFT complex result or frequency),

returns a shifted vector. Note that the data type of output column needs

to be set as complex (16) in advance.examples:

fftshift(fftc(col(B))) returns a shifted complex vector

ifftshift(cx)

(2015 SR1)

Takes a complex vector cx (usually shifted FFT result), returns an

unshifted vector. Note that the data type of output column needs to be

https://www.originlab.com/doc/LabTalk/ref/fftmag-func
https://www.originlab.com/doc/LabTalk/ref/fftphase-func
https://www.originlab.com/doc/LabTalk/ref/fftphase-func
https://www.originlab.com/doc/LabTalk/ref/fftshift-func
https://www.originlab.com/doc/LabTalk/ref/ifftshift-func

LabTalk Scripting Guide

378

set as complex (16) in advance.examples:

ifftshift(col(B)) returns an unshifted vector, in which column

B contains a complex vector with shift.

invfft(cx)

(2015 SR1)

Takes a complex vector cx (usually FFT complex result), returns the

inverse FFT result. Note that the data type of output column needs to

be set as complex (16) in advance.examples:

invfft(ifftshift(col(B))) returns the inverse FFT result for

shifted FFT complex result in column B.

windata(type, n)

(2015 SR1)

Takes integers of type(window type) and n(window size), returns the

window signal as a vector of size n.example:

windata(2, 50) returns the triangular window signal with vector

size 50

20.2.8 Basic Statistical Function

Name Brief Description

Average(vd)

(2026)

Takes a vector vd, returns the average. It works exactly the same as

Mean(vd). example:

average(A) returns the average value of col(A).

Note: To calculate the average of multiple datasets by row, you can use

syntax sum(vd)_average.

sum(A:D)_average to calculate the average from col(A) to col(D) by

row

See sum(vd) function for more information.

Count(vd[,n])

Takes a vector vd, returns the number of elements. Option n specifies

element: 0 (default) = all; 1 = numeric; 2 = missing; 3 = exclude missing.

example:

count(col(a),2) might return 22 for number of missing values.

count(col(a),3) might return 155 for number of values - missing

https://www.originlab.com/doc/LabTalk/ref/invfft-func
https://www.originlab.com/doc/LabTalk/ref/windata-func
https://www.originlab.com/doc/LabTalk/ref/Mean-func
https://www.originlab.com/doc/LabTalk/ref/Mean-func
https://www.originlab.com/doc/LabTalk/ref/Sum-func
https://www.originlab.com/doc/LabTalk/ref/Count-func

Function Reference

379

values.

Max(vd)

Takes a vector vd, returns the maximum value. example:

max(col(A)) returns max value in col(A).

 max(1,2,3,4,9) returns 9.

Mean(vd)

Takes a vector vd, returns the average. It works exactly the same as

Average(vd). example:

mean(col(A)) returns the average value of col(A).

Note: If you want to calculate the average of multiple datasets by row, you

can use syntax sum(vd)_mean.

sum(A:D)_mean to calculate the mean from col(A) to col(D) by row

See sum(vd) function for more information.

Median(vd[,method])

Takes a vector vd, returns the median. Option method specifies the

interpolation method: 0 (default) = empirical distribution with averaging; 1 =

nearest neighbor; 2 = empirical distribution; 3 = weighted average right; 4 =

weighted average left; 5 = Tukey hinge). example:

median(col(A),2) returns the median (as determined using method =

2). For more on interpolation methods, see Interpolation of Quantiles.

Min(vd) Takes a vector vd, returns the minimum value.

Ss(vd [,ref])

Takes a vector vd, returns the sum of squares. Sum of squares is

calculated after subtracting some reference value ref from each value in

vd. Option ref defaults to the mean of vd but ref can be a constant, a

dataset or a function. example:

ss(vd) returns the mean-subtracted sum of squares.

ss(vd,4) returns the sum of squares, calculated after subtracting 4 from

each member of vd.

ss(vd1,vd2) returns the sum of squares, calculated after subtracting

each member of vd2 from the corresponding member of vd1.

https://www.originlab.com/doc/LabTalk/ref/Max-func
https://www.originlab.com/doc/LabTalk/ref/Mean-func
https://www.originlab.com/doc/LabTalk/ref/Mean-func
https://www.originlab.com/doc/LabTalk/ref/Sum-func
https://www.originlab.com/doc/LabTalk/ref/Median-func
https://www.originlab.com/doc/Origin-Help/DescStats-Dialog
https://www.originlab.com/doc/LabTalk/ref/Min-func
https://www.originlab.com/doc/LabTalk/ref/Ss-func

LabTalk Scripting Guide

380

AA = 1; BB = 2; ss(vd, AA+BB*x) returns the sum of squares,

calculated after subtracting the line described by 1+2x from vd.

StdDev(vd)

Takes a vector vd, returns the sample standard deviation. It works exactly

the same as StDev.s(vd)example:

StdDev(col(A)) returns sample standard deviation.

StDev.s(vd)

(2026)

Takes a vector vd, returns the sample standard deviation. It works exactly

the same as StdDev(vd). example:

StDev.s(A) returns sample standard deviation of col(A).

StdDevP(vd)

Takes a vector vd, returns the population standard deviation. It works

exactly the same as StDev.p(vd)example:

StdDevP(col(A)) returns population standard deviation.

StDev.p(vd)

(2026)

Takes a vector vd, returns the population standard deviation. It works

exactly the same as StdDevP(vd). example:

StdDevP.p(A) returns population standard deviation of col(A)..

Sem(vd)

(2020b)

Takes a vector vd, returns the standard error. example:

Sem(col(A)) returns standard error.

Total(vd)

Takes a vector vd, returns the sum of elements. example:

total(col(a)) returns the sum of all data points in column A.

averageif(vd, con$)

Takes a vector vd and a conditional con$ and returns the mean of values

satisfying con$. example:

col(A) = data(1,32); con$ = col(A) > 5 && col(A) <

10; averageif(col(A), con$)=; returns 7.5.

Countif(vd,con$)

Takes a vector vd, returns the count of values satisfying condition con$.

Condition con$ should be enclosed by double-quotes (" ").

countif(col(b),"col(b)>0")=;

https://www.originlab.com/doc/LabTalk/ref/StdDev-func
https://www.originlab.com/doc/LabTalk/ref/StdDev-func
https://www.originlab.com/doc/LabTalk/ref/StdDev-func
https://www.originlab.com/doc/LabTalk/ref/StdDev-func
https://www.originlab.com/doc/LabTalk/ref/StdDevP-func
https://www.originlab.com/doc/LabTalk/ref/StdDevP-func
https://www.originlab.com/doc/LabTalk/ref/StdDevP-func
https://www.originlab.com/doc/LabTalk/ref/StdDevP-func
https://www.originlab.com/doc/LabTalk/ref/Sem-func
https://www.originlab.com/doc/LabTalk/ref/Total-func
https://www.originlab.com/doc/LabTalk/ref/Averageif-func
https://www.originlab.com/doc/LabTalk/ref/Countif-func

Function Reference

381

countif(col(A),"col(A)<10 && col(A)>5")=;

Maxifs(vd,con$)

Takes vector vd, returns the maximum values satisfying condition con.

Example

maxifs(col(A), "col(A)>5") returns the maximum in the sub-set

of col(A) larger than 5.

Minifs(vd,con$)

Takes vector vd, returns the minimum values satisfying condition con.

Example

minifs(col(A), "col(A)>5") returns the minimum in the sub-set

of col(A) larger than 5.

sumif(vd,con$) Takes a vector vd, returns sum of values satisfying condition con$.

sumproduct(vd1[,vd2,...])

(2026)

Multiplies the corresponding elements in the given datasets vd1, vd2,...

and returns the grand total. The datasets are separated by comma by

default, and can be replaced by another operator symbol (+, –, /) to add,

subtract or divide. example:

sumproduct(A1:A3, B6:B8, C11:C13)calculates

A1*B6*C11+A2*B7*C12+A3*B8*C13

20.2.9 Statistical Functions

Name Brief Description

Correl(vx, vy)

Takes datasets vx and vy, returns the correlation

coefficient. example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

ii; col(2)=ln(col(1));

correl(col(A),col(B))=; returns

0.92064574677971.

cov(vx, vy[, avex, avey])

Takes datasets vx and vy and respective means

avex and avey, returns the covariance. example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

https://www.originlab.com/doc/LabTalk/ref/Maxifs-func
https://www.originlab.com/doc/LabTalk/ref/Minifs-func
https://www.originlab.com/doc/LabTalk/ref/Sumif-func
https://www.originlab.com/doc/LabTalk/ref/Sumproduct-func
https://www.originlab.com/doc/LabTalk/ref/Correl-func
https://www.originlab.com/doc/LabTalk/ref/Cov-func

LabTalk Scripting Guide

382

ii; col(2)=ln(col(1));

cov(col(A),col(B))=; returns

6.8926313172818.

Forecast(x,vx,vy)

Takes x coordinates vx and y coordinates vy and

performs linear regression to calculate or predict y

coordinate at given coordinate x.

Intercept(vx,vy)

Takes two vectors, vx (independent) and vy

(dependent), returns the intercept of the linear

regression.

mae(vobs,vpred)

(2023b)

Takes two vector, vobs(observation) and vpred

(prediction), returns the mean absolute error.

mbe(vobs,vpred)

(2023b)

Takes two vector, vobs(observation) and vpred

(prediction), returns the mean bias error.

rms(vd) Takes a vector vd, returns the root mean square.

rmse(vobs,vpred)

(2023b)

Takes two vector, vobs(observation) and vpred

(prediction), returns the root mean square error.

Slope(vx,vy)

Takes two vectors, vx (independent) and vy

(dependent), returns the slope of the linear

regression.

ave(vd, size[, stats])

Takes a vector vd, returns a range of averages of

each group of size. stats prodives option to output

other statistics qualities rather than average. If

elements of vd is not an even multiple of size, then

the returned average will represent only

mod(vdSize,size) elements. example:

ave(col(a),5) breaks col(a) into groups of size

5 and calculates an average for each group.

https://www.originlab.com/doc/LabTalk/ref/Forecast-func
https://www.originlab.com/doc/LabTalk/ref/Intercept-func
https://www.originlab.com/doc/LabTalk/ref/mae-func
https://www.originlab.com/doc/LabTalk/ref/mbe-func
https://www.originlab.com/doc/LabTalk/ref/Rms-func
https://www.originlab.com/doc/LabTalk/ref/rmse-func
https://www.originlab.com/doc/LabTalk/ref/Slope-func
https://www.originlab.com/doc/LabTalk/ref/Ave-func
https://www.originlab.com/doc/LabTalk/ref/Mod-func

Function Reference

383

ave(A,5,2) breaks col(a) into groups of size 5

and calculates SD for each group

diff(vd[,n])

Takes a vector vd, returns a range of differences

between adjacent elements. The first element in the

returned range is vd(i+1)-vdi, and so forth.

Returns N-1, N, or N+1 elements, depending on

value of optional parameter n:

0 = (default), returns N-1 elements;

1 = pad with 0 at dataset end, return N elements;

2 = pad wth 0 at dataset begin, return N elements;

3 = pad with 0 at dataset begin, return N+1 elements

where element N+1 is obtained by totaling N

elements;

4 = pad with NANUM at dataset begin, return N

elements.

sum(vd)

The sum() function has two modes:

In "column" mode, it takes a vector vd of single

column and returns a vector which holds the values

of the cumulative sum (from 1 to i, i=1,2,...,N). Its

i+1th element is the sum of the first i elements. The

last element of the returned range is the sum of all

elements in the dataset. example:

col(B)=sum(col(A))

In "row" mode, it takes two or more columns and

returns a vector of row-wise sums. Syntax suffix

_mean, _sd, </code>_median</code>, _max,

_min, _n can be used to get row-wise average,

standard deviation, median, maximum, minimum

and number of numeric values. example:

sum(A:E) sum values row-wise in cols 1 to 5

https://www.originlab.com/doc/LabTalk/ref/Diff-func
https://www.originlab.com/doc/LabTalk/ref/Sum-func

LabTalk Scripting Guide

384

sum(A:C, D:G, F) sum columns A to C, D to

G, and F by row

sum(A2:D4)_mean calculate the mean of block

from A2 to D4 by row

Note: This "row" mode syntax supported in Set

Values and F(x)= is different and not compatible

with scripting. See the sum() function for more

information.

Confidence(alpha, std, size[, dist])

Takes significance level alpha, population standard

deviation std and sample size, returns the

confidence interval for the population mean, using

dist distribution. example:

confidence(0.05, 1.5, 100) returns

0.29399459768101.

Geomean(vd)

Takes a vector vd, and returns the Geometric Mean.

Geomean(col(A)) returns the Geometric Mean

of column A.

Geosd(vd)

Takes a vector vd, and returns the Geometric

Standard Deviation.

Geosd(col(A)) returns the Geometric SD of

column A.

Harmean(vd)

Takes a vector vd, and returns the Harmonic Mean.

Harmean(col(A)) returns the Harmonic mean

of column A.

histogram(vd, inc, min, max)

Takes a vector vd, bin width = inc, vd min and vd

max, and generates data bins. Data points that fall

on the upper edge of a bin are placed into the next

higher bin.

https://www.originlab.com/doc/LabTalk/ref/Sum-func
https://www.originlab.com/doc/LabTalk/ref/Confidence-func
https://www.originlab.com/doc/LabTalk/ref/Geomean-func
https://www.originlab.com/doc/LabTalk/ref/Geosd-func
https://www.originlab.com/doc/LabTalk/ref/Harmean-func
https://www.originlab.com/doc/LabTalk/ref/Histogram-func

Function Reference

385

Kurt(vd)

Takes a vector vd, returns the kurtosis. example:

dataset ds = {1, 2, 3, 2, 3, 4, 5,

6, 4, 8}; kurt(ds) returns

0.39502164502164.

lcl(vd[, level])

Takes a vector vd, returns the lower confidence limit

at level. example:

lcl(col(A)) returns the lower confidence limit

of column A at 0.95 level.

Mad(vd)

Takes a vector vd, returns the Mean Absolute

Deviation. example:

mad(col(A)) returns the Mean Absolute

Deviation of column A.

Mode(vd)

Takes a vector vd and returns the most frequently

occurring number in vd. example:

aa = mode(col(A)) returens the most

frequently occurring number in column A.

Modes(vd)

Takes a vector vd and returns a vector of the most

frequently occurring number(s) in vd. example:

Col(B) = mode(col(A)) outputs the most

frequently occurring number in column A to column

B.

Percentile(vx, vy)

Takes a vector vx, returns the percentile values at

each percent value specified in vy. example:

DATA1_A = normal(1000); DATA1_B =

{1, 5, 25, 50, 75, 95, 99};

DATA1_C = percentile(DATA1_A,

DATA1_B); returns a dataset DATA1_C that

contains the percentiles of a normal distribution at

1%, 5%...99%.

https://www.originlab.com/doc/LabTalk/ref/Kurt-func
https://www.originlab.com/doc/LabTalk/ref/lcl-func
https://www.originlab.com/doc/LabTalk/ref/Mad-func
https://www.originlab.com/doc/LabTalk/ref/mode-func
https://www.originlab.com/doc/LabTalk/ref/modes-func
https://www.originlab.com/doc/LabTalk/ref/Percentile-func

LabTalk Scripting Guide

386

QCD2(n)

Takes a sample size n, returns the Quality Control

D2 Factor. example:

QCD2(4) returns 2.05875.

QCD3(n)

Takes a sample size n, returns the Quality Control

D3 Factor. Factor D3 is the 3-sigma lower control

limit in the X bar R chart. example:

QCD3(10) returns 0.223.

QCD4(n)

Takes a sample size n, returns the Quality Control

D4 Factor. Factor D4 is the 3-sigma upper control

limit in the X bar R chart. example:

QCD4(10) returns 1.777.

Skew(vd)

Takes a vector vd, returns the skewness

(distribution asymmetry). example:

skew(col(a)) returns the skewness of the

dataset in column A.

ucl(vd[, level])

Takes a vector vd, returns the upper confidence

level at level (0.95 by default). example:

ucl(col(a)) returns the upper confidence level

of column A at 0.95 level.

Emovavg(vd,n[,method])

Takes a vector vd and an integer n = time period,

returns a vector of exponential moving averages.

Option method specifies where calculation begins:

0 (default) = from point n; 1 = from 1st point.

example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

ii; col(3)=emovavg(col(1),10, 1);

//method II fills column 3 with values,

calculated using starting point = 1.

Mmovavg(vd,n)
Takes a vector vd, an integer n = time period, and

returns a vector of modified moving averages.

https://www.originlab.com/doc/LabTalk/ref/QCD2-func
https://www.originlab.com/doc/LabTalk/ref/QCD3-func
https://www.originlab.com/doc/LabTalk/ref/QCD4-func
https://www.originlab.com/doc/LabTalk/ref/Skew-func
https://www.originlab.com/doc/LabTalk/ref/ucl-func
https://www.originlab.com/doc/LabTalk/ref/Emovavg-func
https://www.originlab.com/doc/LabTalk/ref/Mmovavg-func

Function Reference

387

example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

ii; col(2)=mmovavg(col(1),10); fills

column 2 with a modified moving average value at

each point, starting with row 10.

Movavg(vd,back,forward[,missing,method])

Takes a vector vd and returns the moving average

of adjacent ranges [i-back, i+forward], for a point i (i

= the current row number). Option missing

determines whether to omit the missing values, and

method specifies which method to use (the fast

method or the the robust method).

for(ii=1;ii<=10;ii++) col(1)[ii] =

ii; col(2)=movavg(col(1),0, 2); fills

col(2) with adjacent average values at each point

(Note that col(2)[9] =

(col(1)[9]+col(1)[10])/2 and

col(1)[10] = col(2)[10]).

Movcoef(v1,v2,back,forward[,missing])

Takes two vectors v1 and v2 and returns a vector of

moving correlation coefficients of adjacent ranges [i-

back, i+forward], for a point i (i = the current row

number). Option missing determines whether to

omit the missing values. example:

wcol(4) = MovCoef(wcol(2),

wcol(3), 20, 0);

fills the 4th column with moving correlation

coefficients of col(2) and col(3), within the window [i-

20. i]

Movrms(vd,back[,forward,missing,method])

Takes a vector vd and returns the root mean

square(RMS) of adjacent ranges [i-back, i+forward],

for a point i (i = the current row number). Option

missing determines whether to omit the missing

values, and method specifies which method to use

(the fast method or the the robust method).

https://www.originlab.com/doc/LabTalk/ref/Movavg-func
https://www.originlab.com/doc/LabTalk/ref/MovCoef-func
https://www.originlab.com/doc/LabTalk/ref/Movrms-func

LabTalk Scripting Guide

388

example:

col(B)=movrms(col(A),0, 2); fills col(B)

with RMS at each point for data within the window [i,

i+2]).

Movslope(vx,vy[,n])

Takes two vectors, vx (independent) and vy

(dependent), returns a vector of moving slope at

each point. Optional n specifies window width

(should be > 1). If n is even, 1 will be added. When

n is not specified, the function returns a vector of

one value which is the linear fit slope of the input.

example:

col(C)=movslope(col(A),col(B),5);

fills col(C) with slope at each point (first and last two

cells are missing values).

Tmovavg(vd,n[,missing, method])

Takes a vector vd and an integer n = time period,

returns a vector of triangular moving averages.

Option missing determine whether to omit the

missing values, and method specifies which method

to use (the fast method or the the robust method).

example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

ii; col(2)=tmovavg(col(1),9); fills

col(2) with triangular moving average values at each

point, starting at point = 9.

Wmovavg(vd,vw[,method])

Takes a vector vd (data to smooth) and vector vw

(indexed weight factor), returns a vector of weighted

moving averages. Option method specifies which

method to use (the fast method or the the robust

method). example:

for(ii=1;ii<=30;ii++) col(1)[ii] =

ii; //data vector

for(ii=1;ii<=10;ii++) col(2)[ii] =

ii/10; //weight vector

https://www.originlab.com/doc/LabTalk/ref/Movslope-func
https://www.originlab.com/doc/LabTalk/ref/Tmovavg-func
https://www.originlab.com/doc/LabTalk/ref/Wmovavg-func

Function Reference

389

col(3)=wmovavg(col(1),col(2));

fills col(3) with the weighted moving average at each

point, starting at point = 10.

20.2.10 Distribution Functions

20.2.10.1 Cumulative Distribution Functions (CDF)

Name Brief Description

betacdf(x,a,b[,tail])

Computes beta cumulative distribution function at x, with parameters a

and b. a and b must all be positive, and x must lie on the interval [0,1].

tail determines the returned probability is the lower tailed or upper tailed.

binocdf(k,n,p)

Computes the lower tail, upper tail and point probabilities in given value k,

associated with a Binomial distribution using the corresponding

parameters in n, p.

bivarnormcdf(x,y,corre)

Computes the lower tail probability for the bivariate Normal distribution.

chi2cdf(x,df[,tail])

Computes the lower/upper tail probability for the chi-square distribution

with real degrees of freedom df.

foldnormcdf(x,mu,sigma) Computes the lower tail probability for the Folded Normal distribution.

fcdf(f,ndf,fdf[,tail])

Computes the F cumulative distribution function at f, with degrees of

freedom of the numerator variance ndf and denominator variance fdf. tail

determines the returned probability is the lower tailed or upper tailed.

https://www.originlab.com/doc/LabTalk/ref/Betacdf-func
https://www.originlab.com/doc/LabTalk/ref/Binocdf-func
https://www.originlab.com/doc/LabTalk/ref/Bivarnormcdf-func
https://www.originlab.com/doc/LabTalk/ref/Chi2cdf-func
https://www.originlab.com/doc/LabTalk/ref/Foldnormcdf-func
https://www.originlab.com/doc/LabTalk/ref/Fcdf-func

LabTalk Scripting Guide

390

gamcdf(g,a,b[,tail])

Computes the lower/upper tail probability for gamma variate g with real

degrees of freedom, using shape parameter a and scale parameter b. tail

determines the returned probability is the lower tailed or upper tailed.

hygecdf(k,m,n,l)

Computes the lower tail probabilities in a given value, associated with a

hypergeometric distribution using the corresponding parameters.

where n is the population size, m the number of success states in the

population, and l the number of samples drawn.

landaucdf(x,mu,sigma[,tail]

)

(2024b)

Computes the cumulative density function for the Landau distribution at x

and with location parameter mu and scale parameter sigma. tail

determines the returned probability is the lower tailed or upper tailed.

logncdf(x,mu,sigma[,tail])

(2015 SR0)

Computes the probabilities of the specified tail type tail in a given value

x, associated with a Lognormal distribution using the corresponding

parameters mu and sigma. Lower tail probability will return if tail is not

specified.

ncbetacdf(x,a,b,lambda)

Computes the cdf with the lower tail of the non-central beta distribution.

where

which is the central beta probability function or incomplete beta function.

ncchi2cdf(x,f,lambda) Computes the probability associated with the lower tail of the non-central

https://www.originlab.com/doc/LabTalk/ref/Gamcdf-func
https://www.originlab.com/doc/LabTalk/ref/Hygecdf-func
https://www.originlab.com/doc/LabTalk/ref/Landaucdf-func
https://www.originlab.com/doc/LabTalk/ref/Landaucdf-func
https://www.originlab.com/doc/LabTalk/ref/Logncdf-func
https://www.originlab.com/doc/LabTalk/ref/Ncbetacdf-func
https://www.originlab.com/doc/LabTalk/ref/Ncchi2cdf-func

Function Reference

391

chi-square distribution.

where is a central with degrees

of freedom.

ncfcdf(f,df1,df2,lambda)

Computes the probability associated with the lower tail of the non-central

digamma or variance-ratio distribution.

