Origin C Programming Guide

Copyright © 2022 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any

means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab Corporation. Other

product and company names mentioned herein may be the trademarks of their respective owners.

OriginLab Corporation
One Roundhouse Plaza
Northampton, MA 01060
USA

(413) 586-2013

(800) 969-7720

Fax (413) 585-0126

Table of Contents

Origin C Programming GUIEuuiiieeiiiiiiiiii e e e e ettt e e e e s e e e e e e e e et e e e eeesaaabea et eeaesaasasbbaseeaeeessastbasaeaeeessasssrreeeaeenan 1
TADIE OF COMENES ...ttt et e et e bt e e e e et e e e bt e et e e et e e e be e beeene e e v
A [oo Yo I8 Tox 1T o I (o I @ Iy T |1 o X RSO UPRRR 1
L1 BASIC FRALUMNESeeiiiiiiiiee ettt b e bbbt b et e b et e bt ek et ekt e e he e e Rt e e ket e bt n et b r e ner e nar s 1
1.2 HElO WOIIA TULOHIAI ...ttt ettt b e bt s et ekt e s be e et bt e sbn e e sbb e neneenan s 1
2 Language FUNAAMENTAISeiiiiii ettt et e e e e e sttt e e e e e e e e s ateeeeeeaeeaannsbaeeeeaeeesantbeeaeaeeesaannnnneeeaeaan 5
2.1 Language FUNGAMENTAIScciiiiiiiiiiiee ettt e e ettt e e sttt e e e bt e e e sttt e e e emtteeesnaeeeeanteeeesnseeeesanseeeeantneeennns 5
2.2 Data TYPES @nd VAIADIEScouiiii ettt s ettt e e sttt e e et e e e s aa e e e e astbeeesseeeesanbeeeeantneeennn 5
R B O =] - 1o £ OO PRP PP PP PPPPURRPRTN 8
2.4 StAtEMENT FIOW CONEIOL ...ttt ettt a ekt esar e s e bt e sab e e e e e st e st e e nab e e ssneenaneean 12
b8 ST U 0 [od 1[0} oL ST P T T TP P PP UPPUPPPUPPPPR 17
2.8 ClBSSES ..oiiiitieee ittt E e Rt oo E e e R et oo R e e e e oA R e e e e R e et e e a et e e e b e e e e nbr e e e nnr e e e nbreee s 19
P2 A =11 (o] = To I S det=Y o) o o F= T o |1 o [PR 20
3 PredefiNed CIASSES......ocoiiiiiiiiie ittt 23
3.1 PredefiNed CIASSESottt ettt e h et e e bt e e e b et et e e e e tree s 23
3.2 ANAIYSIS ClASS. ... ittt h e et e e Rt e e e e b et e e bt e b r e e e nr e s 23
3.3 Application ComMMUNICALION CIASS........iiuuiiieiieee ittt ettt e et e e e e e e bbb et e e e e s e s abbe ittt eeesaannbbeeeeaeeeaanees 24
3.4 ComMPOSItE DAt TYPES ClASS. ... ueeiiiiiiieiiiiee ettt ettt e e e st et e s s e e e e st e e e s aab et e e nbe e e e s nnneee s 24
3.5 Internal Origin ODJECES CIASSuuiiiiiiiieiiiiee ittt et et e e e bt e s st e e aabr e e e s anbr e e e snreeesnbneeeas 27
BiB SYSTEIM ClASS .. eeieieiiiiiitte ittt ettt e e e e oottt e e e e e e hh b b ettt e e e e e e a R b b et e e e e e e e nh b b e e et e e e e e nbbereeaeeeaanra 36
3.7 User INterface CONIrOIS CIASSociiiiiieiiiiee ittt et e et saab e e st e e e saab et e e nnbe e e e s nbbeee s 37
RS B U 11114 1 = T T PP T PP PPPPTTP 41
4 Creating and USING OFiQiN € COUR......ouiuuiiieiiiee ettt e ettt e e e e e ettt e e e e e s e bbbt e eeae e e s e abbeeeeaae e s e nbeseeeeeeeaanneeeeeas 43
4.1 Creating and USING OFigiN € COUE........uiiiiuriieiiiiie ettt ettt ettt e e e e st e e sbbr e e s eab e e e asbb e e e aseeeeennnees 43
4.2 Create and Edit an OFigin C Fluviiiiiiie ittt et e st enee e e nnnes 43