= ,

Where

and is the beta function.

nctcdf(t,df,delta[,maxiter])

Computes the lower tail probability for the non-central Student's t-

distribution.

with

normcdf(x[,tail])

Cmputes the probabilities of the specified tail type tail in a given value x,

associated with a normal cumulative distribution.

poisscdf(k,lambda)

Computes the lower tail probabilities in given value k, associated with a

Poisson distribution using the corresponding parameters in lambda.

https://www.originlab.com/doc/LabTalk/ref/Ncfcdf-func
https://www.originlab.com/doc/LabTalk/ref/Nctcdf-func
https://www.originlab.com/doc/LabTalk/ref/Normcdf-func
https://www.originlab.com/doc/LabTalk/ref/Poisscdf-func

LabTalk Scripting Guide

392

srangecdf(q,v,group)

Computes the probability associated with the lower tail of the distribution

of the Studentized range statistic.

where ,

tcdf(t,df[,tail])

Computes the probabilities of the specified tail type tail, associated with a

cumulative distribution function of Student's t-distribution with the degree

of freedom df.

wblcdf(x,a,b)

Computes the lower tail Weibull cumulative distribution function for value

x using the parameters a and b.

where is the interval on which the Weibull CDF is not zero.

20.2.10.2 Probability Density Functions (PDF)

Name Brief Description

betapdf(x,a,b)

Returns the probability density function of the beta distribution with

parameters a and b.

with

binopdf(x,nt,p) Returns the probability density function of the binomial distribution with

https://www.originlab.com/doc/LabTalk/ref/Srangecdf-func
https://www.originlab.com/doc/LabTalk/ref/Tcdf-func
https://www.originlab.com/doc/LabTalk/ref/Wblcdf-func
https://www.originlab.com/doc/LabTalk/ref/Betapdf-func
https://www.originlab.com/doc/LabTalk/ref/Binomialpdf-func

Function Reference

393

(2015 SR0) parameters nt and p.

where and .

cauchypdf(x,a,b)

(8.6 SR0)

Cauchy probability density function (aka Lorentz distribution).

exppdf(x,lambda)

(8.6 SR0)

Returns the probability density function of the exponential distribution with

rate parameter lambda, evaluated at the value x.

foldnormpdf(x,mu,sigma)

Computes the probability density function at each of the values in X using

the folder normal distribution with mean mu and standard deviation sigma.

gampdf(x,a,b)

(8.6 SR0)

Returns the Gamma probability density with parameters a and b.

To obtain the scale and shape parameters a and b from a Gamma

distributed dataset, you can use estimation function gamfit.

ks2d(vx, vy[,bandwidth,

grid, interp, binned])

(2020)

Returns the 2D kernel density at point (x, y) with specified bandwidth

method and density method, where vx is a vector of X coordinate values

and vy is a vector of Y coordinate values. Options for bandwidth method,

grid (bandwidth method only), interpolation and density (applicable only

when interp=1 (true)).

where n is the number of elements in vector vx or vy, index i indicates the

ith element in vx or vy and optimal scales (wx, wy) are determined by

https://www.originlab.com/doc/LabTalk/ref/Cauchypdf-func
https://www.originlab.com/doc/LabTalk/ref/Exppdf-func
https://www.originlab.com/doc/LabTalk/ref/Foldnormpdf-func
https://www.originlab.com/doc/LabTalk/ref/Gampdf-func
https://www.originlab.com/doc/LabTalk/ref/Gammafit-func
https://www.originlab.com/doc/LabTalk/ref/ks2d
https://www.originlab.com/doc/LabTalk/ref/ks2d

LabTalk Scripting Guide

394

estimation function kernel2width.

ks2density(x,y,vx,vy,wx,w

y)

(2015 SR0)

Returns the 2D kernel density at point (x, y) with respect to a function

established by dataset (vx, vy) with scale (wx, wy).

where n is the number of elements in vector vx or vy, index i indicates the

ith element in vx or vy and optimal scales (wx, wy) are determined by

estimation function kernel2width.

ksdensity(x,vx,w)

(2015 SR0)

Returns the kernel density at x for a given vector vx with a bandwidth w.

where n is the size of vector vX, K is the kernel function, Origin uses

normal (Gaussian) kernel function, , and is

the ith element in vector vX.

landaupdf(x,mu,sigma)

(2024b)

Compute the probability density function at each of the values in x using

the Landau distribution with location paramter mu and scale parameter

sigma.

lappdf(x,mu,b)

(8.6 SR0)

Laplace probability density function.

lognpdf(x,mu,sigma)

(8.6 SR0)

Returns values at X of the lognormal probability density function with

distribution parameters mu and sigma.

https://www.originlab.com/doc/LabTalk/ref/Kernel2width-func
https://www.originlab.com/doc/LabTalk/ref/ks2density-func
https://www.originlab.com/doc/LabTalk/ref/ks2density-func
https://www.originlab.com/doc/LabTalk/ref/Kernel2width-func
https://www.originlab.com/doc/LabTalk/ref/ksdensity-func
https://www.originlab.com/doc/LabTalk/ref/Landaupdf-func
https://www.originlab.com/doc/LabTalk/ref/Lappdf-func
https://www.originlab.com/doc/LabTalk/ref/Lognpdf-func

Function Reference

395

normpdf(x,mu,sigma)

(8.6 SR0)

Computes the probability density function at each of the values in X using

the normal distribution with mean mu and standard deviation sigma.

poisspdf(x,lambda)

(8.6 SR0)

Computes the Poisson probability density function at each of the values in

X using mean parameters in lambda.

wblpdf(x,a,b)

(8.6 SR0)

Returns the probability density function of the Weibull distribution with

parameters a and b.

To obtain the scale and shape parameters a and b from a Weibull

distributed dataset, you can use estimation function wblfit.

20.2.10.3 Inverse Cumulative Distribution Functions (INV)

Name Brief Description

betainv(p,a,b)
Returns the inverse of the cumulative distribution function for a specified beta

distribution.

chi2inv(p,df)

Computes the inverse of the chi-square cumulative density function for the

corresponding probabilities in X with parameters specified by nu.

finv(p,df1,df2)

Computes the inverse of F cumulative density function at p, with parameters df1

and df2.

https://www.originlab.com/doc/LabTalk/ref/Normpdf-func
https://www.originlab.com/doc/LabTalk/ref/Poisspdf-func
https://www.originlab.com/doc/LabTalk/ref/Wblpdf-func
https://www.originlab.com/doc/LabTalk/ref/Wblfit-func
https://www.originlab.com/doc/LabTalk/ref/Betainv-func
https://www.originlab.com/doc/LabTalk/ref/Chi2inv-func
https://www.originlab.com/doc/LabTalk/ref/Finv-func

LabTalk Scripting Guide

396

where ;

foldnorminv(p,mu,si

gma)

Computes the deviate, x, associated with the given lower tail probability, p, of the

folded normal distribution, with distribution parameters mu and sigma.

gaminv(p,a,b)

Computes the inverse of Gamma cumulative density function at p , with

parameters a and b.

where ;

Landauinv(p,mu,sig

ma)

(2024b)

Computes the inverse of the Landau cumulative density function at p , with

location parameter mu and scale parameter sigma.

logninv(p,mu,sigma

)

(2015 SR0)

Computes the deviate,x, associated with the given lower tail probability,p, of the

Lognormal distribution with parameters mu and sigma.

where

norminv(p)

Computes the deviate, x, associated with the given lower tail probability, p, of the

standardized normal distribution.

where

srangeinv(p,v,ir)

Computes the deviate, x, associated with the lower tail probability of the

distribution of the Studentized range statistic.

https://www.originlab.com/doc/LabTalk/ref/Foldnorminv-func
https://www.originlab.com/doc/LabTalk/ref/Foldnorminv-func
https://www.originlab.com/doc/LabTalk/ref/Gaminv-func
https://www.originlab.com/doc/LabTalk/ref/Landauinv-func
https://www.originlab.com/doc/LabTalk/ref/Landauinv-func
https://www.originlab.com/doc/LabTalk/ref/Logninv-func
https://www.originlab.com/doc/LabTalk/ref/Logninv-func
https://www.originlab.com/doc/LabTalk/ref/Norminv-func
https://www.originlab.com/doc/LabTalk/ref/Srangeinv-func

Function Reference

397

tinv(p,df)

Computes the deviate associated with the lower tail probability of Student's t-

distribution with real degrees of freedom.

,

wblinv(p,a,b)

Computes the inverse Weibull cumulative distribution function for the given

probability using the parameters a and b.

20.2.11 Data Generation Functions

Two functions in this category, rnd()/ran() and grnd(), return a value. All the other functions in this category

return a range.

Note: The seeding algorithm for Origin's methods of random number generation was changed for version

2016. For more information, see documentation for the system variable @ran.

Name Brief Description

Data(x1,x2,inc)

Takes two values x1 and x2 and creates a dataset,

ranging from x1 to x2, with an increment inc. If x1 = x2,

function returns inc number of points with values = x1.

Default for inc = 1. examples: col(A) =

data(0,100,5) fills column A with numbers from 0 to

100, by increment = 5.

col(A) = data(10, 10, 5) fills the first five rows

of column A with the number 10.

col(A) = data(1,100) fills column A with numbers

from 1 to 100, by increment = 1.

grnd()

Returns a value from a normally (Gaussian) distributed

sample, with zero mean and unit standard deviation. The

initial value and sequence of values are the same for

https://www.originlab.com/doc/LabTalk/ref/Tinv-func
https://www.originlab.com/doc/LabTalk/ref/Wblinv-func
https://www.originlab.com/doc/LabTalk/ref/Rnd-func
https://www.originlab.com/doc/LabTalk/ref/Ran-func
https://www.originlab.com/doc/LabTalk/ref/Grnd-func
https://www.originlab.com/doc/LabTalk/ref/sys-var-list
https://www.originlab.com/doc/LabTalk/ref/Data-func
https://www.originlab.com/doc/LabTalk/ref/Grnd-func

LabTalk Scripting Guide

398

each Origin session. No argument is needed. Commonly,

the function is used to return a random value from a

normal distribution of known mean and standard

deviation, using the following expression: grnd()*sd+m.

example:

aa=grnd()*0.30855+0.45701 might return

0.33882089669989.

normal(npts[,seed])

Returns a range of npts. Values are random numbers

with normal distribution (zero mean, unit standard

deviation). If seed is omitted, a different seed is used

each time the function is called. Can be used to fill a

column with normally distributed random values, given a

mean and standard deviation: normal(npts)*sd+m.

example:

col(1) = normal(100)*2+5 fills column 1 with

100 random values with mean = 5 and sd = 2.

pattern(vd, onerepeat, seqrepeat) and

pattern(x1,x2,inc,onerepeat,seqrepeat)

Returns the generated patterned numeric or text data.

pattern(vd, onerepeat, seqrepeat) will take input string

series vd and repeat each element in vd onerepeat times

and then repeat the whole string series seqrepeat times.

pattern(x1,x2,inc,onerepeat,seqrepeat) will create a

dataset range from x1 to x2 with increment inc, each

element in the dataset will be repeated onerepeat times

and then the whole dataset will be repeated seqrepeat

times. Note that the elements in string series can be

separated by pipe (|), comma(,), or space, or a range

variable. example:

col(a)=pattern("Origin Lab", 2, 2); fills

column A with "Origin Origin Lab Lab Origin Origin Lab

Lab".

col(b)=pattern(1,3,1,2,2); fill column B with

"1 1 2 2 3 3 1 1 2 2 3 3".

Poisson(n, mean [,seed]) Returns n random integers having a Poisson distribution

https://www.originlab.com/doc/LabTalk/ref/Normal-func
https://www.originlab.com/doc/LabTalk/ref/Pattern-func
https://www.originlab.com/doc/LabTalk/ref/Pattern-func
https://www.originlab.com/doc/LabTalk/ref/Poisson-func

Function Reference

399

with mean. Optional seed provides a seed for the number

generator. example:

col(1)=Poisson(100,5,1) fills column 1 with 100

random values having a Poisson distribution with mean of

5.

ran([seed]) and rnd([seed])

Returns a value between 0 and 1 from a uniformly

distributed sample. They work exactly the same as rand

function. If option seed is positive, sets the seed and

returns 0. If seed is ≤ 0 or if no argument is provided,

returns the next number in the random number sequence.

rand([seed])

(2026)

Returns a value between 0 and 1 from a uniformly

distributed sample. It works exactly the same as ran/rnd

function. If option seed is positive, sets the seed and

returns 0. If seed is ≤ 0 or if no argument is provided,

returns the next number in the random number sequence.

randbetween(n1, n2)

(2026)

Returns a random value between the given numbers n1

and n2. example:

col(b)[1]=randbetween(1,10) fills the first cell

of collumn B with a random number between 1 and 10.

uniform(npts [,seed]) and uniform(npts,

vd)

Returns a range of npts. Option seed can be a value,

data range, delimited string ("|", "," or space) or string

array. If seed is a value, returns uniformly distributed

random numbers. If seed is a data range or string array,

returned values are randomly chosen from the data range

or string(s). If seed is omitted, a different seed is used

each time the function is called. This function also accepts

a vector vd as an argument.

20.2.12 Lookup & Reference Functions

Name Brief Description

Category(vd)$
Takes a vector vd of categorical data and

returns all categories to a worksheet column.

https://www.originlab.com/doc/LabTalk/ref/Ran-func
https://www.originlab.com/doc/LabTalk/ref/Rnd-func
https://www.originlab.com/doc/LabTalk/ref/Rnd-func
https://www.originlab.com/doc/LabTalk/ref/Randbetween-func
https://www.originlab.com/doc/LabTalk/ref/Uniform-func
https://www.originlab.com/doc/LabTalk/ref/Uniform-func
https://www.originlab.com/doc/LabTalk/ref/Uniform-func
https://www.originlab.com/doc/LabTalk/ref/Category-func

LabTalk Scripting Guide

400

(2020b) Category order follows source column.

examples:

category([automobile]automobile!

Make); // Set Values dialog

form, "$" optional

range rA =

[automobile]automobile!col(b);

col(b) = category(rA)$; // LT

script form, "$" needed

Catindex(vd)

(2020b)

Takes a vector vd of categorical data and

returns the category index for each of its

elements to a worksheet column. examples:

catindex(col(B));

Catrows(vd[,option])

(2024b)

Takes a vector vd of categorical data and

returns a pipe-separated list of all row indices

by category. Optional option determine

returning all/first/last index for each category.

Category order follows source column.

examples:

catrows([automobile]automobile!B

); // Set Values dialog form,

"$" optional

range rA =

[automobile]automobile!col(b);

col(b) = catrows(rA)$; // LT

script form, "$" needed

Cattext(n,vd)$

(2020b)

Takes a vector vd of categorical data and

returns the nth category value. examples:

cattext(H,B); // Set Values

dialog form, "$" optional

range rA =

https://www.originlab.com/doc/LabTalk/ref/Catindex-func
https://www.originlab.com/doc/LabTalk/ref/Catrows-func
https://www.originlab.com/doc/LabTalk/ref/Cattext-func

Function Reference

401

[automobile]automobile!col(b);

col(b) = cattext(col(a),rA)$; //

LT script form, "$" needed

Findmasks(vd)

Takes a vector vd containing masked data,

returns a vector of the indexes of masked

points. example:

dataset aa=findmasks(col(b));

col(d)=aa fills column D with the row

indices of masked data in column B.

Firstpoint(vd)

Takes a vector vd, returns the first value of

dataset vd. example:

aa = firstpoint(col(A)); get the

first value of column A and assign it to variable

aa.

Idx(vBool)

Evaluates conditional expression vBool

involving a single vector and returns a vector of

integers containing the row indices of all

records that meet the condition. examples:

idx(A); returns indices of true (1) values.

idx(B>=20 && B<=50); returns indices

of values in B are between 20 and 50.

idx(left(A,5)$ == "Chris");

returns indices of values in A where first 5

letters are "Chris".

Index(d,vd[,n])

Takes a vector vd of strictly monotonic data,

returns the index of data point d. If option n = 0

(default) finds the value that is equal or closest

to the value of d; n = 1 looks for ≤ d; n = 2 looks

for ≥ d. If vd is not strictly monotonic or contains

text, returns -2. example:

index(170,col(1)); returns the index of

https://www.originlab.com/doc/LabTalk/ref/FindMasks-func
https://www.originlab.com/doc/LabTalk/ref/Firstpoint-func
https://www.originlab.com/doc/LabTalk/ref/Idx-func
https://www.originlab.com/doc/LabTalk/ref/Index-func

LabTalk Scripting Guide

402

the value in column 1 that is equal or closest to

170.

Lastpoint(vd)

Takes a vector vd(dataset), return the last value

of dataset vd. example:

aa = lastpoint(col(A)); get the last

value of column A and assign it to variable aa.

List(val,vd)

Takes a vector vd, returns the dataset index

number for first occurrence of val. If val is not

found, the function returns 0. example:

list(3, col(A)) searches column A and

returns the (row) index number where the value

3 first occurs.

lookup(str$,vs[,vref,option,Case])[$]

(2015 SR0)

Searches for string str$ in vector vs and returns

the value in vector vref (numeric or string) with

the same index. If vref is not provided, funtion

will return the index of str found in vs. Precision

of match is determined by option. When Case

= 0(default), the function is not case sensitive.

example:

string str1$ = Lookup("FSA",

col(A), col(B))$; searches for string

FSA in column A and assigns the value in the

cell in column B that has the same index

number as string FSA, to str1$.

table(vd,vref,d[,option])[$]

(2015 SR0)

Searches for value d in vector vd, returns value

in vref with the same index number. The return

value can be numeric or string, depending on

vref. Parameter option modifies search for

parameter d: -1 (default) = function performs

linear interpolation on vd vs vref and returns

the interpolated value; 0 = finds nearest value

that is ≤ d; 1 = finds nearest value that is ≥ d; 2

= finds nearest or equal value.

https://www.originlab.com/doc/LabTalk/ref/Lastpoint-func
https://www.originlab.com/doc/LabTalk/ref/List-func
https://www.originlab.com/doc/LabTalk/ref/Lookup-func
https://www.originlab.com/doc/LabTalk/ref/Table-func

Function Reference

403

unique(vs[, sort, occurrence, sort2])

(2018b)

Takes a vector vs and returns the unique

values. Parameter sort decides whether to sort

the returned unique values: 1 (default) = sort

ascendingly; 0 = without sorting; 2 = sort

descendingly. Parameter occurrence specifies

how to reduce the duplicated values: 0 (default)

= keep the first duplicated value; 1 = keep the

last duplicated value. sort2 determines how to

deal with the occurrence: 0 (default) = no

occurrence sort, 1 = sort occurrence ascending.

2 = sort occurrence descending. example:

StringArray sA; sA =

unique(col(a)); // assign unique

values in col(a) to stringArray

sA, in ascending order

ReportCell(sBook$,sSheet$,sTable$,sRowRef$,s

ColRef$)

(2021b)

Access to report sheet table cell by specified

book name sBook, sheet name sSheet, table

name sTable and cell row&column reference

sRowRef and sColRef. example: perform

Gauss Fit on Book1 data, following formula

ReportCell("Book1", "FitNL1",

"Summary", "R1", "a_Value")

returns the fitted value of parameter "A"

Note: This function can not be used in cell

formula.

Xindex(x,vd[,option])

Takes a vector vd (Y dataset), returns the row

index number of the value in the X dataset

associated with vd, that is closest to value x.

option determines which index is returned: 0

(default) = equal or closest from the left; 1 =

equal or closest from the right; 2 = equal or

closest, left or right. Requirements: (1) vd must

be a designated Y column; (2) name of vd must

correspond to an actual Y dataset; (3) the X

dataset must be sorted in ascending order.

https://www.originlab.com/doc/LabTalk/ref/Unique-func
https://www.originlab.com/doc/LabTalk/ref/ReportCell-func
https://www.originlab.com/doc/LabTalk/ref/ReportCell-func
https://www.originlab.com/doc/LabTalk/ref/Xindex-func

LabTalk Scripting Guide

404

example:

xindex(5,book1_g,1) returns the row

index number for the x value that is equal or to

the right of, (≥) 5.

Xvalue(n,vd)

Takes a vector vd (Y or Z dataset), returns the

corresponding X value at row number n.

example:

xvalue(20,book4_c) returns the x value

associated with column C at 20th row in column

C of Book4.

Errof(vd)

Takes a vector vd (dataset), returns the dataset

(xEr/yEr) containing the error values of vd.

example:

%a=errof(book1_b)might return

book1_c.

hasx(vd)

Takes a dataset vd and if vd is plotted against

an x dataset in the active (graph) layer, returns

1; if not, returns 0. example:

aa=hasx(book1_b) returns 1 if the active

graph layer contains a plot of column B.

IsMasked(n,vd)

Takes a vector vd and if n = 0, returns the

number of masked points. If n = data point

index number, returns 1 if masked, 0 if not

masked. example:

ismasked(0,book1_b) returns 77 if there

are 77 masked points in dataset book1_b.

ismasked(8,book1_b) returns 0 if point n8

is not masked, or 1 if it is masked.

Xof(vd)

Takes a vector name vd which is a Y dataset

with an associated X dataset and returns a

string containing the name of the X dataset.

https://www.originlab.com/doc/LabTalk/ref/Xval-func
https://www.originlab.com/doc/LabTalk/ref/Errof-func
https://www.originlab.com/doc/LabTalk/ref/Hasx-func
https://www.originlab.com/doc/LabTalk/ref/IsMasked-func
https://www.originlab.com/doc/LabTalk/ref/Xof-func

Function Reference

405

example:

%a = xof(book1_b); book1_c = %a;

// e.g. after substitution :

book1_c = book1_a puts the name of the

X dataset associated with the Y dataset in

column B and fills column C with the X values.

20.2.13 Data Manipulation Functions

Name Brief Description

asc(str$)

Takes an input string and returns the ASCII code (decimal) for the first character

in the string. This function does the same thing as the code function. example:

aa = asc($100); aa = returns 36.

corr(vx,vy,k[, n])

Takes two datasets vx and vy, a lag size k and returns the correlation between

the two datasets. Option n is the number of points. Lag parameter k can be

scalar or vector. When k is a vector, function returns a vector; when a scalar,

returns a scalar. example:

corr(col(1),col(2),data(1,10),50) returns the cross-correlation of

the first 50 points of col(1) with col(2), using a lag size from 1 to 10.

dropNA(vd[, text,

end])

Takes a vector vd and remove missing and masked values. Optional parameter

text determines how to deal with text, and end controls whether missing values

are removed only at the beginning and end of the dataset, or removed entirely.

example:

col(b)=dropNA(col(a))

join(rA, rB, ...)

Takes two or more ranges, denoted as rA1:rA2, rB1:rB2,... and joins

them into a single dataset. example:

total(join(col(a)[1]:col(a)[32],col(b)[1]:col(b)[32])

); joins defined ranges and calculates total

=total(join(A1:A32,B1:B32)) // same as above, but syntax for cell or

column formula only

https://www.originlab.com/doc/LabTalk/ref/Asc-func
https://www.originlab.com/doc/LabTalk/ref/Code-func
https://www.originlab.com/doc/LabTalk/ref/Corr-func
https://www.originlab.com/doc/LabTalk/ref/dropNA-func
https://www.originlab.com/doc/LabTalk/ref/dropNA-func
https://www.originlab.com/doc/LabTalk/ref/Join-func
https://www.originlab.com/doc/Origin-Help/Wks-SetColVal-QuickStart
https://www.originlab.com/doc/Origin-Help/Wks-SetColVal-QuickStart

LabTalk Scripting Guide

406

peaks(vd, width,

minht)

Takes a vector vd, returns dataset of indices of peaks found using width and

minht. width is number of points to each side of the test point. minht is in Y axis

units. A peak at index i is minht greater than the data value at (i-width) or

(i+width). example:

peaks(col(B), 3, 0.1) returns dataset of peak indices.

rank(vd[, n])

Takes a dataset vd, sorts it and returns the ranked index. If n = 0 (default), vd is

sorted in ascending order; if n = 1, in descending order. If duplicated values exist

in vd, returns the average number of the ranked indexes for each duplicated

value. example:

col(C)=rank(col(B),1); takes data in col(B) and output its ranked

indexes to col(C)

reverse(vd)

Takes a vector vd and reverses the order. example:

col(B)=reverse(col(A))

sort(vd)

Takes a dataset, sorts it in ascending order and returns it. example:

%a=sort(book4_c); book4_d=%a takes the data in col(C), sorts it and

fills col(D) with the result.

treplace(vd,val1,val2[

, cnd])

Replaces a dataset value with another when conditions cnd are met. Takes a

dataset vd, compares each value to val1 with respect to option cnd and either

replaces with val2 (or -val2) when comparison is true; or when false retains value

or replaces with missing value ("--").

20.2.14 NAG Special Functions

20.2.14.1 Airy

Name Brief Description

airy_ai(x) Evaluates an approximation to the Airy function, Ai(x).

airy_ai_deriv(x) Evaluates an approximation to the derivative of the Airy function Ai(x).

airy_bi(x) Evaluates an approximation to the Airy function Bi(x).

https://www.originlab.com/doc/LabTalk/ref/Peaks-func
https://www.originlab.com/doc/LabTalk/ref/Peaks-func
https://www.originlab.com/doc/LabTalk/ref/Rank-func
https://www.originlab.com/doc/LabTalk/ref/reverse-func
https://www.originlab.com/doc/LabTalk/ref/Sort-func
https://www.originlab.com/doc/LabTalk/ref/TReplace-func
https://www.originlab.com/doc/LabTalk/ref/TReplace-func
https://www.originlab.com/doc/LabTalk/ref/Airy-ai-func
https://www.originlab.com/doc/LabTalk/ref/Airy-ai-deriv-func
https://www.originlab.com/doc/LabTalk/ref/Airy-bi-func

Function Reference

407

airy_bi_deriv(x) Evaluates an approximation to the derivative of the Airy function Bi(x).

20.2.14.2 Bessel

Name Brief Description

bessel_i0(x)
Bessel i0. Evaluates an approximation to the modified Bessel function of

the first kind, I0(x).

bessel_i0_scaled(x) Bessel i0 scaled. Evaluates an approximation to

bessel_i1(x)

Bessel i1. Evaluates an approximation to the modified Bessel function of

the first kind, .

bessel_i1_scaled(x) Bessel i1 scaled. Evaluates an approximation to

bessel_i_nu(x,nu)
Bessel i nu. Evaluates an approximation to the modified Bessel function of

the first kind I /4 (x)

bessel_i_nu_scaled(x,nu)

Bessel i nu scaled. Evaluates an approximation to the modified Bessel

function of the first kind

bessel_j0(x) Bessel j0. Evaluates the Bessel function of the first kind,

bessel_j1(x)

Bessel j1. Evaluates an approximation to the Bessel function of the first

kind

bessel_k0(x)

Bessel k0. Evaluates an approximation to the modified Bessel function of

the second kind,

bessel_k0_scaled(x) Bessel k0 scaled. Evaluates an approximation to

Bessel_k1(x)

Bessel k1. Evaluates an approximation to the modified Bessel function of

the second kind,

bessel_k1_scaled(x) Bessel k1 scaled. Evaluates an approximation to

https://www.originlab.com/doc/LabTalk/ref/Airy-bi-deriv-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i0-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i0-scaled-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i1-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i1-scaled-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i-nu-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-i-nu-scaled-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-j0-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-j1-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-k0-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-k0-scaled-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-k1-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-k1-scaled-func

LabTalk Scripting Guide

408

bessel_k_nu(x,nu)

Bessel k nu. Evaluates an approximation to the modified Bessel function of

the second kind

bessel_k_nu_scaled(x,nu)

Bessel k nu scaled. Evaluates an approximation to the modified Bessel

function of the second kind

bessel_y0(x)

Bessel y0. Evaluates the Bessel function of the second kind, , x > 0. The

approximation is based on Chebyshev expansions.

bessel_y1(x)

Bessel y1. Evaluates the Bessel function of the second kind, , x > 0. The

approximation is based on Chebyshev expansions.

besseli(nu, z[, scale]) Evaluates the modified Bessel function of first kind.

besselj(nu, z[, scale]) Evaluates the Bessel function of first kind.

besselk(nu, z[, scale]) Evaluates the modified Bessel function of second kind,

bessely(nu, z[, scale]) Evaluates the Bessel function of second kind.

20.2.14.3 Error

Name Brief Description

erf(x) The error function (or normal error integral).

erfc(x) Calculates an approximate value for the complement of the error function.

erfcinv(dy)

Computes the value of the inverse complementary error function for specified

y.

erfcx(x) The scaled complementary error function.

erfi(c) Take a complex or real number, and return the imaginary error function.

erfinv(dy) The inverse error function.

https://www.originlab.com/doc/LabTalk/ref/Bessel-k-nu-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-k-nu-scaled-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-y0-func
https://www.originlab.com/doc/LabTalk/ref/Bessel-y1-func
https://www.originlab.com/doc/LabTalk/ref/Besseli-func
https://www.originlab.com/doc/LabTalk/ref/Besselj-func
https://www.originlab.com/doc/LabTalk/ref/Besselk-func
https://www.originlab.com/doc/LabTalk/ref/Bessely-func
https://www.originlab.com/doc/LabTalk/ref/Erf-func
https://www.originlab.com/doc/LabTalk/ref/Erfc-func
https://www.originlab.com/doc/LabTalk/ref/Erfcinv-func
https://www.originlab.com/doc/LabTalk/ref/Erfcx-func
https://www.originlab.com/doc/LabTalk/ref/Erfi-func
https://www.originlab.com/doc/LabTalk/ref/Erfinv-func

Function Reference

409

20.2.14.4 Gamma

Name Brief Description

gamma(x)

Gamma function. Evaluates

incomplete_gamma(a,x) Incomplete gamma function.

log_gamma(x) Log gamma function. Evaluates .x > 0.

real_polygamma(x,k)

Polygamma function. Evaluates an approximation to the kth derivative of the

psi function

20.2.14.5 Integral

Name Brief Description

cos_integral(x)

NAG cosine integral function. Evaluates

cumul_normal(x) Evaluates the cumulative Normal distribution function.

cumul_normal_complem(x)

Evaluates an approximate value for the complement of the cumulative

normal distribution function.

elliptic_integral_rc(x,y)

NAG elliptical integral of the first kind. Calculates an approximate value

for the integral

elliptic_integral_rd(x,y,z)

NAG symmetrised elliptic integral of the second kind. Calculates an

approximate value for the integral

elliptic_integral_rf(x,y,z)

NAG symmetrised elliptic integral of the first kind. Calculates an

approximation to the integral

https://www.originlab.com/doc/LabTalk/ref/Gamma-func
https://www.originlab.com/doc/LabTalk/ref/Incomplete-gamma-func
https://www.originlab.com/doc/LabTalk/ref/Log-gamma-func
https://www.originlab.com/doc/LabTalk/ref/Real-polygamma-func
https://www.originlab.com/doc/LabTalk/ref/Cos-integral-func
https://www.originlab.com/doc/LabTalk/ref/Cumul-normal-func
https://www.originlab.com/doc/LabTalk/ref/Cumul-normal-complem-func
https://www.originlab.com/doc/LabTalk/ref/Elliptic-integral-rc-func
https://www.originlab.com/doc/LabTalk/ref/Elliptic-integral-rd-func
https://www.originlab.com/doc/LabTalk/ref/Elliptic-integral-rf-func

LabTalk Scripting Guide

410

elliptic_integral_rj(x,y,z,r)

NAG symmetrised elliptic integral of the third kind. Calculates an

approximation to the integral

exp_integral(x)

NAG exponential integral function. Evaluates

fresnel_c(x)

NAG Fresnel integral function C. Evaluates an approximation to the

Fresnel Integral .

fresnel_s(x)

NAG Fresnel integral function S. Evaluates an approximation to the

Fresnel Integral .

sin_integral(x)

NAG sine integral function. Evaluates

20.2.14.6 Kelvin

Name Brief Description

kelvin_bei(x) Evaluates an approximation to the Kelvin function bei x.

kelvin_ber(x) Evaluates an approximation to the Kelvin function ber x.

kelvin_kei(x) Evaluates an approximation to the Kelvin function kei x.

kelvin_ker(x) Evaluates an approximation to the Kelvin function ker x.

20.2.14.7 Miscellaneous

https://www.originlab.com/doc/LabTalk/ref/Elliptic-integral-rj-func
https://www.originlab.com/doc/LabTalk/ref/Exp-integral-func
https://www.originlab.com/doc/LabTalk/ref/Fresnel-c-func
https://www.originlab.com/doc/LabTalk/ref/Fresnel-s-func
https://www.originlab.com/doc/LabTalk/ref/Sin-integral-func
https://www.originlab.com/doc/LabTalk/ref/Kelvin-bei-func
https://www.originlab.com/doc/LabTalk/ref/Kelvin-ber-func
https://www.originlab.com/doc/LabTalk/ref/Kelvin-kei-func
https://www.originlab.com/doc/LabTalk/ref/Kelvin-ker-func

Function Reference

411

Name Brief Description

jacobian_theta(k,x,q)

NAG Jacobian theta function. Computes the value of one of the

Jacobian theta functions , , , or

 for a real argument x and non-negative q ≤ 1..

lambertW(x[,branch,offset])

Calculates an approximate value for the real branches of Lambert's W

function.

20.2.15 Fitting Functions

Multi-parameter functions in this category are used as built-in functions for Origin's nonlinear fitter. You can view

the equation, a sample curve, and the function details for each multi-parameter function by opening the NLFit

(Analysis: Fitting: Nonlinear Curve Fit). Then select the function of interest from the Function selection page.

For additional documentation on all the multi-parameter functions available from Origin's nonlinear curve fit, see

this PDF on the OriginLab website. This document includes the mathematical description, a sample curve, a

discussion of the parameters, and the LabTalk function syntax for each multi-parameter function.

20.2.15.1 Origin Basic Functions

Name Brief Description

Allometric1(x,a,b)

Classical Freundlich Model, has been used in the study of allometry.

Beta(x,y0,xc,A,w1,w2,w3)

Beta peak function for use in chromatography and spectroscopy.

Boltzmann(x, A1, A2, x0, dx)

Boltzmann Function - produce a sigmoidal curve.

dhyperbl(x,P1,P2,P3,P4,P5) Double Rectangular Hyperbola Function.

https://www.originlab.com/doc/LabTalk/ref/Jacobian-theta-func
https://www.originlab.com/doc/LabTalk/ref/LambertW-func
http://www.originlab.com/pdfs/curvefittingfunctions.pdf
https://www.originlab.com/doc/Origin-Help/Allometric1-FitFunc
https://www.originlab.com/doc/Origin-Help/Beta-FitFunc
https://www.originlab.com/doc/Origin-Help/Boltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/Dhyperbl-FitFunc

LabTalk Scripting Guide

412

ExpAssoc(x,y0,A1,t1,A2,t2)

Two-phase exponential association equation.

ExpDec1(x,y0,A1,t1)

One-phase exponential decay function with time constant parameter.

ExpDec2(x,y0,A1,t1,A2,t2)

Two-phase exponential decay function with time constant parameters.

ExpDec3(x,y0,A1,t1,A2,t2,A3,t3)

Three-phase exponential decay function with time constant parameters.

ExpGrow1(x,y0,x0,A1,t1)

One-phase exponential growth with time offset, x0 should be fixed.

ExpGrow2(x, y0, x0, A1, t1, A2,

t2)

Two-phase exponential growth with time offset, x0 should be fixed.

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

GaussAmp(x,y0,xc,w,A)

Amplitude version of Gaussian peak function.

(y0 = offset, xc = center, w = width, A = amplitude)

Hyperbl(x, P1, P2)
Hyperbola funciton, also the Michaelis-Menten model in Enzyme

Kinetics.

https://www.originlab.com/doc/Origin-Help/ExpAssoc-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec3-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow2-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussAmp-FitFunc
https://www.originlab.com/doc/Origin-Help/Hyperbl-FitFunc

Function Reference

413

Logistic(x, A1, A2, x0, p)

Logistic dose response in Pharmacology/Chemistry. Also known as 4PL

or 4PLC.

LogNormal(x,y0,xc,w,A)

Probability density function of random variable whose logarithm is

normally distributed.

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than

Gaussian function.

(y0 = offset, xc = center, w = FWHM, A = area)

Poisson(x,y0,r)

Poisson probability density function, a discrete probability distribution.

Pulse(x, y0, x0, A, t1, P, t2)

Exponential pulse function(x >= x0 ? y : 0).

Rational0(x,a,b,c)

Rational function with 1st order of numerator and 1st order of

denominator.

Sine(x,y0,xc,w,A) Sine wave function oscillates around a specified value.

https://www.originlab.com/doc/Origin-Help/Logistic-FitFunc
https://www.originlab.com/doc/Origin-Help/LogNormal-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/Poisson-FitFunc
https://www.originlab.com/doc/Origin-Help/Pulse-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational0-FitFunc
https://www.originlab.com/doc/Origin-Help/Sine-FitFunc

LabTalk Scripting Guide

414

Voigt(x,y0,xc,A,wG,wL)

Convolution of a Gaussian function and a Lorentzian function.

(y0 = offset, xc = center, A =area, wG = Gaussian FWHM, wL =

Lorentzian FWHM)

20.2.15.2 Implicit

Name Brief Description

Circle(x,y,xc,yc,r)

Implicit circle equation with parameters circle center and radius.

Ellipse(x,y,xc,yc,a,b)

Implicit ellipse equation whose major and minor axes coincide with XY

axes.

ModDiode(V,I,T,Is,Rs,n,Rsh)

Implicit modified diode equation.

PlaneMod(x,y,z,theta,phi,d)

Modified implicit plane function defined by its normal direction.

SolarCellIV(V,I,T,Is,Rs,n,Rsh,IL)

Solar cell I-V curve.

https://www.originlab.com/doc/Origin-Help/Voigt-FitFunc
https://www.originlab.com/doc/Origin-Help/Circle-FitFunc
https://www.originlab.com/doc/Origin-Help/Ellipse-FitFunc
https://www.originlab.com/doc/Origin-Help/ModDiode-FitFunc
https://www.originlab.com/doc/Origin-Help/PlaneMod-FitFunc
https://www.originlab.com/doc/Origin-Help/SolarCellIV-FitFunc

Function Reference

415

20.2.15.3 Exponential

Name Brief Description

Asymptotic1(x,a,b,c)

Asymptotic Regression Model - 1st parameterization.

BoxLucas1(x,a,b)

Box Lucas model, same as one-phase association equation

with zero offset.

BoxLucas1Mod(x,a,b)

a parameterization of Box Lucas Model.

BoxLucas2(x,a1,a2)

Box Lucas model for two phase.

Chapman(x,a,b,c)

Chapman-Richards function to describe the cumulative

growth curve.

Exp1p1(x,A)

One-Parameter Exponential Function.

Exp1p2(x,A)

One-Parameter Exponential Function.

Exp1p2Md(x,B)

One-Parameter Exponential Function.

Exp1P3(x,A)

One-Parameter Exponential Function.

Exp1P3Md(x,B) One-Parameter Exponential Function.

https://www.originlab.com/doc/Origin-Help/Asymptotic1-FitFunc
https://www.originlab.com/doc/Origin-Help/BoxLucas1-FitFunc
https://www.originlab.com/doc/Origin-Help/BoxLucas1Mod-FitFunc
https://www.originlab.com/doc/Origin-Help/BoxLucas2-FitFunc
https://www.originlab.com/doc/Origin-Help/Chapman-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1P1-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1p2-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1p2md-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1p3-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1P3Md-FitFunc

LabTalk Scripting Guide

416

Exp1P4(x,A),

One-parameter asymptotic exponential function.

Exp1P4Md(x,B)

Another form of one-parameter asymptotic exponential

function.

Exp2P(x,a,b)

Two-Parameter Exponential Function.

Exp2PMod1(x,a,b),

Two-Parameter Exponential Function.

Exp2PMod2(x,a,b),

Two-Parameter Exponential Function.

Exp3P1(x,a,b,c),

Inverted offset exponential function.

Exp3P1Md(x,a,b,c),

Another form of inverted offset exponential function.

Exp3P2(x,a,b,c),

Exponential function whose exponent is a 2nd order

polynomial.

ExpAssoc(x,y0,A1,t1,A2,t2)

Two-phase exponential association equation.

ExpAssoc1(x,TD,Yb,A,Tau)

(2017 SR0)

One-phase exponential association equation.

https://www.originlab.com/doc/Origin-Help/Exp1P4-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp1P4Md-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp2P-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp2PMod1-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp2PMod2-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp3P1-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp3P1Md-FitFunc
https://www.originlab.com/doc/Origin-Help/Exp3P2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpAssoc-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpAssoc1-FitFunc

Function Reference

417

ExpAssoc2(x,TD1,TD2,Yb,A1,A2,Tau1,Tau2)

(2017 SR0)

Biphasic exponential association equation.

ExpAssocDelay1(x,TD,Yb,A,Tau)

(2017 SR0)

One-phase exponential association equation with plateau

before exponential begins.

ExpAssocDelay2(x,TD1,TD2,Yb,A1,A2,Tau1,

Tau2)

(2017 SR0)

Biphasic exponential association equation with plateau before

exponential begins.

Exponential(x,y0,A,R0)

Exponential growth function with rate constant parameter.

ExpDec1(x,y0,A1,t1)

One-phase exponential decay function with time constant

parameter.

ExpDec2(x,y0,A1,t1,A2,t2)

Two-phase exponential decay function with time constant

parameters.

ExpDec3(x,y0,A1,t1,A2,t2,A3,t3)
Three-phase exponential decay function with time constant

parameters.

https://www.originlab.com/doc/Origin-Help/ExpAssoc2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpAssocDelay1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpAssocDelay2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpAssocDelay2-FitFunc
https://www.originlab.com/doc/Origin-Help/Exponential-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec3-FitFunc

LabTalk Scripting Guide

418

ExpDecay1(x,y0,x0,A1,t1)

One-phase exponential decay function with time offset, x0

should be fixed.

ExpDecay2(x, y0, x0, A1, t1, A2, t2)

Two-phase exponential decay function with time offset, x0

should be fixed.

ExpDecay3(x,y0,x0,A1,t1,A2,t2,A3,t3)

Three-phase exponential decay function with time offset, x0

should be fixed.

ExpGro1(x,y0,A1,t1)

One-phase exponential growth function with time constant

parameter.

ExpGro2(x,y0,A1,t1,A2,t2)

Two-phase exponential growth function with time constant

parameters.

ExpGro3(x,y0,A1,t1,A2,t2,A3,t3)

Three-phase exponential growth function with time constant

parameters.

ExpGrow1(x,y0,x0,A1,t1)

One-phase exponential growth with time offset, x0 should be

fixed.

ExpGrow2(x, y0, x0, A1, t1, A2, t2)
Two-phase exponential growth with time offset, x0 should be

fixed.

https://www.originlab.com/doc/Origin-Help/ExpDecay1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDecay2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDecay3-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGro1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGro2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGro3-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow2-FitFunc

Function Reference

419

ExpGrow3Dec2(x,y0,xc,Ag1,tg1,Ag2,tg2,Ag3,

tg3,Ad1,td1,Ad2,td2)

(2015 SR0)

Exponential function with three growth and two decay

phases.

ExpGrowDec(x,y0,xc,Ag,tg,Ad,td)

(2015 SR0)

Exponential function with one growth and one decay phases.

ExpLinear(x,p1,p2,p3,p4)

Exponential Linear Combiantion.

Langevin(x,y0,xc,C)

Langevin function used in paramagnetism with three

parameters.

LangevinMod(x,y0,xc,C,s)

(2015 SR0)

Scale modified Langevin function.

PIPlatt(x,Pm,alpha)

(2017 SR0)

Model of photosynthesis vs. irradiance curve by Platt

https://www.originlab.com/doc/Origin-Help/ExpGrow3Dec2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow3Dec2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrowDec-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpLinear-FitFunc
https://www.originlab.com/doc/Origin-Help/Langevin-FitFunc
https://www.originlab.com/doc/Origin-Help/LangevinMod-FitFunc
https://www.originlab.com/doc/Origin-Help/PIPlatt-FitFunc

LabTalk Scripting Guide

420

PIPlatt2(x,Ps,alpha,beta)

(2017 SR0)

Model of photosynthesis vs. irradiance curve with

photoinhibition by Platt

PIWebb(x,Pm,alpha)

(2017 SR0)

Model of photosynthesis vs. irradiance curve by Webb

MnMolecular(x,A,xc,k),

Monomolecular growth model.

MnMolecular1(x,A1,A2,k)

Another form of Monomolecular growth model.

Shah(x,a,b,c,r)

Exponential decay function combined with a linear function.

Stirling(x,a,b,k)

Exponential growth function with slope at zero for parameter.

YldFert(x,a,b,r)

Yield-fertilizer model in Agriculture and Learning curve in

psychology.

YldFert1(x,a,b,k)

Yield-fertilizer model in Agriculture and Learning curve in

psychology.

20.2.15.4 Growth/Sigmoidal

Name Brief Description

https://www.originlab.com/doc/Origin-Help/PIPlatt2-FitFunc
https://www.originlab.com/doc/Origin-Help/PIWebb-FitFunc
https://www.originlab.com/doc/Origin-Help/MnMolecular-FitFunc
https://www.originlab.com/doc/Origin-Help/MnMolecular1-FitFunc
https://www.originlab.com/doc/Origin-Help/Shah-FitFunc
https://www.originlab.com/doc/Origin-Help/Stirling-FitFunc
https://www.originlab.com/doc/Origin-Help/YldFert-FitFunc
https://www.originlab.com/doc/Origin-Help/YldFert1-FitFunc

Function Reference

421

BiDoseResp(x,A1,A2,LOGx01,LOGx02,h1,h2,p)

Biphasic Dose Response Function.

BiHill(x,Pm,Ka,Ki,Ha,Hi)

(2015 SR0)

Biphasic Hill Equation.

BoltzIV(x,vhalf,dx,gmax,vrev)

Transformed Boltzmann function for IV data.