Origin C Programming Guide

4.3 Compiling, LINKING @Nd LOAAINGuvviiiieiiiiiiiiii ettt e e e e e st e e e e e e e st e e e e e e e e s sasbaaaeeaeeessnssbraeeaeeenan 50
S =Y o 10 o To [o T PR SPERT 54
4.5 USING COMPIIE FUNCHIONSeeiiiiiiieiiiit ettt e e e e et e e s e e e e s e e e e et e e e esre e e e nnnes 56
4.6 Distributing OFigiN € COUE ...cceoeiiiiiiiiie ettt e e e e e e e e e e e et e e e e e e e s s st b b e e e eaeeessassbaaeeaeeessassbraeeaeaesan 62
5 Matrix Books Matrix Sheets and MatriX ODJECES.......ccciiriiiiiiiii ettt e e 67
5.1 Matrix Books Matrix Sheets and MatriX ODJECS.........ccoiuriiiiiiieeiiit ettt 67
5.2 Base Matrix BOOK OPEIatiOnciiiiiiiiiiiiiie e e e ettt e e e ettt e e e e e e st e e e e e e e st b e e e e e e s e aasbreeeeaeeassataaseeaeeaaansees 67
5.3 IMBINX SNEELS ...ttt ettt et e oo h et e e et e e Rt e e e e R e e e e n bt e e e e e nreee s 70
L Y oY () © o] =Tt T PSP O TP PP PPPPPTPI 80
6 Workbooks Worksheets and WOrkSheet COIUMNScoiuiiiiiiiiiiiiece ettt 93
6.1 Workbooks Worksheets and WorkSheet COIUMNSc.uviiiiiiiiiiiie et 93
6.2 WWOTKDOOKS ...ttt ekttt h e e oo e et e ekt e o s et e oo s b bt e e e bt e e n et e e e R bt e e e bt e e e e e e ann e e s 93
6.3 WOTKSNEEE COIUMNS ... ittt ettt ettt h ekt sh e e sh st e s bt eeab e e st esab e e st e e nab e e ssneenaneean 99
6.4 WWOTKSNEELS ...ttt ettt e ot e e bt e oottt e e e b et e ekt e e e e e e n e e e e an b e n e e 110
A 1 T o 1 TP T PSP PP PP PPPPR 141
% R €1 - o 1 L TP PPP T OPPTPPRPP 141
7.2 Creating and CUSIOMIZING Graphcoiiuiiiiiiii ettt e e e e et e e e e e e e s aabbrreeaaeeaas 142
S T o o [To J B = L= W [£ OO PO P TR PPPPP 149
7.4 CUSLOMIZING DAtA PIOTS.....ccoiiiiiiiiiiiie ettt e e e e ettt e e e e e s e aa b b e e e e e e e e s anbbrneeeeeeaan 157
7.5 MANAGING LAYEIS ...ttt e e oottt e e e oo e kb bt ettt e e oo e hh b e ettt e e e e e aaa bbb et e e e e e e e aanbbeeeeeeeeeanbbrreeeeeeaan 171
7.6 Creating and Accessing GraphiCal ODJECES.........coiiiiiiiii e 178
YL o g (g T Y11 g D= L= TP UTRT PP 187
S T R o] ([g To R/ 11 g T D - L= P EPPT PP 187
T A [0 (1= ol B T | = TSP PP PPPPO 187
TR I (1T [B L - WP PPP PP 195
8.4 Date AN TIME DALA......eiiiiuriieiiiiie ittt e e ekt e e e e e s r e e s e st e e e n e e e nnne e e e e e e s 198

vi

Table of Contents

LS T = (o] (=T £ U SRPR PR 201
LS A o (1= Tox (P PP TR R PUPR 201
LS I |V o g F= o 1T o o] 1= o1 OO PP PUPR 201
(IR \V - o F- Vo [a o [o] [0 [=] £ P PPR SRR 202
LS I N oot TSI [0 - Vo =P EPP SO 204
LS I o ot TSI [0 Y (=] = T - | = P PR PP 206
9.6 ACCESSING OPEIALIONSvveiieeiiiiiiiieteee e e e ittt e e e e e e e et b e e e e e e e e s e taaaeeeeeeesaaaesaeeeaeesaaassraseaaeesssastaaseeaeeesaassrrneeaeeanan 212
10 [T T] (19T T PP TP PP PPPPPPPPP 215
10.1 [T T £ 1]oTo O PO O PP TP P PP OPPPPPPPN 215
10.2 LT oTe] gilaTo [D L= ST PPP 215
10.3 IMPOTTING IMAGES ... eeeiiteee ettt e ke e ettt e e o b e e e e e a b et e e et e e e e ea b et e e aabb e e e anbr e e e snnneeeanneee s 222
10.4 [T oZe] gilaTo IV e =T o 1 ST TP PP U P PP OPPPPPTPP 225
11 o To 1] o SO 229
111 (o Jo 1] o o [P TP PP TP TP PP OPPPPPPPPN 229
11.2 EXPOIING WOIKSNEELS. ...ttt e et e e et e e s bt e e s e e e s nneee s 229
11.3 EXPOIING GIaPRIS....cciiiiiiiiii ettt e oo ettt e e e e s e b bbb b et e e e e e e e ab bt et e e e e e e e nnnbbeeeeaeeeaannen 230
114 EXPOIING IMALICES ..ottt ettt e e e e ookttt e e e e s e bbbt b et e e e e s e annabb et e e e e e aanbbbeeeeaeeeaannens 231
115 EXPOIING VIAEOS ..ottt ettt et e e et e s a et e e et b e e e s st e e e nann e e e s nneee s 232
(1T g o= o T o] G C] =T o o A PR PPPTP PRI 233
12 ANAIYSIS aNA APPIICALIONSeeieiiiiiiie ettt e et e e e e e ettt e e e e e e s e bbb et e e e e e e s aanbbbreeeeaeeaannrneeeas 235
12.1 ANAIYSIS @NA APPIICALIONSeeeieeieeiiee et e et e st r e e s b et e e e b bt e e e b e e e s e e e e abr e e e e 235
12.2 MBENEMALICS ...t e e et e e et e s e e e e et e e e e e s 235
12.3 STATISTICS ... vete ettt et e ettt e et e e e R e et e e e e e e e R e e e e et e e n e e e n e e s 245
12.4 (O A = i {1 To [P PSPPSR PUPP PP 248
125 S To g F= U o (e ToT TS [o o TP URPTSRPP 270
12.6 PEAKS ANU BASEINEeeiiiiiiie ittt e e s 272