Boltzmann(x, A1, A2, x0, dx)

Boltzmann Function - produce a sigmoidal curve.

DoseResp(x,A1,A2,LOGx0,p)

Dose-response curve with variable Hill slope given by

parameter 'p'.

DoubleBoltzmann(x,y0,A,frac,x01,x02,k1,k2)

Double Boltzmann Function, sum of two Boltzmann

functions.

Hill(x,Vmax,k,n)

Hill function to determine ligand concentration and

maximum number of binding sites.

Hill1(x,START,END,k,n) Modified Hill function with offset.

https://www.originlab.com/doc/Origin-Help/BiDoseResp-FitFunc
https://www.originlab.com/doc/Origin-Help/BiHill-FitFunc
https://www.originlab.com/doc/Origin-Help/BoltzIV-FitFunc
https://www.originlab.com/doc/Origin-Help/Boltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/DoseResp-FitFunc
https://www.originlab.com/doc/Origin-Help/DoubleBoltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/Hill-FitFunc
https://www.originlab.com/doc/Origin-Help/Hill-FitFunc

LabTalk Scripting Guide

422

Logistic(x, A1, A2, x0, p)

Logistic dose response in Pharmacology/Chemistry. Also

known as 4PL or 4PLC.

Logistic5(x,Amin,Amax,x0,h,s)

Five parameters logistic function. Also known as 5PL or

5PLC.

MichaelisMenten(x,Vmax,Km)

Michaelis Menten function to describe relation of

concentration of substrate and enzyme velocity.

SGompertz(x,a,xc,k)

Gompertz Growth Model for Popuplation Studies, Animal

Growth.

Slogistic1(x,a,xc,k)

Sigmoidal Logistic function, type 1.

SLogistic2(x,y0,a,Wmax)

Sigmoidal Logistic function, type 2.

SLogistic3(x,a,b,k)

Sigmoidal Logistic function, type 3.

SRichards1(x,a,xc,d,k) Sigmoidal Richards function, type 1.

https://www.originlab.com/doc/Origin-Help/Logistic-FitFunc
https://www.originlab.com/doc/Origin-Help/Logistic5-FitFunc
https://www.originlab.com/doc/Origin-Help/MichaelisMenten-FitFunc
https://www.originlab.com/doc/Origin-Help/SGompertz-FitFunc
https://www.originlab.com/doc/Origin-Help/SLogistic1-FitFunc
https://www.originlab.com/doc/Origin-Help/SLogistic2-FitFunc
https://www.originlab.com/doc/Origin-Help/SLogistic3-FitFunc
https://www.originlab.com/doc/Origin-Help/SRichards1-FitFunc

Function Reference

423

SRichards2(x,a,xc,d,k)

Sigmoidal Richards function, type 2.

SWeibull1(x,A,xc,d,k)

Sigmoidal Weibull funciton, type 1.

SWeibull2(x,a,b,d,k)

Sigmoidal Weibull function, type 2.

20.2.15.5 Hyperbola

Name Brief Description

Dhyperbl(x,P1,P2,P3,P4,P5)

Double Rectangular Hyperbola Function.

Hyperbl(x, P1, P2)

Hyperbola funciton, also the Michaelis-Menten model in Enzyme Kinetics.

HyperbolaGen(x,a,b,c,d)

Generalized Hyperbola function.

HyperbolaMod(x,T1,T2)

Modified hyperbola function.

https://www.originlab.com/doc/Origin-Help/SRichards2-FitFunc
https://www.originlab.com/doc/Origin-Help/SWeibull1-FitFunc
https://www.originlab.com/doc/Origin-Help/SWeibull2-FitFunc
https://www.originlab.com/doc/Origin-Help/Dhyperbl-FitFunc
https://www.originlab.com/doc/Origin-Help/Hyperbl-FitFunc
https://www.originlab.com/doc/Origin-Help/HyperbolaGen-FitFunc
https://www.originlab.com/doc/Origin-Help/HyperbolaMod-FitFunc

LabTalk Scripting Guide

424

RectHyperbola(x,a,b)

Rectangular Hyperbola Function.

20.2.15.6 Logarithm

Name Brief Description

Bradley(x,a,b)

Double logarithmic reciprocal function.

Log2P1(x,a,b),

Two-parameter Logarithm function.

Log2P2(x,a,b)

Logarithmic transform function.

Log3P1(x,a,b,c)

Linear logarithmic transform function.

Logarithm(x,A)

One-parameter logarithm.

20.2.15.7 Peak Functions

Name Brief Description

Asym2Sig(x,y0,xc,A,w1,w2,w3)

Asymmetric double Sigmoidal function.

Beta(x,y0,xc,A,w1,w2,w3) Beta peak function for use in chromatography and spectroscopy.

https://www.originlab.com/doc/Origin-Help/RectHyperbola-FitFunc
https://www.originlab.com/doc/Origin-Help/Bradley-FitFunc
https://www.originlab.com/doc/Origin-Help/Log2P1-FitFunc
https://www.originlab.com/doc/Origin-Help/Log2P2-FitFunc
https://www.originlab.com/doc/Origin-Help/Log3P1-FitFunc
https://www.originlab.com/doc/Origin-Help/Logarithm-FitFunc
https://www.originlab.com/doc/Origin-Help/Asym2Sig-FitFunc
https://www.originlab.com/doc/Origin-Help/Beta-FitFunc

Function Reference

425

Bigaussian(x,y0,xc,H,w1,w2)

Bi-Gaussian peak function used to fit asymmetric peak.

CCE(x,y0,xc1,A,w,k2,xc2,B,k3,xc3

)

Chesler-Cram Peak Function for use in chromatography.

ECS(x,y0,xc,A,w,a3,a4)

Edgeworth-Cramer Peak Function for use in chromatography.

Extreme(x,y0,xc,w,A)

Particular case of extreme function, Gumbel probability density function.

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

GaussAmp(x,y0,xc,w,A) Amplitude version of Gaussian peak function.

https://www.originlab.com/doc/Origin-Help/Bigaussian-PAFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/ECS-FitFunc
https://www.originlab.com/doc/Origin-Help/Extreme-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussAmp-FitFunc

LabTalk Scripting Guide

426

(y0 = offset, xc = center, w = width, A = amplitude)

Gaussian(x,y0,xc,A,w)

FWHM version of Gaussian Function.

(y0 = base, xc = center, A = area, w = FWHM)

GaussMod(x,y0,A,xc,w,t0)

Exponentially modified Gaussian (EMG) peak function for use in

Chromatography.

GCAS(x,y0,xc,A,w,a3,a4)

Gram-Charlier peak function for use in chromatography.

Giddings(x,y0,xc,w,A)

Giddings peak function for use in Chromatography.

InvsPoly(x,y0,xc,w,A,A1,A2,A3)

Inverse polynomial peak function with center.

Laplace(x,y0,a,b)

Laplace probability density function.

https://www.originlab.com/doc/Origin-Help/Gaussian-Function-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussMod-FitFunc
https://www.originlab.com/doc/Origin-Help/GCAS-FitFunc
https://www.originlab.com/doc/Origin-Help/Giddings-FitFunc
https://www.originlab.com/doc/Origin-Help/InvsPoly-FitFunc
https://www.originlab.com/doc/Origin-Help/Laplace-FitFunc

Function Reference

427

Logistpk(x,y0,xc,w,A)

Logistic peak function, also called Hubbert function.

LogNormal(x,y0,xc,w,A)

Probability density function of random variable whose logarithm is

normally distributed.

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than

Gaussian function.

(y0 = offset, xc = center, w = FWHM, A = area)

PearsonIV(x,y0,A,m,v,alpha,lam)

Pearson Type IV distribution for negative discriminant, suited to model

pull distributions.

PearsonVII(x,y0,xc,A,w,m)

Pearson Type VII peak function is a Lorentz function raised to a power.

PsdVoigt1(x,y0,xc,A,w,mu)

Pseudo-Voigt function, linear combination of Gaussian function and

Lorentzian function.

(y0 = offset, xc = center, A = area, w = FWHM, mu = profile shape

factor)

https://www.originlab.com/doc/Origin-Help/Logistipk-FitFunc
https://www.originlab.com/doc/Origin-Help/LogNormal-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/PearsonIV-FitFunc
https://www.originlab.com/doc/Origin-Help/PearsonVII-FitFunc
https://www.originlab.com/doc/Origin-Help/PsdVoigt1-FitFunc

LabTalk Scripting Guide

428

PsdVoigt2(x,y0,xc,A,wG,wL,mu)

Pseudo-Voigt function, linear combination of Gaussian and Lorentzian

with different FWHM.

(y0 = offset, xc = center, A =area, wG=Gaussian FWHM, wL=Lorentzian

FWHM, mu = profile shape factor)

Voigt(x,y0,xc,A,wG,wL)

Convolution of a Gaussian function (wG for FWHM) and a Lorentzian

function.

Weibull3(x,y0,xc,A,w1,w2)

Amplitude version of Weibull peak function.

20.2.15.8 Piecewise

Name Brief Description

PWL2(x,a1,k1,xi,k2) Piecewise linear function with two segments.

https://www.originlab.com/doc/Origin-Help/PsdVoigt2-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt-FitFunc
https://www.originlab.com/doc/Origin-Help/Weibull3-FitFunc
https://www.originlab.com/doc/Origin-Help/PWL2

Function Reference

429

PWL3(x,a1,k1,xi1,k2,xi2,k3)

Piecewise linear function with three segments.

20.2.15.9 Polynomial

Name Brief Description

Constant(x,y0)

Constant base line function.

Cubic(x,A,B,C,D)

Third order polynomial.

Line(x,A,B)

Line function with slope and intercept.

LineMod(x,a,b)

Line function with x-intercept and slope for parameters.

Parabola(x,A,B,C)

Second order polynomial.

Poly(x, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)

9th order polynomial.

Poly4(x,A0,A1,A2,A3,A4)

4th order Polynomial function.

https://www.originlab.com/doc/Origin-Help/PWL3
https://www.originlab.com/doc/Origin-Help/Constant-FitFunc
https://www.originlab.com/doc/Origin-Help/Cubic-FitFunc
https://www.originlab.com/doc/Origin-Help/Line-FitFunc
https://www.originlab.com/doc/Origin-Help/LineMod-FitFunc
https://www.originlab.com/doc/Origin-Help/Parabola-FitFunc
https://www.originlab.com/doc/Origin-Help/Poly-FitFunc
https://www.originlab.com/doc/Origin-Help/Poly4-FitFunc

LabTalk Scripting Guide

430

Poly5(x,A0,A1,A2,A3,A4,A5)

5th order polynomial function.

20.2.15.10 Power

Name Brief Description

Allometric1(x,a,b)

Classical Freundlich Model, has been used in the study of allometry.

Allometric2(x,a,b,c)

An extension of Classical Freundlich Model.

Belehradek(x,a,b,c)

X shifted power function.

BlNeld(x,a,b,c,f)

Bleasdale-Nelder function for yield-density model.

BlNeldSmp(x,a,b,c)

Simplified Bleasdale-Nelder Model.

FarazdaghiHarris(x,a,b,c)

Farazdaghi-Harris Model for use in yield-density study.

FreundlichEXT(x,a,b,c)

Extended Freundlich adsorption isotherm equation.

Gunary(x,a,b,c)

Gunary adsorption isotherm equation.

LangmuirEXT1(x,a,b,c), Extended Langmuir adsorption isotherm equation.

https://www.originlab.com/doc/Origin-Help/Poly5-FitFunc
https://www.originlab.com/doc/Origin-Help/Allometric1-FitFunc
https://www.originlab.com/doc/Origin-Help/Allometric2-FitFunc
https://www.originlab.com/doc/Origin-Help/Belehradek-FitFunc
https://www.originlab.com/doc/Origin-Help/BlNeld-FitFunc
https://www.originlab.com/doc/Origin-Help/BlNeldSmp-FitFunc
https://www.originlab.com/doc/Origin-Help/FarazdaghiHarris-FitFunc
https://www.originlab.com/doc/Origin-Help/FreundlichEXT-FitFunc
https://www.originlab.com/doc/Origin-Help/Gunary-FitFunc
https://www.originlab.com/doc/Origin-Help/LangmuirEXT1-FitFunc

Function Reference

431

LangmuirEXT2(x,a,b,c)

Another form of extended Langmuir adsorption isotherm equation.

Pareto(x,A)

Pareto cumulative distribution function with one parameter, a power law

probability distribution.

Pow2P1(x,a,b),

Scaled Pareto function.

Pow2P2(x,a,b),

two-parameter power function.

Pow2P3(x,a,b)

Pareto transform function.

Power(x,A)

One-parameter Power function.

Power0(x,y0,xc,A,P)

Symmetric Power function with offset.

Power1(x,xc,A,P)

Symmetric Power function.

Power2(x,xc,A,pl,pu) Asymmetric Power function.

https://www.originlab.com/doc/Origin-Help/LangmuirEXT2-FitFunc
https://www.originlab.com/doc/Origin-Help/Pareto-FitFunc
https://www.originlab.com/doc/Origin-Help/Pow2P1-FitFunc
https://www.originlab.com/doc/Origin-Help/Pow2P2-FitFunc
https://www.originlab.com/doc/Origin-Help/Pow2P3-FitFunc
https://www.originlab.com/doc/Origin-Help/Power-FitFunc
https://www.originlab.com/doc/Origin-Help/Power0-FitFunc
https://www.originlab.com/doc/Origin-Help/Power1-FitFunc
https://www.originlab.com/doc/Origin-Help/Power2-FitFunc

LabTalk Scripting Guide

432

20.2.15.11 Rational

Name Brief Description

BET(x,a,b)

Brunauer-Emmett-Teller (BET) adsorption equation.

BETMod(x,a,b)

Modified BET Model.

Holliday(x,a,b,c)

Holliday Model - a Yield-density model for use in agriculture.

Holliday1(x,a,b,c)

extended Holliday Model.

Nelder(x,a,b0,b1,b2)

Nelder Model - a Yeild-fertilizer model in agriculture.

Rational0(x,a,b,c)

Rational function with 1st order of numerator and 1st order of denominator.

Rational1(x,a,b,c)

Another form of Rational0 function with constant coefficient in numerator normalized.

Rational2(x,a,b,c) Another form of Rational0 function with coefficient of x in denominator normalized.

https://www.originlab.com/doc/Origin-Help/BET-FitFunc
https://www.originlab.com/doc/Origin-Help/BETMod-FitFunc
https://www.originlab.com/doc/Origin-Help/Holliday-FitFunc
https://www.originlab.com/doc/Origin-Help/Holliday1-FitFunc
https://www.originlab.com/doc/Origin-Help/Nelder-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational0-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational1-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational2-FitFunc

Function Reference

433

Rational3(x,a,b,c)

Another form of Rational0 function with coefficient of x in numerator normalized.

Rational4(x,a,b,c)

Another form of Rational0 function with sum of constant and a rational function.

Rational5(x,a,b,c,d)

Rational function with 1st order of numerator and 2nd order of denominator.

Reciprocal(x,a,b)

two parameter linear reciprocal function.

Reciprocal0(x,A)

One-parameter (slope) linear reciprocal function.

Reciprocal1(x,A)

One-parameter (intercept) linear reciprocal function.

ReciprocalMod(x,a,b)

Another form of Reciprocal function with constant coefficient in denominator

normalized.

20.2.15.12 Waveform

Name Brief Description

SawtoothWave(x,x0,y0, Sawtooth wave, a periodic function consisting of extreme case asymmetric triangle

https://www.originlab.com/doc/Origin-Help/Rational3-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational4-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational5-FitFunc
https://www.originlab.com/doc/Origin-Help/Reciprocal-FitFunc
https://www.originlab.com/doc/Origin-Help/Reciprocal0-FitFunc
https://www.originlab.com/doc/Origin-Help/Reciprocal1-FitFunc
https://www.originlab.com/doc/Origin-Help/ReciprocalMod-FitFunc
https://www.originlab.com/doc/Origin-Help/SawtoothWave-FitFunc

LabTalk Scripting Guide

434

A,T) waves.

Sine(x,y0,xc,w,A)

Sine wave function oscillates around a specified value.

SineDamp(x,y0,xc,w,t0,

A)

Damped sine wave, a sinusoidal function whose amplitude decays as time

increases.

SineSqr(x,y0,xc,w,A)

sine square function.

SquareWave(x,a,b,x0,T

)

Square wave function which is a periodic wave changing between two levels

transitionally.

SquareWaveMod(x, a,

b, x0, duty, T)

(2016 SR0)

Modified square wave function with duty cycle which is a periodic wave changing

between two levels transitionally.

Step(x,A,B,x1) Piecewise constant function with two segments.

https://www.originlab.com/doc/Origin-Help/SawtoothWave-FitFunc
https://www.originlab.com/doc/Origin-Help/Sine-FitFunc
https://www.originlab.com/doc/Origin-Help/SineDamp-FitFunc
https://www.originlab.com/doc/Origin-Help/SineDamp-FitFunc
https://www.originlab.com/doc/Origin-Help/SineSqr-FitFunc
https://www.originlab.com/doc/Origin-Help/SquareWave-FitFunc
https://www.originlab.com/doc/Origin-Help/SquareWave-FitFunc
https://www.originlab.com/doc/Origin-Help/SqWaveMod-FitFunc
https://www.originlab.com/doc/Origin-Help/SqWaveMod-FitFunc
https://www.originlab.com/doc/Origin-Help/Step-FitFunc

Function Reference

435

20.2.15.13 Surface Fitting

Name Brief Description

Chebyshev2D(x,y,z0,A1,A2,B1,B2,C1)

Chebyshev Series Polynomials.

Cosine(x,y,z0,A1,A2,B1,B2,C1)

Cosine Series Polynomials.

DoseResp2D(x,y,z0,B,C,D,E,F)

Non-Linear Logistic Dose Response Function.

Exponential2D(x,y,z0,B,C,D)

2D exponential decay function.

Extreme2D(x,y,z0,B,C,D,E,F)

Non-Linear Extreme Value Functions.

https://www.originlab.com/doc/Origin-Help/Chebyshev2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Cosine-FitFunc
https://www.originlab.com/doc/Origin-Help/DoseResp-Surface-FitFunc
https://www.originlab.com/doc/Origin-Help/Exponential2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Extreme2D-FitFunc

LabTalk Scripting Guide

436

ExtremeCum(x,y,z0,B,C,D,E,F,G,H)

Non-Linear Extreme Value Cumulative Function.

Fourier2D(x,y,z0,a,b,c,d,w1,w2)

Sum of sine and cosine functions of two variables.

Gauss2D(x,y,z0,A,xc,w1,yc,w2)

The Gaussian surface.

GaussCum(x,y,z0,B,C,D,E,F)

2D Gaussian cumulative function.

Gaussian2D(x,y,z0,A,xc,w1,yc,w2,theta)

The gaussian surface rotated.

LogisticCum(x,y,z0,B,C,D,E,F) Non-linear Sigmoid (Logistic Cumulative) Function.

https://www.originlab.com/doc/Origin-Help/ExtremeCum-FitFunc
https://www.originlab.com/doc/Origin-Help/Fourier2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss2D-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussCum-FitFunc
https://www.originlab.com/doc/Origin-Help/Gaussian2D-FitFunc
https://www.originlab.com/doc/Origin-Help/LogisticCum-FitFunc

Function Reference

437

LogNormal2D(x,y,z0,B,C,D,E,F,G,H)

2D Log Normal function.

Lorentz2D(x,y,z0,A,xc,w1,yc,w2)

Non-linear Sigmoid (Logistic Cumulative) Function.

Parabola2D(x,y,z0,a,b,c,d)

2D Parabola function without xy term.

Plane(x,y,z0,a,b)

The Plane Surface.

Poly2D(x,y,z0,a,b,c,d,f)

2D quadratic polynomial.

Polynomial2D(x,y,z0,A1,A2,A3,A4,A5,B1,B2,

B3,B4,B5)

2D 5th order polynomial without cross terms.

Power2D(x,y,z0,B,C,D,E,F)

2D power function.

Rational2D(x,y,z0,A01,B01,B02,B03,A1,A2,A

3,B1,B2)

2D rational function with 3rd order for numerator and 3rd

order for denominator.

https://www.originlab.com/doc/Origin-Help/LogNormal2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Parabola2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Plane-FitFunc
https://www.originlab.com/doc/Origin-Help/Poly2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Polynomial2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Polynomial2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Power2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Rational2D-FitFunc

LabTalk Scripting Guide

438

RationalTaylor(x,y,z0,A01,B01,B02,C02,A1,A

2,B1,B2,C2)

2D Taylor series rational function.

Voigt2D(x,y,z0,A,xc,w1,yc,w2,mu)

The Voigt surface.

Voigt2DMod(x,y,z0,A,xc,w1,yc,w2,mu)

(2016 SR0)

The voigt surface with volume as parameter.

20.2.15.14 PFW

Name Brief Description

Asym2Sig(x,y0,xc,A,w1,w2,w3

)

Asymmetric double Sigmoidal function.

Bigaussian(x,y0,xc,H,w1,w2)

Bi-Gaussian peak function used to fit asymmetric peak.

https://www.originlab.com/doc/Origin-Help/RationalTaylor-FitFunc
https://www.originlab.com/doc/Origin-Help/RationalTaylor-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt2D-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt2DMod-FitFunc
https://www.originlab.com/doc/Origin-Help/Asym2Sig-FitFunc
https://www.originlab.com/doc/Origin-Help/Asym2Sig-FitFunc
https://www.originlab.com/doc/Origin-Help/Bigaussian-PAFunc

Function Reference

439

BWF(x,y0,xc,H,w,q)

Breit-Wigner-Fano (BWF) line shape.

CCE(x,y0,xc1,A,w,k2,xc2,B,k3

,xc3)

Chesler-Cram Peak Function for use in chromatography.

ConsGaussian(x,y0, xc, A, w1,

w2)

Constrained Gaussian function.

DoniachSunjic(x,y0, xc, H, w,

a)

Doniach Sunjic function.

ECS(x,y0,xc,A,w,a3,a4)

Edgeworth-Cramer Peak Function for use in chromatography.

FraserSuzuki(x,y0,xc,A,sig)

Fraser-Suzuki asymmetric function.

https://www.originlab.com/doc/Origin-Help/BWF-PAFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/ConsGaussian-PAFunc
https://www.originlab.com/doc/Origin-Help/ConsGaussian-PAFunc
https://www.originlab.com/doc/Origin-Help/DoniachSunjic-PAFunc
https://www.originlab.com/doc/Origin-Help/DoniachSunjic-PAFunc
https://www.originlab.com/doc/Origin-Help/ECS-FitFunc
https://www.originlab.com/doc/Origin-Help/FraserSuzuki-PAFunc

LabTalk Scripting Guide

440

Where

,

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

GaussAmp(x,y0,xc,w,A)

Amplitude version of Gaussian peak function.

(y0 = offset, xc = center, w = width, A = amplitude)

Gaussian(x,y0,xc,A,w)

FWHM version of Gaussian Function.

(y0 = base, xc = center, A = area, w = FWHM)

Gaussian_LorenCross(x,y0,

xc, A, w, s)

Gaussian-Lorentzian Cross Product function.

GaussMod(x,y0,A,xc,w,t0)

Exponentially modified Gaussian (EMG) peak function for use in

Chromatography.

GCAS(x,y0,xc,A,w,a3,a4) Gram-Charlier peak function for use in chromatography.

https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussAmp-FitFunc
https://www.originlab.com/doc/Origin-Help/Gaussian-Function-FitFunc
https://www.originlab.com/doc/Origin-Help/Gaussian-LorenCross-PAFunc
https://www.originlab.com/doc/Origin-Help/Gaussian-LorenCross-PAFunc
https://www.originlab.com/doc/Origin-Help/GaussMod-FitFunc
https://www.originlab.com/doc/Origin-Help/GCAS-FitFunc

Function Reference

441

HVL(x, y0, xc, A, w, d)

Haaroff-Van der Linde function.

InvsPoly(x,y0,xc,w,A,A1,A2,A3

)

Inverse polynomial peak function with center.

LogNormal(x,y0,xc,w,A)

Probability density function of random variable whose logarithm is normally

distributed.

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than Gaussian

function.

(y0 = offset, xc = center, w = FWHM, A = area)

PearsonVII(x,y0,xc,A,w,m)

Pearson Type VII peak function is a Lorentz function raised to a power.

PsdVoigt1(x,y0,xc,A,w,mu)

Pseudo-Voigt function, linear combination of Gaussian function and

Lorentzian function.

(y0 = offset, xc = center, A = area, w = FWHM, mu = profile shape factor)

https://www.originlab.com/doc/Origin-Help/HVL-PAFunc
https://www.originlab.com/doc/Origin-Help/InvsPoly-FitFunc
https://www.originlab.com/doc/Origin-Help/InvsPoly-FitFunc
https://www.originlab.com/doc/Origin-Help/LogNormal-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/PearsonVII-FitFunc
https://www.originlab.com/doc/Origin-Help/PsdVoigt1-FitFunc

LabTalk Scripting Guide

442

PsdVoigt2(x,y0,xc,A,wG,wL,m

u)

Pseudo-Voigt function, linear combination of Gaussian and Lorentzian with

different FWHM.

(y0 = offset, xc = center, A =area, wG=Gaussian FWHM, wL=Lorentzian

FWHM, mu = profile shape factor)

Pulse(x,y0,x0,A,t1,P,t2)

Exponential pulse function(x >= x0 ? y : 0).

SchulzFlory(x,y0,xc,w,A)

Schulz Flory distribution function to describe relative ratios of polymers after

a polymerization process.

Sine(x,xc,w,A,y0)

Sine wave function oscillates around a specified value.

SineDamp(x,y0,xc,w,t0,A)

Damped sine wave, a sinusoidal function whose amplitude decays as time

increases.

， ，

https://www.originlab.com/doc/Origin-Help/PsdVoigt2-FitFunc
https://www.originlab.com/doc/Origin-Help/PsdVoigt2-FitFunc
https://www.originlab.com/doc/Origin-Help/Pulse-FitFunc
https://www.originlab.com/doc/Origin-Help/SchulzFlory-FitFunc
https://www.originlab.com/doc/Origin-Help/Sine-FitFunc
https://www.originlab.com/doc/Origin-Help/SineDamp-FitFunc

Function Reference

443

Sinesqr(x,xc,w,A,y0)

sine square function.

Voigt(x,y0,xc,A,wG,wL)

Convolution of a Gaussian function (wG for FWHM) and a Lorentzian

function.

(y0 = offset, xc = center, A =area, wG = Gaussian FWHM, wL = Lorentzian

FWHM)

Weibull3(x,y0,xc,A,w1,w2)

Amplitude version of Weibull peak function.

20.2.15.15 Baseline

Name Brief Description

Constant(x,y0)

Constant base line function.

Cubic(x,A,B,C,D)

Third order polynomial.

ExpDec1(x,y0,A1,t1)

One-phase exponential decay function with time constant parameter.

ExpDec2(x,y0,A1,t1,A2,t2)

Two-phase exponential decay function with time constant parameters.

https://www.originlab.com/doc/Origin-Help/SineSqr-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt-FitFunc
https://www.originlab.com/doc/Origin-Help/Weibull3-FitFunc
https://www.originlab.com/doc/Origin-Help/Constant-FitFunc
https://www.originlab.com/doc/Origin-Help/Cubic-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec2-FitFunc

LabTalk Scripting Guide

444

ExpGro1(x,y0,A1,t1)

One-phase exponential growth function with time constant parameter.

ExpGrow1(x,y0,x0,A1,t1)

One-phase exponential growth with time offset, x0 should be fixed.

ExpGrow2(x, y0, x0, A1, t1, A2,

t2)

Two-phase exponential growth with time offset, x0 should be fixed.

Exponential(x,y0,A,R0)

Exponential growth function with rate constant parameter.

Hyperbl(x, P1, P2)

Hyperbola funciton, also the Michaelis-Menten model in Enzyme

Kinetics.

Line(x,A,B)

Line function with slope and intercept.

MnMolecular(x,A,xc,k),

Monomolecular growth model.

Parabola(x,A,B,C)

Second order polynomial.

Poly4(x,A0,A1,A2,A3,A4)

4th order Polynomial function.

Poly5(x,A0,A1,A2,A3,A4,A5)

5th order polynomial function.

https://www.originlab.com/doc/Origin-Help/ExpGro1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow2-FitFunc
https://www.originlab.com/doc/Origin-Help/Exponential-FitFunc
https://www.originlab.com/doc/Origin-Help/Hyperbl-FitFunc
https://www.originlab.com/doc/Origin-Help/Line-FitFunc
https://www.originlab.com/doc/Origin-Help/MnMolecular-FitFunc
https://www.originlab.com/doc/Origin-Help/Parabola-FitFunc
https://www.originlab.com/doc/Origin-Help/Poly4-FitFunc
https://www.originlab.com/doc/Origin-Help/Poly5-FitFunc

Function Reference

445

Step(x,A,B,x1)

Piecewise constant function with two segments.

20.2.15.16 Chromatograph

Name Brief Description

CCE(x,y0,xc1,A,w,k2,xc2,B,k3,xc

3)

Chesler-Cram Peak Function for use in chromatography.

ECS(x,y0,xc,A,w,a3,a4)

Edgeworth-Cramer Peak Function for use in chromatography.

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

GaussMod(x,y0,A,xc,w,t0)

Exponentially modified Gaussian (EMG) peak function for use in

Chromatography.

GCAS(x,y0,xc,A,w,a3,a4) Gram-Charlier peak function for use in chromatography.

https://www.originlab.com/doc/Origin-Help/Step-FitFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/CCE-FitFunc
https://www.originlab.com/doc/Origin-Help/ECS-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussMod-FitFunc
https://www.originlab.com/doc/Origin-Help/GCAS-FitFunc

LabTalk Scripting Guide

446

Giddings(x,y0,xc,w,A)

Giddings peak function for use in Chromatography.

20.2.15.17 Electrophysiology

Name Brief Description

BoltzIV(x,vhalf,dx,gmax,vrev)

Transformed Boltzmann function for IV data.

Boltzmann(x, A1, A2, x0, dx)

Boltzmann Function - produce a sigmoidal curve.

DoubleBoltzmann(x,y0,A,frac,x01,x02,k1,k2)

Double Boltzmann Function, sum of two Boltzmann functions.

ExpDec1(x,y0,A1,t1)

One-phase exponential decay function with time constant

parameter.

ExpDec2(x,y0,A1,t1,A2,t2)

Two-phase exponential decay function with time constant

parameters.

ExpDec3(x,y0,A1,t1,A2,t2,A3,t3)
Three-phase exponential decay function with time constant

parameters.

https://www.originlab.com/doc/Origin-Help/Giddings-FitFunc
https://www.originlab.com/doc/Origin-Help/BoltzIV-FitFunc
https://www.originlab.com/doc/Origin-Help/Boltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/DoubleBoltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec2-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDec3-FitFunc

Function Reference

447

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

Goldman(x,b,Nao,Nai,Ki,T)

Goldman-Hodgkin-Katz equation for use in cell membrane

physiology.

Hill(x,Vmax,k,n)

Hill function to determine ligand concentration and maximum

number of binding sites.

20.2.15.18 Pharmacology

Name Brief Description

BiDoseResp(x,A1,A2,LOGx01,LOGx02,h1,h2,

p)

Biphasic Dose Response Function.

Biphasic(x,Amin,Amax1,Amax2,x0_1,x0_2,h1,

h2)

Biphasic sigmoidal dose response (7 parameters logistic

equation).

DoseResp(x,A1,A2,LOGx0,p) Dose-response curve with variable Hill slope given by

https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/Goldman-FitFunc
https://www.originlab.com/doc/Origin-Help/Hill-FitFunc
https://www.originlab.com/doc/Origin-Help/BiDoseResp-FitFunc
https://www.originlab.com/doc/Origin-Help/BiDoseResp-FitFunc
https://www.originlab.com/doc/Origin-Help/Biphasic-FitFunc
https://www.originlab.com/doc/Origin-Help/Biphasic-FitFunc
https://www.originlab.com/doc/Origin-Help/DoseResp-FitFunc

LabTalk Scripting Guide

448

parameter 'p'.

MichaelisMenten(x,Vmax,Km)

Michaelis Menten function to describe relation of

concentration of substrate and enzyme velocity.

OneSiteBind(x,Bmax,k1)

One site direct binding. Rectangular hyperbola, connects to

isotherm or saturation curve.

OneSiteComp(x,A1,A2,logx0)

One Site Competition curve. Dose-response curve with Hill

slope equal to -1.

TwoSiteBind(x,Bmax1,Bmax2,k1,k2)

Two sites binding function.

TwoSiteComp(x,A1,A2,logx0_1,logx0_2,fracti

on)

Two sites competition function to describe the competition of

a ligand for two types of receptors.

20.2.15.19 Rheology

Name Brief Description

Bingham(x,y0,A)

(2015 SR0)

Bingham model to describe viscoplastic fluids exhibiting a yield response.

Cross(x,A1,A2,t,m) Cross model to describe pseudoplastic flow with asymptotic viscosities at zero and

https://www.originlab.com/doc/Origin-Help/MichaelisMenten-FitFunc
https://www.originlab.com/doc/Origin-Help/OneSiteBind-FitFunc
https://www.originlab.com/doc/Origin-Help/OneSiteComp-FitFunc
https://www.originlab.com/doc/Origin-Help/TwoSiteBind-FitFunc
https://www.originlab.com/doc/Origin-Help/TwoSiteComp-FitFunc
https://www.originlab.com/doc/Origin-Help/TwoSiteComp-FitFunc
https://www.originlab.com/doc/Origin-Help/Bingham-FitFunc
https://www.originlab.com/doc/Origin-Help/Cross-FitFunc

Function Reference

449

(2015 SR0) infinite shear rates.

Carreau(x,A1,A2,t,a,n)

(2015 SR0)

Carreau-Yasuda model to describe pseudoplastic flow with asymptotic viscosities at

zero and infinite shear rates.

Herschel(x,y0,K,n)

(2015 SR0)

Herschel-Bulkley model to describe viscoplastic materials exhibiting a power-law

relationship.

VFT(x,A,B,x0)

(2015 SR0)

Vogel-Fulcher-Tammann Equation.

MYEGA(x,y0,K,C)

(2015 SR0)

Mauro-Yue-Ellison-Gupta-Allan Equation.

20.2.15.20 Enzyme Kinetics

Name Brief Description

CompInhib(x,Vmax,Km,Ki,Ic)

(2015 SR0)

Competitive inhibition model for single substrate and single

inhibitor.

Note that this function is usually used in global fit, Vmax, Km and

Ki should be shared, and Ic should be fixed for each dataset.

The initial value of Ki can be the mean of Ic.

NoncompInhib(x,Vmax,Km,Ki,Ic)

(2015 SR0)

Noncompetitive inhibition model for single substrate and single

inhibitor.

https://www.originlab.com/doc/Origin-Help/Carreau-FitFunc
https://www.originlab.com/doc/Origin-Help/Herschel-FitFunc
https://www.originlab.com/doc/Origin-Help/VFT-FitFunc
https://www.originlab.com/doc/Origin-Help/MYEGA-FitFunc
https://www.originlab.com/doc/Origin-Help/CompInhib-FitFunc
https://www.originlab.com/doc/Origin-Help/NoncompInhib-FitFunc

LabTalk Scripting Guide

450

Note that this function is usually used in global fit, Vmax, Km and

Ki should be shared, and Ic should be fixed for each dataset.

The initial value of Ki can be the mean of Ic.

UncompInhib(x,Vmax,Km,Kia,Ic)

(2015 SR0)

Uncompetitive inhibition model for single substrate and single

inhibitor.

Note that this function is usually used in global fit, Vmax, Km and

Kia should be shared, and Ic should be fixed for each dataset.

The initial value of Kia can be the mean of Ic.

MixedModelInhib(x,Vmax,Km,Ki,Alpha,Ic)

(2015 SR0)

A general equation including competitive, uncompetitive and

noncompetitive inhibition as special cases.

This fitting function is for global fitting. When using it, Vmax, Km,

Ki, and Alpha are shared, while Ic is a fixed constant. The initial

value of Ki can be the mean of Ic.

SubstrateInhib(x,Vmax,Km,Ki)

(2015 SR0)

Substrate inhibition model at high concentrations.

MichaelisMenten(x,Vmax,Km)

Michaelis Menten function to describe relation of concentration

of substrate and enzyme velocity.

Hill(x,Vmax,k,n)
Hill function to determine ligand concentration and maximum

number of binding sites.

https://www.originlab.com/doc/Origin-Help/UncompInhib-FitFunc
https://www.originlab.com/doc/Origin-Help/MixedModelInhib-FitFunc
https://www.originlab.com/doc/Origin-Help/SubstrateInhib-FitFunc
https://www.originlab.com/doc/Origin-Help/MichaelisMenten-FitFunc
https://www.originlab.com/doc/Origin-Help/Hill-FitFunc

Function Reference

451

20.2.15.21 Spectroscopy

Name Brief Description

GaussAmp(x,y0,xc,w,A)

Amplitude version of Gaussian peak function.

(y0 = offset, xc = center, w = width, A = amplitude)

InvsPoly(x,y0,xc,w,A,A1,A2,A3)

Inverse polynomial peak function with center.

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than

Gaussian function.

(y0 = offset, xc = center, w = FWHM, A = area)

PearsonVII(x,y0,xc,A,w,m)

Pearson Type VII peak function is a Lorentz function raised to a power.

PsdVoigt1(x,y0,xc,A,w,mu)

Pseudo-Voigt function, linear combination of Gaussian function and

Lorentzian function.

(y0 = offset, xc = center, A = area, w = FWHM, mu = profile shape factor)

https://www.originlab.com/doc/Origin-Help/GaussAmp-FitFunc
https://www.originlab.com/doc/Origin-Help/InvsPoly-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/PearsonVII-FitFunc
https://www.originlab.com/doc/Origin-Help/PsdVoigt1-FitFunc

LabTalk Scripting Guide

452

PsdVoigt2(x,y0,xc,A,wG,wL,mu)

Pseudo-Voigt function, linear combination of Gaussian and Lorentzian

with different FWHM.

(y0 = offset, xc = center, A =area, wG=Gaussian FWHM, wL=Lorentzian

FWHM, mu = profile shape factor)

Voigt(x,y0,xc,A,wG,wL)

Convolution of a Gaussian function (wG for FWHM) and a Lorentzian

function

20.2.15.22 Statistics

Name Brief Description

Exponential(x,y0,A,R0)

Exponential growth function with rate constant parameter.

ExponentialCDF(x,y0,A,mu)

(2016 SR0)

Exponential cumulative distribution function.

Extreme(x,y0,xc,w,A)

Particular case of extreme function, Gumbel probability density function.

https://www.originlab.com/doc/Origin-Help/PsdVoigt2-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt-FitFunc
https://www.originlab.com/doc/Origin-Help/Exponential-FitFunc
https://www.originlab.com/doc/Origin-Help/Exponentialcdf-FitFunc
https://www.originlab.com/doc/Origin-Help/Extreme-FitFunc

Function Reference

453

GammaCDF(x,y0,A1,a,b)

(2016 SR0)

Gamma cumulative distribution function.

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

GaussAmp(x,y0,xc,w,A)

Amplitude version of Gaussian peak function.

(y0 = offset, xc = center, w = width, A = amplitude)

Gumbel(x,a,b)

Transformed Gumbel cumulative distribution function.

Laplace(x,y0,a,b)

Laplace probability density function.

Logistic(x, A1, A2, x0, p)

Logistic dose response in Pharmacology/Chemistry. Also known as 4PL

or 4PLC.

LogNormal(x,y0,xc,w,A)

Probability density function of random variable whose logarithm is

normally distributed.

LognormalCDF(x,y0,A,xc,w)

(2016 SR0)

LognormalCDF cumulative distribution function.

https://www.originlab.com/doc/Origin-Help/Gamma-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussAmp-FitFunc
https://www.originlab.com/doc/Origin-Help/Gumbel-FitFunc
https://www.originlab.com/doc/Origin-Help/Laplace-FitFunc
https://www.originlab.com/doc/Origin-Help/Logistic-FitFunc
https://www.originlab.com/doc/Origin-Help/LogNormal-FitFunc
https://www.originlab.com/doc/Origin-Help/LognormalCDF-FitFunc

LabTalk Scripting Guide

454

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than

Gaussian function.

(y0 = offset, xc = center, w = FWHM, A = area)

NormalCDF(x,y0,A,xc,w)

Normal cumulative distribution function.

(y0 = offset, A = Amplitude, xc = Mean, w = Standard Deviation)

Pareto(x,A)

Pareto cumulative distribution function with one parameter, a power law

probability distribution.

Pareto2(x,a,b)

Pareto function with two parameters.

PearsonIV(x,y0,A,m,v,alpha,lam)

Pearson Type IV distribution for negative discriminant, suited to model

pull distributions.

Poisson(x,y0,r)

Poisson probability density function, a discrete probability distribution.

Rayleigh(x,b)

Rayleigh cumulative distribution function.

https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/NormalCDF-FitFunc
https://www.originlab.com/doc/Origin-Help/Pareto-FitFunc
https://www.originlab.com/doc/Origin-Help/Pareto2-FitFunc
https://www.originlab.com/doc/Origin-Help/PearsonIV-FitFunc
https://www.originlab.com/doc/Origin-Help/Poisson-FitFunc
https://www.originlab.com/doc/Origin-Help/Rayleigh-FitFunc

Function Reference

455

Weibull(x,y0,a,r,u)

Weibull probability density function.

WeibullCDF(x,y0,A1,a,b)

(2016 SR0)

Weibull cumulative distribution function.

20.2.15.23 Quick Fit

Name Brief Description

Boltzmann(x, A1, A2, x0, dx)

Boltzmann Function - produce a sigmoidal curve.

DoseResp(x,A1,A2,LOGx0,p)

Dose-response curve with variable Hill slope given by parameter 'p'.

ExpDecay1(x,y0,x0,A1,t1)

One-phase exponential decay function with time offset, x0 should be fixed.

ExpGrow1(x,y0,x0,A1,t1)

One-phase exponential growth with time offset, x0 should be fixed.

Gauss(x, y0, xc, w, A)

Area version of Gaussian Function.

(y0 = offset, xc = center, w = width, A = area)

Hill(x,Vmax,k,n)
Hill function to determine ligand concentration and maximum number of

binding sites.

https://www.originlab.com/doc/Origin-Help/Weibull-FitFunc
https://www.originlab.com/doc/Origin-Help/WeibullCDF-FitFunc
https://www.originlab.com/doc/Origin-Help/Boltzmann-FitFunc
https://www.originlab.com/doc/Origin-Help/DoseResp-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpDecay1-FitFunc
https://www.originlab.com/doc/Origin-Help/ExpGrow1-FitFunc
https://www.originlab.com/doc/Origin-Help/Gauss-FitFunc
https://www.originlab.com/doc/Origin-Help/Hill-FitFunc

LabTalk Scripting Guide

456

Hyperbl(x, P1, P2)

Hyperbola funciton, also the Michaelis-Menten model in Enzyme Kinetics.

Logistic(x, A1, A2, x0, p)

Logistic dose response in Pharmacology/Chemistry. Also known as 4PL or

4PLC.

Lorentz(x, y0, xc, w, A)

Lorentzian peak function with bell shape and much wider tails than Gaussian

function.

(y0 = offset, xc = center, w = FWHM, A = area)

Sine(x,y0,xc,w,A)

Sine wave function oscillates around a specified value.

Voigt(x,y0,xc,A,wG,wL)

Convolution of a Gaussian function (wG for FWHM) and a Lorentzian

function.

20.2.15.24 Multiple Variables

Name Brief Description

GaussianLorentz(y0, xc, A1, One independent and two dependent variables, shared parameters.

https://www.originlab.com/doc/Origin-Help/Hyperbl-FitFunc
https://www.originlab.com/doc/Origin-Help/Logistic-FitFunc
https://www.originlab.com/doc/Origin-Help/Lorentz-FitFunc
https://www.originlab.com/doc/Origin-Help/Sine-FitFunc
https://www.originlab.com/doc/Origin-Help/Voigt-FitFunc
https://www.originlab.com/doc/Origin-Help/GaussianLorentz-PAFunc

Function Reference

457

A2, w1, w2)

Helix(x,x0,y0,A,w,p)

3D Helix Function.

HillBurk(Vm1, Km1, Vm2, Km2)

Combination of Hill and Burk models with two independent and two

dependent variables.

Line3(a, b, c, d)

3D Line function with slopes and intercepts.

LineExp(x,Vmax,k,n)

Combination of Line and Exponential models with one independent and

two dependent variables.

20.2.16 Miscellaneous

Name Brief Description

BitAND(n1, n2) Returns bitwise AND operation of two integers.

BitOR(n1, n2) Returns bitwise OR operation of two integers.

https://www.originlab.com/doc/Origin-Help/GaussianLorentz-PAFunc
https://www.originlab.com/doc/Origin-Help/Helix-FitFunc
https://www.originlab.com/doc/Origin-Help/HillBurk-FitFunc
https://www.originlab.com/doc/Origin-Help/Line3-FitFunc
https://www.originlab.com/doc/Origin-Help/LineExp-FitFunc
https://www.originlab.com/doc/LabTalk/ref/BitAND-func
https://www.originlab.com/doc/LabTalk/ref/BitOR-func

LabTalk Scripting Guide

458

BitXOR(n1, n2) Returns bitwise XOR operation of two integers.

ISNA(d) Determines whether the number is a NANUM.

isText(str$)

(2019)

Determine whether a value is a text. Return 1 for text and

blank value; return 0 for numeric value or NANUM.

Let(var1,val1[,var2,val2,]...[,var39,

val39], expression)[$]

(2021)

Similar to MS Excel's LET() function. Assign values (valN) to

variables (varN) for up to 39 variable-value pairs, for use in

expression. Optional $ used when returning strings.

examples:

LET(t,if(A$==B$,1,0/0),t*500) returns missing

value ("--") if two strings do not match, otherwise "500".

LET(first,left(A,1),last,left(B,2),

first$+ "-" + last$) concatenate 2 strings with

literal "-" separator.

NA() Returns NANUM.

ocolor2rgb(oColor)

(2019 SR0)

Convert an internal color code oColor to RGB value.

xf_get_last_error_code() Get the last error code value of XFunction engine.

xf_get_last_error_message()$ Get the last error string message of XFunction engine.

xor(n1,n2)

(2019 SR0)

Returns XOR operation of two logical values n1 and n2.