Vii

Origin C Programming Guide

12.7

13

131

13.2

13.3

13.4

135

14

14.1

14.2

14.3

14.4

15

151

15.2

15.3

15.4

16

16.1

17

18

18.1

18.2

18.3

18.4

18.5

viii

USING NAG FUNCHONS ..ottt ettt e e e e e sttt e e e e e e ettt e e e e e e s aasatb b e e e aeeee s st tbaeaaeeeessnnsaaeeaaaeesan 277
(O 811101 Q@] o= £ PP USRI 287
(O 18140101 @] o= ot T RO URRT S RTP 287
R] U] L E 3 o o P RO UPPPPNt 287
STel 1 o] AT T [0 1 PO PUPRTPPPRR 287
INOTES WINTOW ...ttt ettt e ke e ettt e e e bt e e e s et e e et et e e n et e e an b e e e s nre e e e nanneeennneee s 288
REPOM SNEBLttt e et e et e e e e e e e a e e e e e e e s e et b b e b e et e e e e aa it tb et e e e e e aaaatbaraeaeeaaantes 289
ACCESSING DALADASEcieieiiie ittt e et e e e e e 291
ACCESSING DALADASEceeiiiiieitii ittt e e bt e e e et e e e e e e e e 291
IMPOrting fromM @ DALADASEcueeiiiiiiie ettt e e e st e e e sr b e e e e ant e e e snneeeeanaeee s 2901
EXPOrting iNtO & DAIADASEcoueeiiiiiiie ettt e s et e e s e 293
ACCESSING SQLITE DAADASEeiiiiiiiee ittt e et et e e s et 295
ACCESSING LADTAIK ...ttt ettt e et e e e et e e s bt e e e e e nte e e e eanteeeeenbeeeeantbeeeeneeeeennnes 297
ACCESSING LADTAIK ...ttt e e e bt e e et e e s bt e e aa b bt e e sb e e e s anne e e e anbreeeaans 297
Getting and Setting Values for LabTalk Variables ... 297
RUNNING LADTAIK SCIIPL ...ttt e e e e sttt e e e e e e e bbb e et e e e e e e e nabbbeeeeaeeaaannen 299
Embedding LabTalk Script in Origin € COOEcccoiiiiiiiiiieie ettt e e e e e e e e e e e aaeees 300
ACCESSING X-FUNCLION ...ttt ettt e e et et e et e e e bt e e e bt et e e e b et e e e ab e e e e anbb e e e nnneeeennnes 303
Calling the impFile X-Function From OFigin €uuiiiiiiiiiiiiee e 303
Calling Python FUNCEioNs from OFIQIN €oiiiiiiiiiiieii ettt e e e et e e e e e e s sabneeeeaeeeean 307
(OS] o) T = Lo = ST O PP PO PP PPPRPPPRRPN 311
LU=]] (=] = Lo PP PO PP PR 311
(D= oo U PUT T UUPPUPPPPRN 311
=T O T o] £ O PP P P PP OUPPPTRPPPPPIN 381
Picking POINtS frOmM @& GIaph ..ottt ettt e e e e e ettt e e e e s e s aanbbereeaeeeaannee 382
YaXe (o 1aTe [@o] 11 7e] SR (o JF- W €T r=T o] o IR T O URTP PR 383

19

191

19.2

19.3

19.4

195

20

20.1

20.2

20.3

21

21.1

Table of Contents

XoFUNCHIOMS ...ttt e e bt et e e b e e et e e bt e e bt e e b e e e bt e e be e bt e ne e 387
D U] o1 o o P O PSP PPPRP 387
Creating AN X-FUNCHONociiiiiie ettt e s e e et et e e s e e e s bt e e st e e e e e nane e e e e b e e e enre e e e nnnes 387
CUSTOMIZING AN X-FUNCHON.oiiiiiiii et e e e e e e e e e e e st e e e e e e e s eetabebeeeeeeseasanaeeeas 445
USING XFUNCHONS ...ttt ettt s et e e aa e e e et e e e se e e e s e e e en e e e e e ke e e s ann et e e snneeesnneee s 452
XFUNCHON EXAMIPIES. ...eeeeee ettt ettt e e e e e e et bttt e e e e e e e stteeeeaae e e s nsbeeeeeaaeeeaansssneeeaaeeeannnenneeas 456

ACCESSING EXIEINAI RESOUICESuviiiiiieiiiiiiiii et e ettt e e e e e e e e e e s e e e e e e e s etb b et e e e e e s s aesbbsbeeaeeeseansraeeeas 477
ACCESSING EXIEMNEAI RESOUITESc.ueiiieiiiiee ettt ekt e e et e e b e e e as b e e e st e e e e s nneeeeanbreeenans 477
Calling Third Party DLL FUNCHONScuuiiiiiiii ittt e et nie e 477
Access an External APPICALIONoiiiiiiieiiie ettt et e e st e e s e e s nnaeeeeenteeeeaaes 505

LT (=] (T o (o] PP PO RP PR PPPPPP 509
RETFEIEINCE ...ttt ettt e e e e h bt e e e b et e e b e e e e a bt e e e bt e e e e s 509
(O TSI 1= T = 1o 0SS SOTPR 509
(070]1 =T ox (1o] o £ OO TP PRSP PPPRP PP 513

... 517

1 Introduction to Origin C

Origin provides two programming languages: Origin C and LabTalk.

This guide covers the Origin C Programming language. It also shows you how to create X-Functions and control
Dialog Builder dialogs. X-Functions provide a framework within Origin to create tools. Dialog Builder allows you

to create and control custom dialogs such as floating tools, dialog boxes and wizards.

This guide should be used in conjunction with the Language Reference help files accessible from the Origin Help

menu.

The most up-to-date source of documentation including detailed examples can be found at our wiki site:

wiki.OriginLab.com.

1.1 Basic Features

Origin C is a high level programming language closely based on the ANSI C programming language. In addition,
Origin C supports a number of C++ features including classes, mid-stream variable declarations, overloaded
functions, references, and default function arguments. Origin C also supports collections, and the foreach and

using statements from the C# programming language.

Origin C programs are developed in Origin's Integrated Development Environment (IDE) named Code Builder.
Code Builder includes a source code editor with syntax highlighting, a workspace window, compiler, linker, and a

debugger. Refer to Help: Programming: Code Builder for more information about Code Builder.