Example

XOR(1>0,7>2) returns 0 because both TRUE

XOR(1<0,7<2) returns 0 because both FALSE

XOR(1>0,7<2) returns 1 because 1st TRUE and 2nd

FALSE

https://www.originlab.com/doc/LabTalk/ref/BitXOR-func
https://www.originlab.com/doc/LabTalk/ref/ISNA-func
https://www.originlab.com/doc/LabTalk/ref/IsText-func
https://www.originlab.com/doc/LabTalk/ref/Let-func
https://www.originlab.com/doc/LabTalk/ref/Let-func
https://www.originlab.com/doc/LabTalk/ref/NA-func
https://www.originlab.com/doc/LabTalk/ref/ocolor2rgb-func
https://www.originlab.com/doc/LabTalk/ref/Xf-get-last-error-code-func
https://www.originlab.com/doc/LabTalk/ref/Xf-get-last-error-message-func
https://www.originlab.com/doc/LabTalk/ref/XOR-func

Function Reference

459

20.2.17 Engineering

Name Brief Description

Base(num,radix[,len])$

(2019 SR0)

Convert a given integer num into a string representation of the specified

radix.

Bin2Dec(str$) Convert a binary number to decimal.

BitLShift(num,shift)

(2019 SR0)

Shift a decimal number num left by the specified number of bits shift.

BitRShift(num,shift)

(2019 SR0)

Shift a decimal number num right by the specified number of bits shift.

Convert(d,str1$,str2$) Convert a number from one measurement system to another.

Decimal(text$,radix)

Convert a string representation text in the specified radix into a

decimal number.

Dec2Bin(n)$ Convert a decimal number to binary. The input range is limited to -512 to 511.

Dec2Hex(n[,places])$
Convert a decimal number to hexadecimal and optionally, specify number of

characters.

Hex2Dec(str$) Convert a string representation of a hexadecimal number to decimal.

20.2.18 Complex

Name Brief Description

Imabs(c) Get the modulus of a complex number.

Imaginary(c) This function is used to get the imaginary part of a complex number.

https://www.originlab.com/doc/LabTalk/ref/Base-func
https://www.originlab.com/doc/LabTalk/ref/Bin2Dec-func
https://www.originlab.com/doc/LabTalk/ref/BitLShift-func
https://www.originlab.com/doc/LabTalk/ref/BitRShift-func
https://www.originlab.com/doc/LabTalk/ref/Convert-func
https://www.originlab.com/doc/LabTalk/ref/Decimal-func
https://www.originlab.com/doc/LabTalk/ref/Dec2Bin-func
https://www.originlab.com/doc/LabTalk/ref/Dec2Hex-func
https://www.originlab.com/doc/LabTalk/ref/Hex2Dec-func
https://www.originlab.com/doc/LabTalk/ref/ImAbs-func
https://www.originlab.com/doc/LabTalk/ref/Imaginary-func

LabTalk Scripting Guide

460

Imargument(c) Get the argument (theta) of a complex number.

Imatan(c)

(2016 SR0)

Calculate the inverse tangent of a complex number.

Imatanh(c)

(2016 SR0)

Calculate the inverse hyperbolic tangent of a complex number.

Imconjugate(c) Get the conjugate of a complex number.

Imcos(c)

Calculate the cosine value for a complex number.

where C is a complex, and .

Imcosh(c)

(2019 SR0)

Calculate the hyperbolic cosine of a given complex number.

Imcot(c)

(2019 SR0)

Calculate the cotangent of a given complex number.

Imcsc(c)

(2019 SR0)

Calculate the cosecant of a given complex number.

Imcsch(c)

(2019 SR0)

Calculate the hyperbolic cosecant of a given complex number.

Imsec(c)

(2019 SR0)

Calculate the secant of a given complex number.

Imsech(c) Calculate the hyperbolic secant of a given complex number.

https://www.originlab.com/doc/LabTalk/ref/ImArgument-func
https://www.originlab.com/doc/LabTalk/ref/Imatan-func
https://www.originlab.com/doc/LabTalk/ref/Imatanh-func
https://www.originlab.com/doc/LabTalk/ref/ImConjugate-func
https://www.originlab.com/doc/LabTalk/ref/ImCos-func
https://www.originlab.com/doc/LabTalk/ref/Imcosh-func
https://www.originlab.com/doc/LabTalk/ref/Imcot-func
https://www.originlab.com/doc/LabTalk/ref/Imcsc-func
https://www.originlab.com/doc/LabTalk/ref/Imcsch-func
https://www.originlab.com/doc/LabTalk/ref/Imsec-func
https://www.originlab.com/doc/LabTalk/ref/Imsech-func

Function Reference

461

(2019 SR0)

Imsinh(c)

(2019 SR0)

Calculate the hyperbolic sine of a given complex number.

Imtan(c)

(2019 SR0)

Calculate the tangent of a given complex number.

Imdiv(c1,c2) Calculate the complex division.

Imexp(c)

Calculate the exponential value for a complex number.

where .

Imln(c)

Calculate the natural logarithm of the complex number.

where ImAbs computes the modulus of the complex,

Imlog10(c)

Calculate the base 10 logarithm of a complex number.

where ImLn computes the natural logarithm of the complex, and

.

Imlog2(c)

Calculate the base 2 logarithm of a complex number.

where ImLn computes the natural logarithm of the complex, and

.

ImPower(c,d) Calculate the given complex to the power of the specified value.

https://www.originlab.com/doc/LabTalk/ref/Imsinh-func
https://www.originlab.com/doc/LabTalk/ref/Imtan-func
https://www.originlab.com/doc/LabTalk/ref/ImDiv-func
https://www.originlab.com/doc/LabTalk/ref/ImExp-func
https://www.originlab.com/doc/LabTalk/ref/ImLn-func
https://www.originlab.com/doc/LabTalk/ref/ImAbs-func
https://www.originlab.com/doc/LabTalk/ref/ImLog10-func
https://www.originlab.com/doc/LabTalk/ref/ImLn-func
https://www.originlab.com/doc/LabTalk/ref/ImLog2-func
https://www.originlab.com/doc/LabTalk/ref/ImLn-func
https://www.originlab.com/doc/LabTalk/ref/ImPower-func

LabTalk Scripting Guide

462

Improduct(c1,c2)

Perform the product (multiplication) operation of two complex numbers.

ImReal(c) Get the real part of the specified complex number.

Imsin(c)

Calculate the sine value for a complex number.

where C is complex, and .

Imsqrt(c) Calculate the square root of a complex number.

ImSub(c1,c2) Perform subtraction between two complex numbers.

ImSum(c1,c2) Get sum of two specified complex numbers.

Real2Complex(real,imag)

Convert the specified two reals into a complex number. Note that the data

type of output column needs to be set as complex (16) in advance.

examples:

real2complex(1, 2) returns complex number 1 + 2i

real2complex(col(A), col(B)) returns a complex vector, the

real part uses values from column A, imaginary part from column B

20.2.19 Financial

Name Brief Description

Effect(nrate,npery) Calculates the effective annual interest rate.

Nominal(erate,npery) Calculates the nominal annual interest rate.

pDuration(rate,pv,fv)
Calculates the number of periods required by an investment to reach a desired

future value.

https://www.originlab.com/doc/LabTalk/ref/ImProduct-func
https://www.originlab.com/doc/LabTalk/ref/ImReal-func
https://www.originlab.com/doc/LabTalk/ref/ImSin-func
https://www.originlab.com/doc/LabTalk/ref/ImSqrt-func
https://www.originlab.com/doc/LabTalk/ref/ImSub-func
https://www.originlab.com/doc/LabTalk/ref/ImSum-func
https://www.originlab.com/doc/LabTalk/ref/Real2Complex-func
https://www.originlab.com/doc/LabTalk/ref/Effect-func
https://www.originlab.com/doc/LabTalk/ref/Nominal-func
https://www.originlab.com/doc/LabTalk/ref/pDuration-func

Function Reference

463

RRI(nper, pv, fv) Calculates an equivalent interest rate for the growth of an investment.

20.2.20 Notes on Use

Each function returns either a single value or a range of values (a dataset), depending on the type of function

and the arguments supplied. Unless otherwise specified, all functions will return a range if the first argument

passed to the function is a range, and all functions will return a value if a value is passed.

20.3 LabTalk-Supported X-Functions

LT-Supported-XFs

Below are several X-Functions, arranged by category, that are used frequently in LabTalk script.

This is not a complete list of X-Functions in Origin, but only those supported by LabTalk!

For a complete listing of all X-Functions, arranged by category and alphabetical, see the X-

Function Reference.

20.3.1 Data Exploration

Name Brief Description

addtool_curve_deriv Place a rectangle on the plot to perform differentiation

addtool_curve_fft Add a rectangle onto the plot to perform FFT

addtool_curve_integ Attach a rectangle on the plot to perform integration

addtool_curve_interp Place a rectangle on the plot to perform interpolation

addtool_curve_stats Place a rectangle onto the plot to calculate basic statistics

addtool_quickfit Place a rectangle onto the plot to do fitting

https://www.originlab.com/doc/LabTalk/ref/RRI-func
https://www.originlab.com/doc/X-Function/ref
https://www.originlab.com/doc/X-Function/ref
https://www.originlab.com/doc/X-Function/ref/addtool_curve_deriv
https://www.originlab.com/doc/X-Function/ref/addtool_curve_fft
https://www.originlab.com/doc/X-Function/ref/addtool_curve_integ
https://www.originlab.com/doc/X-Function/ref/addtool_curve_interp
https://www.originlab.com/doc/X-Function/ref/addtool_curve_stats
https://www.originlab.com/doc/X-Function/ref/addtool_quickfit

LabTalk Scripting Guide

464

addtool_region_stats
Region Statistics:Place a rectangle or circle onto the plot to calculate basic

statistics

dlgRowColGoto Go to specified row and column

imageprofile Open the Image Profile dialog.

vinc Calculate the average increment in a vector

vinc_check Calculate the average increment in a vector

20.3.2 Data Manipulation

Name Brief Description

addsheet Set up data format and fitting function for Assays Template

assays
Assays Template Configuration:Set up data format and fitting function for Assays

Template

copydata Copy numeric data

cxt Shift the x values of the active curve with different mode

levelcrossing Get x coordinate crossing the given level

m2v Convert a matrix to a vector

map2c Combine an amplitude matrix and a phase matrix to a complex matrix.

mc2ap Convert complex numbers in a matrix to amplitudes and phases.

https://www.originlab.com/doc/X-Function/ref/addtool_cluster
https://www.originlab.com/doc/X-Function/ref/dlgRowColGoto
https://www.originlab.com/doc/X-Function/ref/imageprofile
https://www.originlab.com/doc/X-Function/ref/vinc
https://www.originlab.com/doc/X-Function/ref/vinc_check
https://www.originlab.com/doc/X-Function/ref/addsheet
https://www.originlab.com/doc/X-Function/ref/assays
https://www.originlab.com/doc/X-Function/ref/copydata
https://www.originlab.com/doc/X-Function/ref/cxt
https://www.originlab.com/doc/X-Function/ref/levelcrossing
https://www.originlab.com/doc/X-Function/ref/m2v
https://www.originlab.com/doc/X-Function/ref/map2c
https://www.originlab.com/doc/X-Function/ref/mc2ap

Function Reference

465

mc2ri Convert complex numbers in a matrix into their real parts and imaginary parts.

mcopy Copy a matrix

mks Get data markers in data plot

mo2s
Convert a matrix layer with multiple matrix objects to a matrix page with multiple

matrix layers.

mri2c Combine real numbers in two matrices into a complex matrix.

ms2o
Merge (move) multiple matrixsheets into one single matrixsheet with multiple

matrixobjects.

newbook Create a new workbook or matrixbook

newsheet Create new worksheet.

rank Decide whether data points are within specified ranges

reducedup Reduce Duplicate X Data

reduce_ex Average data points to reduce data size and make even spaced X

reducerows Reduce every N points of data with basic statistics

reducexy Reduce XY data by sub-group statistics according to X's distribution

subtract_line
Subtract the active plot from a straight line formed with two points picked on the

graph page

https://www.originlab.com/doc/X-Function/ref/mc2ri
https://www.originlab.com/doc/X-Function/ref/mcopy
https://www.originlab.com/doc/X-Function/ref/mks
https://www.originlab.com/doc/X-Function/ref/mo2s
https://www.originlab.com/doc/X-Function/ref/mri2c
https://www.originlab.com/doc/X-Function/ref/ms2o
https://www.originlab.com/doc/X-Function/ref/newbook
https://www.originlab.com/doc/X-Function/ref/newsheet
https://www.originlab.com/doc/X-Function/ref/rank
https://www.originlab.com/doc/X-Function/ref/reducedup
https://www.originlab.com/doc/X-Function/ref/reduce_ex
https://www.originlab.com/doc/X-Function/ref/reducerows
https://www.originlab.com/doc/X-Function/ref/reducexy
https://www.originlab.com/doc/X-Function/ref/subtract_line

LabTalk Scripting Guide

466

subtract_ref Subtract on one dataset with another

trimright Remove missing values from the right end of Y columns

v2m Convert a vector to matrix

vap2c Combine amplitude vector and phase vector to form a complex vector.

vc2ap
Convert a complex vector into a vector for the amplitudes and a vector for the

phases.

vc2ri Convert complex numbers in a vector into their real parts and imaginary parts.

vfind Find all vector elements whose values are equal to a specified value

vri2c
Construct a complex vector from the real parts and imaginary parts of the complex

numbers

vshift Shift a vector

xy_resample Mesh within a given polygon to resample data.

xyz_resample Resample XYZ data by meshing and gridding

20.3.2.1 Gridding

Name Brief Description

m2w Convert the Matrix data into a Worksheet

r2m Convert a range of worksheet data directly into a matrix

https://www.originlab.com/doc/X-Function/ref/subtract_ref
https://www.originlab.com/doc/X-Function/ref/trimright
https://www.originlab.com/doc/X-Function/ref/v2m
https://www.originlab.com/doc/X-Function/ref/vap2c
https://www.originlab.com/doc/X-Function/ref/vc2ap
https://www.originlab.com/doc/X-Function/ref/vc2ri
https://www.originlab.com/doc/X-Function/ref/vfind
https://www.originlab.com/doc/X-Function/ref/vri2c
https://www.originlab.com/doc/X-Function/ref/vshift
https://www.originlab.com/doc/X-Function/ref/xy_resample
https://www.originlab.com/doc/X-Function/ref/xyz_resample
https://www.originlab.com/doc/X-Function/ref/m2w
https://www.originlab.com/doc/X-Function/ref/r2m

Function Reference

467

w2m
Convert the worksheet data directly into a matrix, whose coordinates can be

specified by first column/row and row labels in the worksheet.

wexpand2m Convert Worksheet to Matrix by expand for columns or rows

XYZ2Mat Convert XYZ worksheet data into matrix

xyz_regular Regular Gridding

xyz_renka Renka-Cline Gridding Method

xyz_renka_nag NAG Renka-Cline Gridding Method

xyz_shep Modified Shepard Gridding Method

xyz_shep_nag NAG Modified Shepard Gridding Method

xyz_sparse Sparse Gridding

xyz_tps Thin Plane Spline interpolation

20.3.2.2 Matrix

Name Brief Description

mCrop Crop matrix to a rectangle area

mdim Set the dimensions and values of XY coordinates for the active matrix

mexpand Expand for every cell in the active matrix according to the column and row factors

https://www.originlab.com/doc/X-Function/ref/w2m
https://www.originlab.com/doc/X-Function/ref/wexpand2m
https://www.originlab.com/doc/X-Function/ref/XYZ2Mat
https://www.originlab.com/doc/X-Function/ref/xyz_regular
https://www.originlab.com/doc/X-Function/ref/xyz_renka
https://www.originlab.com/doc/X-Function/ref/xyz_renka_nag
https://www.originlab.com/doc/X-Function/ref/xyz_shep
https://www.originlab.com/doc/X-Function/ref/xyz_shep_nag
https://www.originlab.com/doc/X-Function/ref/xyz_sparse
https://www.originlab.com/doc/X-Function/ref/xyz_tps
https://www.originlab.com/doc/X-Function/ref/mCrop
https://www.originlab.com/doc/X-Function/ref/mdim
https://www.originlab.com/doc/X-Function/ref/mexpand

LabTalk Scripting Guide

468

mflip Flip the matrix horizontally or vertically

mproperty Set properties of the active matrix

mreplace Replace cells in the active matrix with specified datamreplace

mrotate90 Rotates the matrix 90/180 degreesmrotate90

msetvalue Assign each cell in the active matrix from the user definited formula

mshrink Shrink matrix according shrinkage factors

mtranspose Transpose the active matrix

20.3.2.3 Plotting

Name Brief Description

plotbylabel Plot a multiple-layers graph by grouping on column labels

plotgroup Plot by page group, layer group, and data group

plotmatrix Plot scatter matrix of the dataset

plotmyaxes Customize Multi-Axes plot

plotstack Plot stacked graph

plotxy Plot XY data with specific properties

plotms Plot color fill surfaces or colormap surfaces for all matrix objects in the specified

https://www.originlab.com/doc/X-Function/ref/mflip
https://www.originlab.com/doc/X-Function/ref/mproperty
https://www.originlab.com/doc/X-Function/ref/mreplace
https://www.originlab.com/doc/X-Function/ref/mrotate90
https://www.originlab.com/doc/X-Function/ref/msetvalue
https://www.originlab.com/doc/X-Function/ref/mshrink
https://www.originlab.com/doc/X-Function/ref/mtranspose
https://www.originlab.com/doc/X-Function/ref/plotbylabel
https://www.originlab.com/doc/X-Function/ref/plotgroup
https://www.originlab.com/doc/X-Function/ref/plotmatrix
https://www.originlab.com/doc/X-Function/ref/plotmyaxes
https://www.originlab.com/doc/X-Function/ref/plotstack
https://www.originlab.com/doc/X-Function/ref/plotxy
https://www.originlab.com/doc/X-Function/ref/plotms

Function Reference

469

matrixsheet.

plotvm Plot from a range of cells in worksheet as a virtual matrix

20.3.2.4 Worksheet

Name Brief Description

colcopy Copy columns with format & headers

colint Set Sampling Interval (Implicit X) for selected Y columns

colmask Mask a range of columns based on some condition

colmove Move selected columns

colshowx Show X column (extract Sampling Interval) for the selected Y column(s)

colswap Swap the position of two selected columns

filltext Fill the cell in the specified range with random letters

getresults Get the result tree

insertArrow Insert arrow

insertGraph Insert a graph into a worksheet cell

insertImg Insert images from files

insertNotes Embed a Notes page into a worksheet cell

https://www.originlab.com/doc/X-Function/ref/plotvm
https://www.originlab.com/doc/X-Function/ref/colcopy
https://www.originlab.com/doc/X-Function/ref/colint
https://www.originlab.com/doc/X-Function/ref/colmask
https://www.originlab.com/doc/X-Function/ref/colmove
https://www.originlab.com/doc/X-Function/ref/colshowx
https://www.originlab.com/doc/X-Function/ref/colswap
https://www.originlab.com/doc/X-Function/ref/filltext
https://www.originlab.com/doc/X-Function/ref/getresults
https://www.originlab.com/doc/X-Function/ref/insertArrow
https://www.originlab.com/doc/X-Function/ref/insertGraph
https://www.originlab.com/doc/X-Function/ref/insertImg
https://www.originlab.com/doc/X-Function/ref/insertNotes

LabTalk Scripting Guide

470

insertSparklines Insert sparklines into worksheet cells

insertVar Insert Variables into cells

merge_book Merge the workbooks to a new workbook.

sparklines Add thumbnail size plots of each Y column above the data

updateEmbedGraphs Update the embedded Graphs in the worksheet.

updateSparklines Add thumbnail size plots of each Y column above the data

w2xyz Convert formatted data into XYZ form

wautofill Worksheet selection auto fill

wautosize Resize the worksheet by the column maximal string length.

wcellcolor
Set cell(s) color to fill color or set the selected character font color to Font

color.

wcellformat Format the selected cells

wcellmask Set cell(s) mask in specified range

wcellsel Select cell(s) with specified condition

wclear Worksheet Clear

wcolwidth Update the width of columns in worksheet

https://www.originlab.com/doc/X-Function/ref/insertSparklines
https://www.originlab.com/doc/X-Function/ref/insertVar
https://www.originlab.com/doc/X-Function/ref/merge_book
https://www.originlab.com/doc/X-Function/ref/sparklines
https://www.originlab.com/doc/X-Function/ref/updateEmbedGraphs
https://www.originlab.com/doc/X-Function/ref/updateSparklines
https://www.originlab.com/doc/X-Function/ref/w2xyz
https://www.originlab.com/doc/X-Function/ref/wautofill
https://www.originlab.com/doc/X-Function/ref/wautosize
https://www.originlab.com/doc/X-Function/ref/wcellcolor
https://www.originlab.com/doc/X-Function/ref/wcellformat
https://www.originlab.com/doc/X-Function/ref/wcellmask
https://www.originlab.com/doc/X-Function/ref/wcellsel
https://www.originlab.com/doc/X-Function/ref/wclear
https://www.originlab.com/doc/X-Function/ref/wcolwidth

Function Reference

471

wcopy Create a copy of the specified worksheet

wdeldup
Remove Duplicated Rows:Remove rows in a worksheet based on

duplications in one column

wdelrows Delete specified worksheet rows

wkeepdup
Hold Duplicated Rows:Hold rows in a worksheet based on duplications in

one column

wks_update_link_table Update the contents in the worksheet to the linked table on graph

wmergexy
Copy XY data from one worksheet to another and merge mismatching X by

inserting empty rows when needed

wmove_sheet Move the specified worksheet to the destination workbook

wmvsn Reset short names for all columns in worksheet

wpivot Pivot Table:Create a pivot table to visualize data summarization

wproperties Get or set the worksheet property through a tree from script

wrcopy Worksheet Range Copy with options to copy labels

wreplace Find and replace cell value in a worksheet

wrow2label Set Label Value

wrowheight Set row(s) height

https://www.originlab.com/doc/X-Function/ref/wcopy
https://www.originlab.com/doc/X-Function/ref/wdeldup
https://www.originlab.com/doc/X-Function/ref/wdelrows
https://www.originlab.com/doc/X-Function/ref/wkeepdup
https://www.originlab.com/doc/X-Function/ref/wks_update_link_table
https://www.originlab.com/doc/X-Function/ref/wmergexy
https://www.originlab.com/doc/X-Function/ref/wmove_sheet
https://www.originlab.com/doc/X-Function/ref/wmvsn
https://www.originlab.com/doc/X-Function/ref/wpivot
https://www.originlab.com/doc/X-Function/ref/wproperties
https://www.originlab.com/doc/X-Function/ref/wrcopy
https://www.originlab.com/doc/X-Function/ref/wreplace
https://www.originlab.com/doc/X-Function/ref/wrow2label
https://www.originlab.com/doc/X-Function/ref/wrowheight

LabTalk Scripting Guide

472

wsort Sort an entire worksheet or selected columns

wsplit_book Split specific workbooks into multiple workbooks with single sheet

wtranspose Transpose the active worksheet

wunstackcol UnStack grouped data into multiple columns

wxt Worksheet Extraction

20.3.3 Database Access

Name Brief Description

dbEdit Create/Edit/Remove/Load Query

dbImport Import data from database through the query

dbInfo Show database connection information

dbPreview Import to certain top rows for previewing the data from the query

20.3.4 Fitting

Name Brief Description

findBase Find Baseline region in XY data

fitcmpdata Compare two datasets to the same fit model

fitcmpmodel Compare two fit models to the same dataset

https://www.originlab.com/doc/X-Function/ref/wsort
https://www.originlab.com/doc/X-Function/ref/wsplit_book
https://www.originlab.com/doc/X-Function/ref/wtranspose
https://www.originlab.com/doc/X-Function/ref/wunstackcol
https://www.originlab.com/doc/X-Function/ref/wxt
https://www.originlab.com/doc/X-Function/ref/dbEdit
https://www.originlab.com/doc/X-Function/ref/dbImport
https://www.originlab.com/doc/X-Function/ref/dbInfo
https://www.originlab.com/doc/X-Function/ref/dbPreview
https://www.originlab.com/doc/X-Function/ref/findBase
https://www.originlab.com/doc/X-Function/ref/fitcmpdataPro
https://www.originlab.com/doc/X-Function/ref/fitcmpmodelPro

Function Reference

473

fitLR Simple Linear Regression for LabTalk usage

fitpoly Polynomial fit for LabTalk usage

getnlr Get NLFit tree from a fitting report sheet

nlbegin Start a LabTalk nlfit session

nlbeginm Start a LabTalk nlfit session on matrix data

nlbeginr Start a LabTalk nlfit session and fit multiple dependent/independent variables function.

nlbeginz Start a LabTalk nlfit session on xyz data

nlend Terminate an nlfit session

nlfit Iterate the nl fit session

nlfn Set Automatic Parameter Initialization option

nlgui Control NLFIT output quantities and destination.

nlpara Open the Fitting Parameter dialog.

20.3.5 Graph Manipulation

Name Brief Description

add_graph_to_graph Paste a graph from existing graphs as an EMF object onto a layout window

add_table_to_graph Add a linked table to graph

https://www.originlab.com/doc/X-Function/ref/fitLR
https://www.originlab.com/doc/X-Function/ref/fitpoly
https://www.originlab.com/doc/X-Function/ref/getnlr
https://www.originlab.com/doc/X-Function/ref/nlbegin
https://www.originlab.com/doc/X-Function/ref/nlbeginmPro
https://www.originlab.com/doc/X-Function/ref/nlbeginr
https://www.originlab.com/doc/X-Function/ref/nlbeginzPro
https://www.originlab.com/doc/X-Function/ref/nlend
https://www.originlab.com/doc/X-Function/ref/nlfit
https://www.originlab.com/doc/X-Function/ref/nlfn
https://www.originlab.com/doc/X-Function/ref/nlgui
https://www.originlab.com/doc/X-Function/ref/nlpara
https://www.originlab.com/doc/X-Function/ref/add_graph_to_graph
https://www.originlab.com/doc/X-Function/ref/add_table_to_graph

LabTalk Scripting Guide

474

add_wks_to_graph Paste a worksheet from existing worksheets onto a layout window

add_xyscale_obj Add a new XY Scale object to the layer

axis_scrollbar Add a scrollbar object to graph to allow easy zooming and panning

axis_scroller Add a pair of inverted triangles to the bottom X-Axis that allows easy rescaling

g2w Move graphs into worksheet

gxy2w
For a given X value, find all Y values from all curves and add them as a row to

a worksheet

layadd Create a new layer on the active graph

layalign Align some destination layers according to the source layer.

layarrange Arrange the layers on the graph.

laycolor Fill layer background color

laycopyscale Copy scale from one layer to another layer

layextract Extract specified layers to separate graph windows

laylink Link several layers to a layer.

laymanage Manage the organization of layers in the active graph

laysetfont Fix the display scaling of text in the layer(s) to one.

https://www.originlab.com/doc/X-Function/ref/add_wks_to_graph
https://www.originlab.com/doc/X-Function/ref/add_xyscale_obj
https://www.originlab.com/doc/X-Function/ref/axis_scrollbar
https://www.originlab.com/doc/X-Function/ref/axis_scroller
https://www.originlab.com/doc/X-Function/ref/g2w
https://www.originlab.com/doc/X-Function/ref/gxy2w
https://www.originlab.com/doc/X-Function/ref/layadd
https://www.originlab.com/doc/X-Function/ref/layalign
https://www.originlab.com/doc/X-Function/ref/layarrange
https://www.originlab.com/doc/X-Function/ref/laycolor
https://www.originlab.com/doc/X-Function/ref/laycopyscale
https://www.originlab.com/doc/X-Function/ref/layextract
https://www.originlab.com/doc/X-Function/ref/laylink
https://www.originlab.com/doc/X-Function/ref/laymanage
https://www.originlab.com/doc/X-Function/ref/laysetfont

Function Reference

475

laysetpos Set position of one or more graph layers.

laysetratio Set ratio of layer width to layer height.

laysetscale Set axes scales for graph layers.

laysetunit Set unit for graph layers.

layswap Swap the positions of two graph layers.

laytoggle Toggle the left axis and bottom axis on and off.

layzoom Center zooms on layer

legendupdate Update or reconstruct legend on the graph page/layer

merge_graph Merge selected graph windows into one graph

newinset Create a new graph page with insets

newpanel Create a new graph with panels

palApply
Apply Palette to &Color Map:Apply palette to the specified graph with an

existing palette file

pickpts Pick XY data points from a graph

speedmode Set speed mode properties

20.3.6 Image

20.3.6.1 Adjustments

https://www.originlab.com/doc/X-Function/ref/laysetpos
https://www.originlab.com/doc/X-Function/ref/laysetratio
https://www.originlab.com/doc/X-Function/ref/laysetscale
https://www.originlab.com/doc/X-Function/ref/laysetunit
https://www.originlab.com/doc/X-Function/ref/layswap
https://www.originlab.com/doc/X-Function/ref/laytoggle
https://www.originlab.com/doc/X-Function/ref/layzoom
https://www.originlab.com/doc/X-Function/ref/legendupdate
https://www.originlab.com/doc/X-Function/ref/merge_graph
https://www.originlab.com/doc/X-Function/ref/newinset
https://www.originlab.com/doc/X-Function/ref/newpanel
https://www.originlab.com/doc/X-Function/ref/palApply
https://www.originlab.com/doc/X-Function/ref/pickpts
https://www.originlab.com/doc/X-Function/ref/speedmode

LabTalk Scripting Guide

476

Name Brief Description

imgAutoLevel Apply auto leveling to image

imgBalance Balance the color of image

imgBrightness Adjust the brightness of Image

imgColorlevel Apply user-defined color leveling to image

imgColorReplace Replace color within pre-defined color range

imgContrast Adjust contrast of image

imgFuncLUT Apply lookup table function to image

imgGamma Apply gamma correction to image

imgHistcontrast Adjust the contrast of image, using histogram to calculate the median.

imgHisteq Apply histogram equalization

imgHue Adjust hue of image

imgInvert Invert image color

imgLevel Adjust the levels of image

imgSaturation Adjust Saturation of image

20.3.6.2 Analysis

https://www.originlab.com/doc/X-Function/ref/imgAutoLevel
https://www.originlab.com/doc/X-Function/ref/imgBalance
https://www.originlab.com/doc/X-Function/ref/imgBrightness
https://www.originlab.com/doc/X-Function/ref/imgColorlevel
https://www.originlab.com/doc/X-Function/ref/imgColorReplace
https://www.originlab.com/doc/X-Function/ref/imgContrast
https://www.originlab.com/doc/X-Function/ref/imgFuncLUTPro
https://www.originlab.com/doc/X-Function/ref/imgGamma
https://www.originlab.com/doc/X-Function/ref/imgHistcontrast
https://www.originlab.com/doc/X-Function/ref/imgHisteq
https://www.originlab.com/doc/X-Function/ref/imgHue
https://www.originlab.com/doc/X-Function/ref/imgInvert
https://www.originlab.com/doc/X-Function/ref/imgLevelPro
https://www.originlab.com/doc/X-Function/ref/imgSaturation

Function Reference

477

Name Brief Description

imgHistogram Image histogram

20.3.6.3 Arithmetic Transform

Name Brief Description

imgBlend Blend two images into a combined image

imgMathfun Perform math function on image pixel values with a factor

imgMorph Apply morphological filter to numeric Matrix or grayscale/binary image

imgPixlog Perform logic operation on pixels

imgReplaceBg Replace background color

imgSimpleMath Simple Math operation between two Images

imgSubtractBg Subtract image background

20.3.6.4 Conversion

Name Brief Description

img2m Convert a grayscale image to a numeric data matrix

imgAutoBinary Auto convert to binary

imgBinary Convert to binary

https://www.originlab.com/doc/X-Function/ref/imgHistogram
https://www.originlab.com/doc/X-Function/ref/imgBlendPro
https://www.originlab.com/doc/X-Function/ref/imgMathfunPro
https://www.originlab.com/doc/X-Function/ref/imgMorphPro
https://www.originlab.com/doc/X-Function/ref/imgPixlogPro
https://www.originlab.com/doc/X-Function/ref/imgReplaceBgPro
https://www.originlab.com/doc/X-Function/ref/imgSimpleMathPro
https://www.originlab.com/doc/X-Function/ref/imgSubtractBgPro
https://www.originlab.com/doc/X-Function/ref/img2m
https://www.originlab.com/doc/X-Function/ref/imgAutoBinary
https://www.originlab.com/doc/X-Function/ref/imgBinary

LabTalk Scripting Guide

478

imgC2gray Convert to a grayscale image

imgDynamicBinary Convert to binary using dynamic threshold

imgInfo Print out the given image's basic parameters in script window

imgPalette Apply palette to image

imgRGBmerge Merge RGB channels to recombine a color image

imgRGBsplit Split color image into R,G, B channels

imgThreshold Convert part of an image to black and white using threshold

m2img Convert a numeric matrix to a grayscale image

20.3.6.5 Geometric Transform

Name Brief Description

imgCrop Crop image to a rectangle area

imgFlip Flip the image horizontally or vertically

imgResize Resize image

imgRotate Rotates an image by a specified degree

imgShear Shear the image horizontally or vertically

imgTrim Trim image with auto threshold settings

https://www.originlab.com/doc/X-Function/ref/imgC2gray
https://www.originlab.com/doc/X-Function/ref/imgDynamicBinaryPro
https://www.originlab.com/doc/X-Function/ref/imgInfo
https://www.originlab.com/doc/X-Function/ref/imgPalette
https://www.originlab.com/doc/X-Function/ref/imgRGBmergePro
https://www.originlab.com/doc/X-Function/ref/imgRGBsplitPro
https://www.originlab.com/doc/X-Function/ref/imgThresholdPro
https://www.originlab.com/doc/X-Function/ref/m2img
https://www.originlab.com/doc/X-Function/ref/imgCrop
https://www.originlab.com/doc/X-Function/ref/imgFlip
https://www.originlab.com/doc/X-Function/ref/imgResize
https://www.originlab.com/doc/X-Function/ref/imgRotate
https://www.originlab.com/doc/X-Function/ref/imgShear
https://www.originlab.com/doc/X-Function/ref/imgTrim

Function Reference

479

20.3.6.6 Spatial Filters

Name Brief Description

imgAverage Apply average filter to image

imgClear Clear the image

imgEdge Detecting edges

imgGaussian Apply Gaussian filter

imgMedian Apply median filter

imgNoise Add random noise to image

imgSharpen Increase or decrease image sharpness

imgUnsharpmask Apply unsharp mask

imgUserfilter Apply user defined filter

20.3.7 Import and Export

Name Brief Description

batchProcess Batch processing with Analysis Template to generate summary report

expASC Export worksheet data as ASCII file

expGraph Export graph(s) to graphics file(s)

https://www.originlab.com/doc/X-Function/ref/imgAverage
https://www.originlab.com/doc/X-Function/ref/imgClear
https://www.originlab.com/doc/X-Function/ref/imgEdge
https://www.originlab.com/doc/X-Function/ref/imgGaussian
https://www.originlab.com/doc/X-Function/ref/imgMedian
https://www.originlab.com/doc/X-Function/ref/imgNoise
https://www.originlab.com/doc/X-Function/ref/imgSharpen
https://www.originlab.com/doc/X-Function/ref/imgUnsharpmask
https://www.originlab.com/doc/X-Function/ref/imgUserfilterPro
https://www.originlab.com/doc/X-Function/ref/batchProcess
https://www.originlab.com/doc/X-Function/ref/expASC
https://www.originlab.com/doc/X-Function/ref/expGraph

LabTalk Scripting Guide

480

expImage Export the active Image into a graphics file

expMatASC Export matrix data as ASCII file

expNITDM Export workbook data as National Instruments TDM and TDMS files

expPDFw Export worksheet as multipage PDF file

expWAV Export data as Microsoft PCM wave file

expWks Export the active sheet as raster or vector image file

img2GIF Export the active Image into a gif file

impASC Import ASCII file/files

impBin2d Import binary 2d array file

impCDF Import CDF file. It supports the file version lower than 3.0

impCSV Import csv file

impDT Import Data Translation Version 1.0 files

impEDF Import EDF file

impEP Import EarthProbe (EPA) file. Now only EPA file is supported for EarthProbe data.

impExcel Import Microsoft Excel 97-2007 files

impFamos Import Famos Version 2 files

https://www.originlab.com/doc/X-Function/ref/expImage
https://www.originlab.com/doc/X-Function/ref/expMatASC
https://www.originlab.com/doc/X-Function/ref/expNITDM
https://www.originlab.com/doc/X-Function/ref/expPDFw
https://www.originlab.com/doc/X-Function/ref/expWAV
https://www.originlab.com/doc/X-Function/ref/expWks
https://www.originlab.com/doc/X-Function/ref/img2GIF
https://www.originlab.com/doc/X-Function/ref/impASC
https://www.originlab.com/doc/X-Function/ref/impBin2d
https://www.originlab.com/doc/X-Function/ref/impCDF
https://www.originlab.com/doc/X-Function/ref/impCSV
https://www.originlab.com/doc/X-Function/ref/impDT
https://www.originlab.com/doc/X-Function/ref/impEDF
https://www.originlab.com/doc/X-Function/ref/impEP
https://www.originlab.com/doc/X-Function/ref/impExcel
https://www.originlab.com/doc/X-Function/ref/impFamos

Function Reference

481

impFile Import file with pre-defined filter.

impHDF5 Import HDF5 file. It supports the file version lower than 1.8.2

impHEKA Import HEKA (dat) files

impIgorPro Import WaveMetrics IgorPro (pxp, ibw) files

impImage Import a graphics file

impinfo Read information related to import files.

impJCAMP Import JCAMP-DX Version 6 files

impJNB Import SigmaPlot (JNB) file. It supports version lower than SigmaPlot 8.0.

impKG Import KaleidaGraph file

impMatlab Import Matlab files

impMDF Import ETAS INCA MDF (DAT, MDF) files. It supports INCA 5.4 (file version 3.0).

impMNTB Import Minitab file (MTW) or project (MPJ). It supports the version prior to Minitab 13.

impNetCDF Import netCDF file. It supports the file version lower than 3.1.

impNIDIAdem Import National Instruments DIAdem 10.0 dat files

impNITDM
Import National Instruments TDM and TDMS files(TDMS does not support data/time

format)

https://www.originlab.com/doc/X-Function/ref/impFile
https://www.originlab.com/doc/X-Function/ref/impHDF5
https://www.originlab.com/doc/X-Function/ref/impHEKA
https://www.originlab.com/doc/X-Function/ref/impIgorPro
https://www.originlab.com/doc/X-Function/ref/impImage
https://www.originlab.com/doc/X-Function/ref/impinfo
https://www.originlab.com/doc/X-Function/ref/impJCAMP
https://www.originlab.com/doc/X-Function/ref/impJNB
https://www.originlab.com/doc/X-Function/ref/impKG
https://www.originlab.com/doc/X-Function/ref/impMatlab
https://www.originlab.com/doc/X-Function/ref/impMDF
https://www.originlab.com/doc/X-Function/ref/impMNTB
https://www.originlab.com/doc/X-Function/ref/impNetCDF
https://www.originlab.com/doc/X-Function/ref/impNIDIAdem
https://www.originlab.com/doc/X-Function/ref/impNITDM

LabTalk Scripting Guide

482

impODQ Import *.ODQ files.

imppClamp
Import pCLAMP file. It supports pClamp 9 (ABF 1.8 file format) and pClamp 10 (ABF

2.0 file format).

impSIE Import nCode Somat SIE 0.92 file

impSPC Import Thermo File

impSPE Import Princeton Instruments (SPE) file. It supports the version prior to 2.5.

impWav Import waveform audio file

insertImg2g Insert Images From Files:Insert graphic file(s) into Graph Window

Iwfilter Make an X-Function import filter

plotpClamp Plot pClamp data

reimport Re-import current file

20.3.8 Mathematics

Name Brief Description

avecurves Average or concatenate multiple curves

averagexy Average or concatenate multiple curves

bspline Perform cubic B-Spline interpolation and extrapolation

https://www.originlab.com/doc/X-Function/ref/impODQ
https://www.originlab.com/doc/X-Function/ref/imppClamp
https://www.originlab.com/doc/X-Function/ref/impSIE
https://www.originlab.com/doc/X-Function/ref/impSPC
https://www.originlab.com/doc/X-Function/ref/impSPE
https://www.originlab.com/doc/X-Function/ref/impWav
https://www.originlab.com/doc/X-Function/ref/insertImg2g
https://www.originlab.com/doc/X-Function/ref/iwFilter
https://www.originlab.com/doc/X-Function/ref/plotpClamp
https://www.originlab.com/doc/X-Function/ref/reimport
https://www.originlab.com/doc/X-Function/ref/avecurves
https://www.originlab.com/doc/X-Function/ref/averagexy
https://www.originlab.com/doc/X-Function/ref/bspline

Function Reference

483

csetvalue Setting column value

differentiate Calculate derivative of the input data

filter2 Apply customized filter to a Matrix

integ1 Perform integration on input data

integ2 Calculate the volume beneath the matrix surface from zero panel.

interp1
Perform 1D interpolation or extrapolation on a group of XY data to find Y at given X

values using 3 alternative methods.

interp1q Perform linear interpolation and extrapolation

interp1trace Perform trace/periodic interpolation on the data

interp1xy
Perform 1D interpolation/extrapolation on a group of XY data to generate a set of

interpolated data with uniformly-spaced X values using 3 alternative methods.

interp3 Perform 3D interpolation

interpxyz Perform trace interpolation on the XYZ data

marea Calculate the area of the matrix surface

mathtool Perform simple arithmetic on data

medianflt2 Apply median filter to a matrix

minterp2 2D Interpolate/Extrapolate on the matrix

https://www.originlab.com/doc/X-Function/ref/csetvalue
https://www.originlab.com/doc/X-Function/ref/differentiate
https://www.originlab.com/doc/X-Function/ref/filter2
https://www.originlab.com/doc/X-Function/ref/Integ1
https://www.originlab.com/doc/X-Function/ref/integ2Pro
https://www.originlab.com/doc/X-Function/ref/interp1
https://www.originlab.com/doc/X-Function/ref/interp1q
https://www.originlab.com/doc/X-Function/ref/interp1trace
https://www.originlab.com/doc/X-Function/ref/interp1xy
https://www.originlab.com/doc/X-Function/ref/interp3
https://www.originlab.com/doc/X-Function/ref/interpxyz
https://www.originlab.com/doc/X-Function/ref/mareaPro
https://www.originlab.com/doc/X-Function/ref/mathtool
https://www.originlab.com/doc/X-Function/ref/medianflt2
https://www.originlab.com/doc/X-Function/ref/minterp2

LabTalk Scripting Guide

484

minverse Generate (pseudo) inverse of a matrix

normalize Normalize the input data

polyarea Calculate the area of an enclosed plot region

reflection Reflect a range of data to certain interval

rnormalize Normalize Columns:Normalize the input range column by column

specialflt2 Apply predefined special filter to a matrix

spline Perform spline interpolation and extrapolation

vcmath1 Perform simple arithmetic on one complex number

vcmath2 Perform simple arithmetic on two complex numbers

vmathtool Perform simple arithmetic on input data

vnormalize Normalize the input vector

white_noise Add white (Gaussian) noise to data

xyzarea Calculate the area of the XYZ surface

20.3.9 Signal Processing

Name Brief Description

cohere Perform coherence

https://www.originlab.com/doc/X-Function/ref/minverse
https://www.originlab.com/doc/X-Function/ref/normalize
https://www.originlab.com/doc/X-Function/ref/polyarea
https://www.originlab.com/doc/X-Function/ref/reflection
https://www.originlab.com/doc/X-Function/ref/rnormalize
https://www.originlab.com/doc/X-Function/ref/specialflt2
https://www.originlab.com/doc/X-Function/ref/spline
https://www.originlab.com/doc/X-Function/ref/vcmath1
https://www.originlab.com/doc/X-Function/ref/vcmath2
https://www.originlab.com/doc/X-Function/ref/vmathtool
https://www.originlab.com/doc/X-Function/ref/vnormalize
https://www.originlab.com/doc/X-Function/ref/white_noise
https://www.originlab.com/doc/X-Function/ref/xyzareaPro
https://www.originlab.com/doc/X-Function/ref/coherePro

Function Reference

485

conv Compute the convolution of two signals

corr1 Compute 1D correlation of two signals

corr2 2D correlation.

deconv Compute the deconvolution

envelope Get envelope of the data

fft_filter2 Perform 2D FFT filtering

fft_filters Perform FFT Filtering

hilbert Perform Hilbert transform or calculate analytic signal

msmooth Smooth the matrix by expanding and shrinking

smooth Perform smoothing to irregular and noisy data.

20.3.9.1 FFT

Name Brief Description

fft1 Fast Fourier transform on input vector (discrete Fourier transforms)

fft2 Two-dimensional fast Fourier transform

ifft1 Perform inverse Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

https://www.originlab.com/doc/X-Function/ref/conv
https://www.originlab.com/doc/X-Function/ref/corr1
https://www.originlab.com/doc/X-Function/ref/corr2Pro
https://www.originlab.com/doc/X-Function/ref/deconv
https://www.originlab.com/doc/X-Function/ref/envelopePro
https://www.originlab.com/doc/X-Function/ref/fft_filter2
https://www.originlab.com/doc/X-Function/ref/fft_filters
https://www.originlab.com/doc/X-Function/ref/hilbertPro
https://www.originlab.com/doc/X-Function/ref/msmooth
https://www.originlab.com/doc/X-Function/ref/smooth
https://www.originlab.com/doc/X-Function/ref/fft1
https://www.originlab.com/doc/X-Function/ref/fft2Pro
https://www.originlab.com/doc/X-Function/ref/ifft1
https://www.originlab.com/doc/X-Function/ref/ifft2Pro

LabTalk Scripting Guide

486

stft Perform Short Time Fourier Transform

unwrap Transfer phase angles into smoother phase

20.3.9.2 Wavelet

Name Brief Description

cw_evaluate Evaluation of continuous wavelet functions

cwt Computes the real, one-dimensional, continuous wavelet transform coefficients

dwt 1D discrete wavelet transform

dwt2 Decompose matrix data with wavelet transform

idwt
Inverted 1D Wavelet Transform from its approximation coefficients and detail

coefficients.

idwt2 Reconstruct 2D signal from coefficients matrix

mdwt Multilevel 1-D wavelet decomposition

wtdenoise Remove noise using wavelet transform

wtsmooth Smooth signal by cutting off detailed coefficients

20.3.10 Spectroscopy

Name Brief Description

https://www.originlab.com/doc/X-Function/ref/stftPro
https://www.originlab.com/doc/X-Function/ref/unwrap
https://www.originlab.com/doc/X-Function/ref/cw_evaluatePro
https://www.originlab.com/doc/X-Function/ref/cwtPro
https://www.originlab.com/doc/X-Function/ref/dwtPro
https://www.originlab.com/doc/X-Function/ref/dwt2Pro
https://www.originlab.com/doc/X-Function/ref/idwtPro
https://www.originlab.com/doc/X-Function/ref/idwt2Pro
https://www.originlab.com/doc/X-Function/ref/mdwtPro
https://www.originlab.com/doc/X-Function/ref/wtdenoisePro
https://www.originlab.com/doc/X-Function/ref/wtsmoothPro

Function Reference

487

blauto Create baseline automatically

fitpeaks Pick multiple peaks from a curve to fit Guassian or Lorentzian peak functions

pa Open Peak Analyzer

paMultiY Peak Analysis batch processing using Analysis Theme to generate summary report

pkFind Pick peaks on the curve.