Using Origin C allows developers to take full advantage of Origin's data import and handling, graphing, analysis,
image export capabilities, and much more. Applications created with Origin C execute much faster than those

created with Origin's LabTalk scripting language.

1.2 Hello World Tutorial

This tutorial will show you how to use Code Builder to create an Origin C function, and then access the function
from Origin. Though the function itself is very simple, the steps provided here will help you get started with writing

your own Origin C functions.

i 5
1. Click the Code Builder button Gt on Origin's Standard toolbar to open Code Builder.

2. In Code Builder, click the New button D on Code Builder's Standard toolbar to open the New File

dialog.

http://wiki.originlab.com/

Origin C Programming Guide

3. Select C File from the list box of the dialog, and then type HelloWorld in the File Name text box.

New File ==

P

-

EEE | [Origin C source: files cortain functions that
C-++ File can be called from other functions and

H File frarn LabT alk zcripts once the file iz added
LabT alk Script File to the Code Builder workspace, compiled,
0CZ File and linked. Ongin C filez may contain
Text File ozt AMNSIC statements, a zelection of

C++ and CH statements, and
pre-processar directives.

File: M ame: &dd to Workspace
Hellawarld C Fill with default contents
Laocation:

D:huffhaniging 24 riginCh, D

Ilze path like "'zrc'’ without leading ™' to indicate subdirectary from
Origin direchary

Canicel

4. Click OK and the new file will be opened in Code Builder's Multiple Document Interface (MDI).

5. Copy or type the following Origin C code beneath the line that reads // Start your functions here.

int test ()

printf ("hello, world\n"); // Call printf function to output our text

// \n represents the newline character

return 0; // Exit our function, returning zero to the caller

source file. The Output window of Code Builder should display as

7.

File Edit

Wiew Build

Debug

&t Untitled - Code Builder - HelloWorld.c

Tools Window Help

Introduction to Origin C

Workspace w 0 X

HelloWorld.c X |

™

P

=l output | g Call 5t.. |5 Find R...| | Breakp..| Elvariabl..| 3 Bookm...

@ Origin C Workspace 31 /¢ Start your functions here. -
i Packages 32
[Project 33 int tesat()
[System 34 {
. [Temporary 35 printf("hells, world\n"); // Call printf fun
ﬁ User [AutolLoad] 36 H /f \n represents t
, . 37
"E User ‘D:\uffiorigin 38 return 0; /S Exit our function, returning ze
[>-- HelleWoerld.c 33 } H
Workspace View Edit Window
4 T 3 J Claceme b
Cutput * 0 X Variables v I Command & Res.., + I X
compiling... test -
HelloWorld.c
Linking... LabTalk Console| _
Done! Local Variables
Quiput Window 1> test

hello, world

Now you can use this function in Origin. For example, you can call this function in Origin's Script

Window. If the Script Window is not open, select the Window: Script Window menu item from the

Origin menu to open it.

Origin C Programming Guide

8. Type the function name test in the Script Window and then press the ENTER key to execute the

command. The Origin C function will be executed and hello, world will be displayed in the next line.

i "

| Script Window : LahTalk (]
File(Text) Edit Hide Tools
tests *

hello, world

9. Besides the Script Window, the function can also be called from the LabTalk Console Window in Code

Builder. Select View:LabTalk Console in Code Builder if this console window is not open.

\ ;' / Once an Origin C file has been successfully compiled and linked, all functions defined in the file

can be called as script commands from anywhere in Origin that supports LabTalk script. The
function parameters and return value need to meet certain criteria for the function to be
accessible from script. To learn more, please refer to the LabTalk Programming: LabTalk
Guide: Calling X-Functions and Origin C Functions: Origin C Functions chapter of the
LabTalk help file. This help file is accessible from the Help: Programming: LabTalk main menu

in Origin.

2 Language Fundamentals

2.1 Language Fundamentals

Origin C is closely based on the ANSI C/C++ programming languages. This means Origin C supports the same
data types, operators, flow control statements, user defined functions, classes and error and exception handling.

The next sections will elaborate on these areas of Origin C.

This section covers the following topics:

e Data Types and Variables

e Operators

e Statement Flow Control

e Functions
e Classes

e Error and Exception Handling

2.2 Data Types and Variables

2.2.1 ANSI C Data Types

Origin C supports all the ANSI C data types: char, short, int, float, double and void. In addition, you can have an

array of, and a pointer to, each of these data types.

char name[50]; // Declare an array of characters
unsigned char age; // Declare an unsigned 8-bit integer
unsigned short year; // Declare an unsigned 16-bit integer

2.2.2 Origin C Composite Data Types

Although the C syntax for declaring an array is supported, Origin C provides string, vector and matrix classes

to simplify working with data types in one or two dimensional arrays. These data types include char, byte, short,

http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Operators
http://www.originlab.com/doc/OriginC/guide/Statement-Flow-Control
http://www.originlab.com/doc/OriginC/guide/Functions
http://www.originlab.com/doc/OriginC/guide/Classes
http://www.originlab.com/doc/OriginC/guide/Error-and-Exception-Handling

Origin C Programming Guide

word, int, uint, complex. A vector can be of type string for a string array, but a matrix cannot. A matrix can be of

numerical types only.

string str = "hello, world\n"; // Declare and initialize a string

vector<double> vAl = {1.5, 1.8, 1.1}; // Declare and initialize doubles

vector vA2 = {2.5, 2.8, 2.1, 2.4};

vector<string> vs(3); // Declare a string array

vs[0] = "This "; // Assign string to each string array item
vs[l] = "is ";

vs[2] = "test";

matrix<int> mAl; // Declare a matrix of integers

matrix mA2; // Declare a matrix of doubles

// NOTE: The double data type is implied when a data type is not
// specified in the declaration of vector and matrix variables.

Another useful class provided by Origin C is the complex class. The complex class supports humeric data

containing both a real and an imaginary component.

complex cc (4.5, 7.8); // Declare a complex value.
// The real component is set to 4.5 and
// the imaginary component is set to 7.8

out complex("value = ", cc); // Output the complex value

2.2.3 Color

Language Fundamentals

Colors in Origin C are represented with a DWORD value. These values can be an index into Origin's internal

color palette or an actual color composed of red, green, and blue components.

2.2.3.1 Palette Index
Origin's internal Palette contains 24 colors. An index into Origin's internal color palette is a zero based value from
0 to 23. Origin C provides named constants for each of these colors. Each name begins with the prefix

SYSCOLOR_ followed by the name of the color. The following table lists the 24 color names and their indices.

Index Name Index Name

0 SYSCOLOR_BLACK 12 SYSCOLOR_DKCYAN

1 SYSCOLOR_RED 13 SYSCOLOR_ROYAL

2 SYSCOLOR_GREEN 14 SYSCOLOR_ORANGE

3 SYSCOLOR_BLUE 15 SYSCOLOR_VIOLET

4 SYSCOLOR_CYAN 16 SYSCOLOR_PINK

5 SYSCOLOR_MAGENTA 17 SYSCOLOR_WHITE

6 SYSCOLOR_YELLOW 18 SYSCOLOR_LTGRAY

7 SYSCOLOR_DKYELLOW 19 SYSCOLOR_GRAY

8 SYSCOLOR_NAVY 20 SYSCOLOR_LTYELLOW
9 SYSCOLOR_PURPLE 21 SYSCOLOR_LTCYAN

10 SYSCOLOR_WINE 22 SYSCOLOR_LTMAGENTA
11 SYSCOLOR_OLIVE 23 SYSCOLOR_DKGRAY

DWORD dwColor = SYSCOLOR ORANGE;

2.2.3.2 Auto Color
There is a special color index referred to as Auto. When this index is used the element will be colored using the
same color as its parent. Not all elements support the Auto index. See Origin's graphical user interface for the

element to determine if the Auto index is supported.

The INDEX_COLOR_AUTOMATIC macro is used when the Auto index value is needed.

DWORD dwColor = INDEX COLOR AUTOMATIC;

Origin C Programming Guide

2.2.3.3 RGB

An Origin color value can also represent an RGB value. RGB values are made up of 8-hit red, green, and blue

components. These values can easily be made using the RGB macro}.
DWORD brown = RGB(139,69,19); // saddle brown

The values returned from the RGB macro cannot be directly used as Origin color values. You will need to use the

RGB20OCOLOR macro to convert the RGB values to Origin color values.
DWORD brown = RGB20OCOLOR(RGB(139,69,19)); // saddle brown

If you ever need to know whether an Origin color value represents an RGB value or an index into a palette then
you can use the OCOLOR_IS_RGB macro. This macro returns true if the value represents an RGB value and

returns false otherwise.

if (OCOLOR IS RGB(ocolor))

out_str("coior value represents an RGB color");
else

out str("color value represents a color index") ;

Once you determine that an Origin color value represents an RGB value, then you can use the
GET_CRF_FROM_RGBOCOLOR macro to extract the RGB value from the Origin color value.

if (OCOLOR_IS_RGB(ocolor))

DWORD rgb = GET CRF FROM RGBOCOLOR (ocolor) ;
printf ("red = %d, green = %d, blue = %d\n",

GetRValue (rgb), GetGValue (rgb), GetBValue (rgb)):;

2.3 Operators

Operators support the same arithmetic, logical, comparative, and bitwise operators as ANSI C. The following

sections list the four types of operators and show their usage.

2.3.1 Arithmetic Operators

Language Fundamentals

Operator Purpose
* multiplication
/ division
% modulus (remainder)
+ addition
- subtraction
n exponentiate
See note below.

Note: Origin C, by default, treats the caret character(®) as an exponentiate operator. This is done to be consistent
with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can force Origin C to treat the

caret character as the exclusive OR operator by using a special pragma statement before your code.

out int("10 raised to the 3rd is ", 1073);

#pragma xor (push, FALSE)

out int("10 XOR 3 is ", 1073);

#pragma xor (pop) // set back to the default action of xor

Dividing an integer by another integer will give an integer result by default. Use the pragma statement below

before codes to make Origin C compiler to treat all numeric literals as double type.

out_double("3/2 is ", 3/2); // output 1

#pragma numlittype (push, TRUE)
out _double("3/2 is ", 3/2); // output 1.5
#pragma numlittype (pop) // set back to the default action of numlittype

The modulus operator calculates the remainder of the left operand divided by the right operand. This operator

can only be applied to integral operands.

out_int ("The remainder of 11 divided by 2 is ", 11 % 2);

Origin C Programming Guide

2.3.2 Comparison Operators

Comparison operators evaluate to true or false with true yielding 1 and false yielding 0.

Operator Purpose
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
I= not equal to

if(aa >= 0)

out str("aa is greater than or equal to zero");

if(12 == aa)

out str("aa is equal to twelve");

if(aa < 99)
out str("aa is less than 99");

2.3.3 Logical Operators

Logical operators evaluate to true or false with true yielding 1 and false yielding 0. The operands are evaluated

from left to right. Evaluation stops when the entire expression can be determined.

Operator Purpose
! NOT
&& AND
| OR

Consider the following two examples:

10

Language Fundamentals

exprlA && expr2
exprlB || expr2

expr2 will not be evaluated if exprlA evaluates to false or exprlB evaluates to true. This behavior is to the
programmer's advantage and allows efficient code to be written. The following demonstrates the importance of

ordering more clearly.

if (NULL != ptr && ptr->dataValue < upperLimit)
process data (ptr);

In the above example the entire 'if' expression will evaluate to false if ptr is equal to NULL. If ptr is NULL then it is
very important that the dataValue not be compared to the upperLimit because reading the dataValue member

from a NULL pointer can cause an application to end abruptly.