20.3.11 Statistics

20.3.11.1 Descriptive Statistics

Name Brief Description

colstats Perform statistics on columns

corrcoef Calculate correlation coefficients of the selected data

discfreqs Calculate Frequency for discrete/categorical data

freqcounts Calculate frequency counts

kstest One sample Kolmogorov-Smirnov test for normality

lillietest Lilliefors normality test

mmoments Calculate moments on selected data

moments Calculate moments on selected data

https://www.originlab.com/doc/X-Function/ref/blauto
https://www.originlab.com/doc/X-Function/ref/fitpeaks
https://www.originlab.com/doc/X-Function/ref/pa
https://www.originlab.com/doc/X-Function/ref/paMultiY
https://www.originlab.com/doc/X-Function/ref/pkFind
https://www.originlab.com/doc/X-Function/ref/colstats
https://www.originlab.com/doc/X-Function/ref/corrcoefPro
https://www.originlab.com/doc/X-Function/ref/discfreqs
https://www.originlab.com/doc/X-Function/ref/freqcounts
https://www.originlab.com/doc/X-Function/ref/kstest
https://www.originlab.com/doc/X-Function/ref/lillietest
https://www.originlab.com/doc/X-Function/ref/mmomentsPro
https://www.originlab.com/doc/X-Function/ref/moments

LabTalk Scripting Guide

488

mquantiles Calculate quantiles on selected data

mstats Calculate descriptive statistics on selected data

quantiles Calculate quantiles on selected data

rowquantiles Calculate quantiles on row(s)

rowstats Descriptive statistics on row(s)

stats Calculate descriptive statistics on selected data

swtest Shapiro-Wilk test for normality:Shapiro-Wilk Normality test

20.3.11.2 Hypothesis Testing

Name Brief Description

rowttest2 Perform a two-sample t-test on rows

ttest1 One-Sample t-test

ttest2 Two-Sample t-test

ttestpair Pair-Sample t test

vartest1 Chi-squared variance test

vartest2 Perform a F-test.

20.3.11.3 Nonparametric Tests

https://www.originlab.com/doc/X-Function/ref/mquantilesPro
https://www.originlab.com/doc/X-Function/ref/mstatsPro
https://www.originlab.com/doc/X-Function/ref/quantiles
https://www.originlab.com/doc/X-Function/ref/rowquantiles
https://www.originlab.com/doc/X-Function/ref/rowstats
https://www.originlab.com/doc/X-Function/ref/stats
https://www.originlab.com/doc/X-Function/ref/swtest
https://www.originlab.com/doc/X-Function/ref/rowttest2Pro
https://www.originlab.com/doc/X-Function/ref/ttest1
https://www.originlab.com/doc/X-Function/ref/ttest2
https://www.originlab.com/doc/X-Function/ref/ttestpair
https://www.originlab.com/doc/X-Function/ref/vartest1Pro
https://www.originlab.com/doc/X-Function/ref/vartest2Pro

Function Reference

489

Name Brief Description

friedman Perform a Friedman ANOVA

kstest2 Perform a two-sample KS-test on the input data.

kwanova Perform Kruskal-Wallis ANOVA

mediantest Perform median test

mwtest Preform Mann-Whitney test

sign2 Perform paired sample sign test

signrank1 Perform a one-sample Wilcoxon signed rank test

signrank2 Preform paired sample Wilcoxon signed rank test

20.3.11.4 Survival Analysis

Name Brief Description

kaplanmeier Perform a Kaplan-Meier (product-limit) analysis

phm_Cox Perform a Cox Proportional Hazards Model analysis

weibullfit Perform a Weibull fit on survival data

20.3.12 Utility

Name Brief Description

https://www.originlab.com/doc/X-Function/ref/friedmanPro
https://www.originlab.com/doc/X-Function/ref/kstest2Pro
https://www.originlab.com/doc/X-Function/ref/kwanovaPro
https://www.originlab.com/doc/X-Function/ref/mediantestPro
https://www.originlab.com/doc/X-Function/ref/mwtestPro
https://www.originlab.com/doc/X-Function/ref/sign2Pro
https://www.originlab.com/doc/X-Function/ref/signrank1Pro
https://www.originlab.com/doc/X-Function/ref/signrank2Pro
https://www.originlab.com/doc/X-Function/ref/kaplanmeierPro
https://www.originlab.com/doc/X-Function/ref/phm_CoxPro
https://www.originlab.com/doc/X-Function/ref/weibullfitPro

LabTalk Scripting Guide

490

customMenu Open Custom Menu Editor Dialog.

get_plot_sel Get plot selections in data plot

get_wks_sel Get selections in worksheet

themeApply2g Apply a theme to a graph or some graphs.

themeApply2w Apply a theme to a worksheet or some worksheets.

themeEdit Edit the specific theme file using Theme Editing tool.

xop X-Function to run the operation framework based classes.

20.3.12.1 File

Name Brief Description

cmpfile Compare two binary files and print out comparison results

dlgFile Prompt user to select a file with an Open file dialog.

dlgPath Prompt user to select a path with an Open Path dialog.

dlgSave Prompt user with an Save as dialog.

filelog Create a .txt file that contains notes or records of the user's work through a string

findFiles Searches for a file or files.

findFolders Searches for a folder or folders.

https://www.originlab.com/doc/X-Function/ref/customMenu
https://www.originlab.com/doc/X-Function/ref/get_plot_sel
https://www.originlab.com/doc/X-Function/ref/get_wks_sel
https://www.originlab.com/doc/X-Function/ref/themeApply2g
https://www.originlab.com/doc/X-Function/ref/themeApply2w
https://www.originlab.com/doc/X-Function/ref/themeEdit
https://www.originlab.com/doc/X-Function/ref/xop
https://www.originlab.com/doc/X-Function/ref/cmpfile
https://www.originlab.com/doc/X-Function/ref/dlgFile
https://www.originlab.com/doc/X-Function/ref/dlgPath
https://www.originlab.com/doc/X-Function/ref/dlgSave
https://www.originlab.com/doc/X-Function/ref/filelog
https://www.originlab.com/doc/X-Function/ref/findFiles
https://www.originlab.com/doc/X-Function/ref/findFolders

Function Reference

491

imgFile Prompt user to select an image with an Open file dialog.

template_saveas Save a graph/workbook/matrix window to a template

web2file Copy a web page to a local file

20.3.12.2 System

Name Brief Description

cd Change or show working directory

cdset
Assigns a specified index to the current working directory, or lists all assigned

indices and associated paths.

debug_log
Used to create a debug log file. Turn on only if you have a problem to report to

OriginLab.

dir list script (ogs) and x-functions (oxf) in current working directory.

dlgChkList
Open a dialog with check boxes and return each check box's selected status

when the dialog is closed.

group_server Set up the Group Folder location for both group leader and members

groupmgr Group Leader's tool to manage Group Folder files

instOPX Install an Origin XML Package

language Change Origin Display Language

lc Lists x-function categories, or all x-functions in a specified category.

https://www.originlab.com/doc/X-Function/ref/imgFile
https://www.originlab.com/doc/X-Function/ref/template_saveas
https://www.originlab.com/doc/X-Function/ref/web2file
https://www.originlab.com/doc/X-Function/ref/cd
https://www.originlab.com/doc/X-Function/ref/cdset
https://www.originlab.com/doc/X-Function/ref/debug_log
https://www.originlab.com/doc/X-Function/ref/dir
https://www.originlab.com/doc/X-Function/ref/dlgChkList
https://www.originlab.com/doc/X-Function/ref/group_server
https://www.originlab.com/doc/X-Function/ref/groupmgr
https://www.originlab.com/doc/X-Function/ref/instOPX
https://www.originlab.com/doc/X-Function/ref/language
https://www.originlab.com/doc/X-Function/ref/lc

LabTalk Scripting Guide

492

lic Update Module License:Add module license file into Origin

lx Lists x-functions (by name, keyword, location etc)

mkdir Create a new folder in the current working directory

op_change Get and set tree stored in operation object

pb Open the Project Browser

pe_cd Change project explorer directory

pe_dir Lists current project explorer folders and workbooks

pe_load Load an Origin project into an existing folder in the current project

pe_mkdir Create new folder

pe_move Move specified page of folder to specified folder

pe_path Find Project Explorer path

pe_rename Rename Page or subfolder

pe_rmdir Delete a subfolder under the active folder in PE

pe_save Save a folder from the current project to an Origin project file

pef_pptslide Export all graphs in folder to PowerPoint Slides

pef_slideshow Slide Show (full screen view) of all graphs in folder

https://www.originlab.com/doc/X-Function/ref/lic
https://www.originlab.com/doc/X-Function/ref/lx
https://www.originlab.com/doc/X-Function/ref/mkdir
https://www.originlab.com/doc/X-Function/ref/op_change
https://www.originlab.com/doc/X-Function/ref/pb
https://www.originlab.com/doc/X-Function/ref/pe_cd
https://www.originlab.com/doc/X-Function/ref/pe_dir
https://www.originlab.com/doc/X-Function/ref/pe_load
https://www.originlab.com/doc/X-Function/ref/pe_mkdir
https://www.originlab.com/doc/X-Function/ref/pe_move
https://www.originlab.com/doc/X-Function/ref/pe_path
https://www.originlab.com/doc/X-Function/ref/pe_rename
https://www.originlab.com/doc/X-Function/ref/pe_rmdir
https://www.originlab.com/doc/X-Function/ref/pe_save
https://www.originlab.com/doc/X-Function/ref/pef_pptslide
https://www.originlab.com/doc/X-Function/ref/pef_slideshow

Function Reference

493

pemp_pptslide Export selected graphs to PowerPoint Slides

pemp_slideshow Slide Show (full screen view) of selected graphs

pep_addshortcuts Create shortcuts for selected windows in Favorites folder

pesp_gotofolder Go to the original folder where this page locates

updateUFF Transfer user files in Origin75 to Origin8

ux Update x-function list in specified location

https://www.originlab.com/doc/X-Function/ref/pemp_pptslide
https://www.originlab.com/doc/X-Function/ref/pemp_slideshow
https://www.originlab.com/doc/X-Function/ref/pep_addshortcuts
https://www.originlab.com/doc/X-Function/ref/pesp_gotofolder
https://www.originlab.com/doc/X-Function/ref/updateUFF
https://www.originlab.com/doc/X-Function/ref/ux

495

21 Appendix

Appendix

List of LabTalk related help materials:

Reference Location

X-Function

Menu: Help: X-Functions

Reference of individual X-Function.

Origin C

Menu: Help: Programming: Origin C

Section OriginC Reference> Global Functions> LabTalk Interface

For running LabTalk from Origin C.

Code Builder

Menu: Help: Programming: Code Builder

How to use Code Builder.

Tutorials

Menu: Help: Tutorials

Section Tutorials> Programming> Command Window and X-Functions.

A simple introductory tutorial for how to run LabTalk commands and X-Functions.

Video

Web site:

http://www.originlab.com/index.aspx?go=Products/Origin/ImportingData&pid=1163

Learn how to run LabTalk Script after importing data.

https://www.originlab.com/doc/X-Function/ref
https://www.originlab.com/doc/OriginC/ref/LabTalk-Interface
https://www.originlab.com/doc/Tutorials/Command-Window
http://www.originlab.com/index.aspx?go=Products/Origin/ImportingData&pid=1163

497

Index

22 $

$(num) 173

%

% variables 77

%() substitution 69

%(string$) 173

%n, Argument 102

A

Active Column 183

active dataset 77

active graph layer 225

Active Matrixbook 183, 209

Active Window 183, 209

active window title 77

Active Workbook 183

active worksheet 60

Add Layer 228

Addition 36

after fit script 149

Align Layer 229

Analysis Template 327, 329

and operator 45

And operator 36

Append project 252

area 273

Argument Order 114

Argument, Command Statment 30

Argument, X-Function 118

Arithmetic 200

arithmetic operator 36

arithmetic statement 31

ASCII 237, 244

assignment operator 4, 38

assignment statement 28

Assignment, X-Function Argument 111

Average Curves 272

Axis Property 225

Axis Title Substitution 93

B

baseline 297

batch processing 328

Batch Processing 328

Before Formula Scripts 142

block 34

block of cells 63

braces 33

break 45

C

Calculation Using Interpolation 42

Calculus 272

LabTalk Scripting Guide

498

call a fitting function 54

Calling Origin C Function from LabTalk 128

Calling X-Functions and Origin C Functions 113,

254

cd 140

Code Builder 135, 160

Code Builder, script access 162

colon-equal 111

Column Format 196

Column Header 254

Column Label 195, 255

Column Label Row 254

Column Width 197

Columns, Loop over 263

COM Server 150

command history 133

command statement 30

Command Window 71, 133

command-line 151

comment 34

Comments 254

Composite Range 74

conditional operator 40

console 151

Constant 14

continue 45

control characters 97

convert a numeric date value 204

Convert Number to String 173

Convert String to Number 172

Converting Image to Data 302

Copy Column 201

Copy Matrix 214

Copy Range 186

correlation coefficient 281

Cox Proportional hazards model 286

Create Baseline 297

Create Graph 219

Create Layer 221

Create Script File 135

current baseline dataset 77

current project name 77

current working directory 140

current working folder 140

Current Working Folder 140

curve fitting 287

custom menu 154

Custom Routine 5

D

D notation 204

Data Filter 190

Data Format 197

Data Import 236

Index

499

data plot 226

Data Reader 308

Data Selector 309

Data Type 14

Database 240

Dataset 15

dataset function 53

Dataset in Current Fitting Session 77

Dataset Substitution 62, 83

Date 202

date and time data 203

Date format notation 204

date-time string 204

Debug Script 160

Decision structure 44

Declare Range 57

Define Range 69

Delayed Execution 33

delete 71

Delete Column 199

Delete Range Variable 71

Delete Variable 22

Delete Worksheet 185

Delete Worksheet Data 187

Delete Worksheet Rows 194

derivative 272

Descriptive Statistics 280

dialog 311

Differentiation 272

Division 36

doc -e 43, 260

Document 251

Double 14

Double-Y Graph 221

DPI 245

Dynamic Range Assignment 69

E

Echo 163

Ed Object 162

Edge Detection 300–299

Embed debugging statement 164

EPS 244

error code 125

evaluating an expression 35

Excel book 253

exit 45

Exponentiate 36

External application 150

Extract Worksheet Data 186

Extracting String Number 170

F

Fast Fourier Transform 295

LabTalk Scripting Guide

500

FFT 295

filter 240

filtering 296

find peak 297

Finding X given Y 276

Finding Y given X 275

Flow of Control 42

for 43

format a number 174

frequency counts 281

Friedman Test 285

Function 200, 439

Function Tutorial 55

Function, Built-in 49

Function, User Define 50

functions viewer 162

G

Get Input 303

Get Point 307

GetN 305

GetNumber dialog 305

GetString 304

GetYesNo command 303

graph 219, 224

Graph Export 245

Graph Groups 222

graph layer 219, 225

Graph Layer 221

graph legend 225

Graph Legend 231

graph property 225

graph template 219

graph window 219

Graph, 3D 222

graphic object 21

Graphic Object 145

Graphic Objects, Looping over 264

gridding 223

H

Hello World 3

Hide Column 195

Hypothesis Test 281

I

If 44

image 245

Image Import 241

Image Processing 298

Import Data Theme 239

Import Wizard 148

increment and decrement operators 38

Input, X-Function 117

insert column 193

Index

501

Insert Column 193

Installing Graph Template 224

Integer 14

integrating peak 298

Integration 273

Intellisense 133

interactively 4

Interpolated Curves 277

Interpolation given index 274

J

JPEG 244

K

Kaplan-Meier Estimator 285

Keyword for Range 119

Kolmogorov-Smirnov Test 284

Krusal-Wallis ANOVA 284

L

label 230

LabTalk Interpreter 34

LabTalk Object 107

latest worksheet selection 77

Layer Alignment 229

Layer Arrangement 228

Layer, Add layer 228

Layer, Adding 227

Layer, Linking 229

Layer, Looping over 264

Layer, Move 228

Layer, Swap 229

Legend Substitution 93

length of script 34

LHS 28

Linear Regression 288

Link Layers 229

list 71

List Range Variable 71

List Variables 22

Load Origin C 127

Load Window 252

logical and relational operators 38

Long Name 254

loop 43

loop over multiple files 329

Loop Over Objects 260

Loose Dataset 67

M

Macro Property 48

Macro Statement 30

Manage Layer 227

Manipulate Range 68

Mask 311

mathematical operations 40

LabTalk Scripting Guide

502

matrix 246

Matrix Export 246

Matrix Interpolation 279

matrix sheet 211

matrix, copy 214

Metadata 254

Move Column 194

Multiple Regression 288

Multiplication 36

N

Non-linear Fitting 290

Nonparametric Test 284

non-printing characters 97

numeric data type 14

O

Object Method 108

Object Property 107

OCB file 129

OGS file 135

One-Sample T-Test 282

Open a File 162

Open the Code Builder 162

option 30

Option switche 116

Option Switche 65

Option Switches 63

Or operator 36

Origin C functions 126

Origin C, Pass Variable 128

Origin Object 110

Origin Project 110, 251

origin project, append 252

origin project, open/save 252

Output X-Function 117

P

Parameter rows 254

Pass Arguments in Script 137

Pass Arguments to Function 52

Pass Arguments to Macro 47

Pass Variable, Origin C 128

Pass Variables by Reference 138

Pass Variables by Value 139

path of the current project 77

PDF 244

peak analysis 296

placeholder 137

plot 219

Plot Designation 196

Plot Graph 219

plot style 226

Polynomial Fit 288

program path 77

Index

503

project level loose dataset 16

Project Management 251

Project variables 23

ProjectEvents.ogs 147

Python 325

Q

Quick Output 4

R

range 18

Range Data Manipulation 68

Range Keyword 119

Range Notation 57

range variable 109

Range, Block of Cells 63

Range, Column 60

Range, Column Subrange 62

Range, Get plot X 65

Range, Get plot Y 65

Range, Get plot Z 65

Range, Graph Data 64

Range, Matrix Data 64

Range, Origin Object 58

Range, Page and Sheet 62

Range, Worksheet Data 59

Range, X-Function Argument 70

recalculate 124

recognition order 34

refresh window 253

Regional Data Selector 309

Regional Mask Tool 309

Rename Column 195

Rename matrixsheet 210

Rename worksheet 184

repeat 42

ReportData 120

resolution 245

RHS 28

Rotate image 298

Row-by-Row Calculations 41

Rows, Delete 194

Rows, Looping over 263

Run an OGS File 136

Run ProjectEvents Script 147

Run Script 131

Run Script from Command Window 133

Run Script from Custom Menus 154

Run Script from External Application 150

Run Script from File 135

Run Script from Graphic Object 145

Run Script from Import Wizard 148

Run Script from Set Values Dialog 142

Run Script from Toolbar Buttons 155

LabTalk Scripting Guide

504

Run Script On a Timer 151

S

Sampling Interval 254

Scalar Calculations 41

Scientific Notation 175

scope of a function 54

Scope of String Register 76

scope of variables 23

scope, forcing change of 25

scope, local 24

scope, project 23

scope, session 24

Screen Reader 307

script 135, 145, 151

Script 150

Script After Fitting 149

Script Panel 144

Script Section 135

Script Window 3, 5, 7, 133, 134, 135

Script, Before Formula 142

script, debugging 159

script, execution 131

Script, Fitting 290

Script, for specified window 132

script, from a custom menu 154

script, from a script panel 144

script, from a toolbar button 155

script, from external console 151

script, from worksheet cell 158

script, import wizard/filter 148

script, in set values dialog 142

script, in worksheet script dialog 144

script, interactive execution 159, 167

Script, Project events 147

script, run 131

section 46

Select Range on Graph 65

semicolon 27

separate statements 32

Session variables 24

Set 226

Set Column Value 201, 328

Set Column Values 201

Set Decimal Places 174

Set Formula 201

set matrix value 213

Set Path 140

Set Significant Digits 174

Set Values Dialog 142

Signal Processing 292

Signed Rank Test 284

Simple Commands 5

Index

505

smoothing 273

Smoothing 292

Sort Worksheet 187

Sparkline 199

spectroscopy 296

speed mode 225

Stack Data 188

Start a New Project 251

statement 27

Statement Type 28

string array 175

String Comparison 80

string concatenation 37

String Concatenation 172

string expression 29

String Expression Substitution 82

String Method 171

String Register 17, 76, 170

String Registers 170

string variable 133

String variable 16

String Variable 169

String Variable, String Register 79

StringArray 17

subrange 62

substitution notation 4

Substring 171

Substring notation 81

Subtraction 36

summary report 330

Swap Column 196

Swap Layers 229

switch 30, 45, 121

Syntax 27, 97

system variable 77

System Variable 77

System Variable, String Register 77

T

T notation 204

temporary loose dataset 15

ternary operator 40

theme 124

Time format notation 204

timer 151

token 82

Token 172

toolbar 155

Tree 257

tree data type 19

Trim margin 298

T-test 282

Two-Sample T-Test 282

LabTalk Scripting Guide

506

U

UID 72, 108

UID, Range 72

Units 254

universal identifier 72, 108

Update Origin C 129

User Files Folder 135

User Files Folder Path 77

User-Defined parameters 254

V

variable 21

Variable 14

Variable Name Conflict 22

Variable Naming Rule 21

variable, local 24

variable, project 23

variable, session 24

variables 4

Vector Calculation 41

Virtual Matrix 192, 223

W

wcol() 69

Weibull Fit 287

wildcard 187

window, active 132–31

worksheet 185

Worksheet Export 243

Worksheet Filter 190

Worksheet Script dialog 144

worksheet, copy 185

worksheet, reduce data 186

worksheet, sort 187

Worksheets, Looping over 263

X

X-Function 110, 113, 439

X-Function Argument 118

X-Function Exception 125

X-Function Input 117

X-Function Output 117

X-Function Variables 117

X-Function, open dialog 123

X-Function, option switch 121

XY Range 73

XYZ Range 73