2.3.4 Bitwise Operators

Bitwise operators allow you to test and set individual bits. The operator treats the operands as an ordered array

of bits. The operands of a bitwise operator must be of integral type.

Operator Purpose
~ complement
<< shift left
>> shift right
& AND

exclusive OR (XOR)
See note below.

| inclusive (normal) OR

Note: Origin C, by default, treats the caret character as an exponentiate operator. This is done to be consistent
with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can force Origin C to treat the

caret character as the exclusive OR operator by using a special pragma statement before your code.

out _int("10 raised to the 3rd is ", 1073);
fpragma xor (push, FALSE)

out int("10 XOR 3 is ", 1073);

11

Origin C Programming Guide

#pragma xor (pop)

2.4 Statement Flow Control

Origin C supports all ANSI C flow control statements including the if, if-else, switch, for, while, do-while, goto,
break and continue statements. In addition, Origin C supports the C# foreach for looping through a collection of

objects.

2.4.1 The if Statement

The if statement is used for testing a condition and then executing a block of statements if the test results are
true. The if-else statement is similar to the if statement except the if-else statement will execute an alternative

block of statements when the test results are false.

The following are examples of if statements in Origin C, using different input types:

bool bb = true; // boolean type

if(bb)

out str("bb is true");

int nn = 5;

if(nn) // integer type, 0 = false, non-zero = true

out str("nn not 0");

double* pData = NULL;

if (NULL == pDbata) // check if pointer is NULL

out str("Pointer pData is NULL");

12

Language Fundamentals

The following is a simple if-else block in Origin C. Note that the if-block and the else-block are enclosed in

separate sets of curly braces, {}.

if (bRet)

out str("Valid input"); // when bRet is true

else

out str ("INVALID input"); // when bRet is false

The curly braces are optional if the block contains only one statement. This means the above code can also be

written without the braces.

if (bRet)
out str("Valid input"); // when bRet 1is true
else

out str ("INVALID input"); // when bRet is false

2.4.2 The switch Statement

The switch statement is used when you need to execute a different block of statements dependent on a set of

mutually exclusive choices.

Cases are executed by ascending integer, starting with the number given in the integer argument to the switch

statement. Note that the break command will exit the switch-block from any of the cases.

switch(nType) // integer type value as condition

13

Origin C Programming Guide

case 1:
case 2:
out str("Case 1 or 2");

break;

case 3:
out str("Case 3");

// no break keyword here, so fall through to case 4

case 4:
out str("Case 4");

break;

default:
out str("Other cases");

break;

2.4.3 The for Statement

The for statement is often used to execute one or more statements a fixed number of times or for stepping

through an array of data wherein each element is referenced by an index.

char str[] = "This is a string";

for(int index = 0; index < strlen(str); index++)

printf ("char at %2d is %c\n", index, str[index]):;

2.4.4 The while Statement

14

Language Fundamentals

The while and do-while statements execute a block of statements until a condition has been met. The while
statement tests the condition at the beginning of the loop and the do-while statement tests the condition at the

end of the loop.

int count = 0;
while(count < 10) // execute statements if condition is true
{
out int("count = ", count);
count++;
}
int count = 0;
do
{
out_int("count = ", count);
count++;

} while(count < 10); // execute statements if condition is true

2.4.5 Jump Statements

Jump statements are used to unconditionally jump to another statement within a function. The break, continue,
and goto statements are considered jump statements. The following examples demonstrate these jump

statements.

2.4.5.1 break

for(int index = 0; index < 10; index++)

if(pow(index, 2) > 10)

break; // terminate for loop

15

Origin C Programming Guide

out _int("index = ", index);

2.4.5.2 continue

printf ("The odd numbers from 1 to 10 are:");

for(int index = 1; index <= 10; index++)

if(mod(index, 2) == 0)

continue; // next index

printf ("$d\n", index) ;

2.4.5.3 goto

out_str("Begin");

goto Markl;

out str("Skipped statement");

Markl:

out str("First statement after Markl");

2.4.6 The foreach Statement

The foreach statement is used for looping through a collection of objects. The following code loops through all

the pages in the project and outputs their name and type.

foreach (PageBase pg in Project.Pages)

16

Refer to the Collections section for a list of all the Collection based classes in Origin C.

printf ("$s is of type %d\n", pg.GetName (), pg.GetType()):;

2.5 Functions

2.5.1 Global Functions

Language Fundamentals

Origin C provides many global functions for performing a variety of tasks. These global functions fall into twenty-

six categories.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Basic 10

Character and String Manipulation

COM
Communications
Curve

Data Conversion

Data Range

Date Time

File 10

File Management
Fitting

Image Processing
Import Export

Internal Origin Objects
LabTalk Interface
Math Functions
Mathematics

Matrix Conversion and Gridding
Memory Management
NAG

Signal Processing
Spectroscopy

Statistics

17

http://www.originlab.com/doc/OriginC/guide/Collections

Origin C Programming Guide

24. System
25. Tree

26. User Interface

Please refer to the Global Functions section for a complete list of functions with examples.

2.5.2 User-Defined Functions

Origin C supports user-defined functions. A user-defined function allows Origin C programmers to create
functions that accept their choice of arguments and return type. Their function will then operate on those

arguments to achieve their purpose.

The following creates a function named my_function that returns a double value and accepts a double value as

its only argument.

double my function (double dData)

dData += 10;

return dData;

The following code snippet shows how to call the above function.

double d = 3.3; // Declare 'd' as a double value
d = my function(d); // Call the above function
out _double("d == ", d); // Output new value of 'd'

Origin C functions can also be called from LabTalk.

d = 3.3; // Assign 3.3 to 'd'
d = my function(d); // Call the above function

d=; // Output new value of 'd’

18

http://www.originlab.com/doc/OriginC/ref/Global-Functions

Language Fundamentals

2.6 Classes

Origin C supports many built-in classes, but also allows users to create their own.

2.6.1 Origin Defined Classes

Origin C comes with predefined classes for working with Origin's different data types and user interface objects.
These classes will help you quickly write Origin C code to accomplish your tasks. This section will discuss the
base classes to give you an overview of the capabilities these classes offer. See the next chapter, Predefined

Classes, or the Origin C Wiki for more details and examples of Origin defined classes.

2.6.2 User Defined Classes

Origin C supports user-defined classes. A user-defined class allows Origin C programmers to create objects of

their own type with methods (member functions) and data members.

The following code creates a class named Book with two methods, GetName and SetName.

class Book

public:
string GetName ()
{
return m_strName;
}
void SetName (LPCSTR lpcszName)
{
m_strName = lpcszName;
}
private:

string m_strName;

19

Origin C Programming Guide

And below is a simple example using the class and method definitions above to declare an instance of the Book

class, give it a name using SetName, and then output the name using GetName.

void test class()

Book OneBook; // Declare a Book object

// Call public function to Set/Get name for the Book object
OneBook.SetName ("ARC") ;

out str (OneBook.GetName ()) ;

The above example is very simple. If you want to know more class features, for example, constructors and
destructors, or virtual methods, please download this zip file, unzip and browse to the \Origin C

Examples\Programming Guide\Extending Origin C subfolder to view the EasyLR.c, EasyLR.h and EasyFit.h files.

2.7 Error and Exception Handling

Origin C supports C++ exception handling using the try, catch, and throw statements.

The try block consists of the try keyword followed by one or more statements enclosed in braces. Immediately
after the try block is the catch handler. Origin C supports only a single catch handler that accepts an integer

argument. After the catch keyword comes one or more statements enclosed in braces.

try

LPSTR lpdest = NULL; // NULL pointer on purpose

strcpy (lpdest, "Test"); // copy to NULL pointer to cause error

catch (int nErr)

20

http://blog.originlab.com/wp-content/uploads/2017/01/OriginCExamples.zip

Language Fundamentals

out_int ("Error = ", nErr);

The try-catch works by executing the statements in the try block. If an error occurs, the execution will jump to the

catch block. If no error occurs then the catch block is ignored.

The throw keyword is optional and is used to trigger an error and cause execution to jump to the catch block.

void TryCatchThrowEx ()

try

DoSomeWork (4); // pass a valid number to show success

DoSomeWork (=1); // pass an invalid number to cause error

catch (int iErr)

printf ("Error code = %d\n", iErr);

void DoSomeWork (double num)

if(num < 0)
throw 100; // Force error
if(0 == num)

throw 101; // Force error

double result = sqgrt(num) / log(num);

printf ("sqgrt (%f) / log(%f) = %g\n", num, num, result);

21

Origin C Programming Guide

22

3 Predefined Classes

3.1 Predefined Classes

In this section, the predefined classes in Origin C will be described. Please see class hierarchy as a reference for

more information about the relationships among Origin C built-in classes.

This section covers the following topics:

e Analysis Class

e Application Communication Class

e Composite Data Types Class

e |Internal Origin Objects Class

e System Class

e User Interface Controls Class

e Utility Class

3.2 Analysis Class

The following classes are used to perform data analysis. For more details, please refer to the Origin C: Origin C

Reference: Classes: Analysis chapter in the help document of OriginC.

Class Brief Description

This class provides a method for accessing the information of the fitting function, as

well as the current evaluation state that is generated by implementing the fitting

NLFitContext
function in Origin C.
This class is the higher level Origin class. It wraps the NLFit class with a friendly
interface to aid in implementing the fitting evaluation procedure. It is the kernel of the
NLFitSession

NLFit dialog. This class is recommended for coding in Origin C, because it takes care

of all the complexities that arise from the process of interfacing to Origin.

23

http://www.originlab.com/doc/OriginC/guide/Class-Hierarchy
http://www.originlab.com/doc/OriginC/guide/Analysis-Class
http://www.originlab.com/doc/OriginC/guide/Application-Communication-Class
http://www.originlab.com/doc/OriginC/guide/Composite-Data-Types-Class
http://www.originlab.com/doc/OriginC/guide/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/guide/System-Class
http://www.originlab.com/doc/OriginC/guide/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/guide/Utility-Class
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/NLFitContext
http://www.originlab.com/doc/OriginC/ref/NLFitSession

Origin C Programming Guide

3.3 Application Communication Class

The following classes are used to enable communication between Origin and other applications. For more

details, please refer to the Origin C: Origin C Reference: Classes: Application Communication chapter in

the help document of OriginC.

Class Brief Description

Matlab Used to enable communication between Origin and MATLAB.

3.4 Composite Data Types Class

The following classes are composite data types classes. For more details, please refer to the Origin C: Origin

C Reference: Classes: Composite Data Types chapter in the help document of OriginC.

Class Brief Description

A data set of CategoricalData type is an array of integers. This array is tied to
an internal Origin data set of Text type, and will be allocated and sized
CateqoricalData dynamically. A data set of this type maps the text values to categories by
referring to indices (1 based offset). The text values of mapping indices are

stored in the data member of CategoricalMap.

A data set of CategoricalMap type is an array of text values. This array will be
allocated and sized dynamically, but not tied to any internal Origin data set.

. This data set contains a set of unique text values, which are sorted alpha-
CategoricalMap
numerically and typically referenced by the elements of the associated object of

CategoricalData type.

This class is used to handle number data of complex type. It contains both the

complex Real part and Imaginary part of the complex number.

This class is derived from the curvebase and vectorbase classes, whose
methods and properties it inherits. An object of Curve type can be plotted using
methods defined in the GraphLayer class easily, and it is comprised of a Y data
Curve set and, typically (but not necessarily), an associated X data set. For example,
a data set plotted against row numbers will not contain an associated X data

set.

24

http://www.originlab.com/doc/OriginC/ref/Application-Communication
http://www.originlab.com/doc/OriginC/ref/Matlab
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/CategoricalData
http://www.originlab.com/doc/OriginC/ref/CategoricalMap
http://www.originlab.com/doc/OriginC/ref/Complex-class
http://www.originlab.com/doc/OriginC/ref/Curve-Class

Predefined Classes

This class, which is derived from the vectorbase class, from which it inherits
methods and properties, is an abstract base class and is used to handle the
curvebase classes of Curve type, polymorphically. So objects of curvebase type cannot be

constructed, and a derived class, such as Curve, should be used instead.

This class is derived from the vector and vectorbase classes, and it inherits
their methods and properties. A Dataset is an array, which is allocated and
sized dynamically. It can be tied or not tied to an internal Origin data set. By
Dataset default, the Dataset is of type double, but it can also be of any basic data type,
including char, byte, short, word, int, uint and complex (but not string). The

syntax Dataset<type> can be used to construct these types of Dataset.

This class is derived from the matrix and matrixbase classes, from which it
inherits methods and properties. A Matrix (upper case M) is a two-dimensional
array, which is allocated and sized dynamically, and tied to an internal Origin
matrix window. The default type of a Matrix is double, but any basic data type is
allowed as well, including char, byte, short, word, int, uint and complex (but not

string). The syntax Matrix<type> is used to construct these types of Matrix.

This class is used to access the data in the internal Origin matrix, while the
Matrix MatrixObject class is used to control the style of the matrix. That is to say, the
relationship between the MatrixObject and Matrix classes is the same as the

one between the Column and Dataset classes.

The data values displayed in the cells of the Origin matrix (referenced by a
Matrix object) are typically referred to, in the worksheet, as Z values, whose
associated X and Y values are linearly mapped to the columns and rows of the

matrix, respectively.

This class is derived from the matrixbase class, from which it inherits methods
and properties. A matrix (lower case m) is a two-dimensional array, which is
allocated and sized dynamically, and is not tied to any internal Origin matrix
matrix window, which provides more flexibility. The default type of a matrix is double,
but any basic data type can be used as well, including char, byte, short, word,
int, uint and complex (but not string). The syntax matrix<type> is used to

construct these types of matrix.

25

http://www.originlab.com/doc/OriginC/ref/curvebase
http://www.originlab.com/doc/OriginC/ref/Dataset
http://www.originlab.com/doc/OriginC/ref/Matrix-Class
http://www.originlab.com/doc/OriginC/ref/matrix

Origin C Programming Guide

matrixbase

This class is an abstract base class for handling the matrix and Matrix class
types polymorphically. Thus, objects of matrixbase type cannot be constructed,
and objects of its derived classes, such as matrix and Matrix, should be used

instead.

PropertyNode

This class is only used for including the properties of different data types, such

as Bool, int, float, double, string, vector, matrix, and picture, etc.

This class is used to construct a null terminated array of characters, which is

similar to an MFC CString object. A lot of methods for manipulating strings (text

string data) are defined in this class. It can also be used together with the vector

class by syntax vector<string> to define string arrays.

This class is used to save Origin C trees as XML files, as well as to load XML
Tree files to Origin C trees.

This class provides several methods for constructing multilevel trees, traversing
TreeNode

trees and accessing the attributes of tree nodes.

TreeNodeCollection

This class is used to get a collection of child tree nodes with an enumerative

name prefix.

This class is an abstract base class used for handling objects of vector and

Dataset types polymorphically. Thus, objects of this type cannot be

vectorbase constructed, and objects of its derived classes, such as vector and Dataset,
should be used instead.
This class is derived from the vectorbase class, from which it inherits methods
and properties. A vector is an array, which is allocated and sized dynamically,
and not tied to any internal Origin data set, which allows for more flexibility. The
vector

default type of vector is double, but other basic data types are also allowed,
including char, byte, short, word, int, uint, complex, and string. The syntax

vector<type> can be used to construct these types of vector.

26

http://www.originlab.com/doc/OriginC/ref/matrixbase
http://www.originlab.com/doc/OriginC/ref/PropertyNode
http://www.originlab.com/doc/OriginC/ref/string
http://www.originlab.com/doc/OriginC/ref/Tree-Class
http://www.originlab.com/doc/OriginC/ref/TreeNode
http://www.originlab.com/doc/OriginC/ref/TreeNodeCollection
http://www.originlab.com/doc/OriginC/ref/vectorbase
http://www.originlab.com/doc/OriginC/ref/vector

Predefined Classes

3.5 Internal Origin Objects Class

The following classes are used to handle Origin objects. For more details, please refer to the Origin C: Origin C

Reference: Classes: Internal Origin Objects chapter in the help document of OriginC.

Class

Brief Description

This class is derived from the OriginObject class, and can be used to
access Origin axes. Origin axes are contained by layers on an Origin

page.

AxisObject

This class is derived from the OriginObject class, and can be used to
access Origin axis objects, including axis ticks, grids and labels. Origin

axis objects are contained by axes on an Origin graph page.

Collection

This class provides a template for collections of various internal Origin
objects, such as Pages (the collection of all PageBase objects in a
project file), etc. This class contains an implicit templatized type
_TemplType, which is the type of one element of the collection. For
example, the templatized type of the Pages collection in the Project

class (Collection<PageBase> Pages;) is PageBase.

Each collection usually has a parent class, whose data member is the
collection. For example, Collection<PageBase> Pages is one member
of the Project class, because Project contains all the pages. Therefore,

each collection can be attached or unattached to an internal object.

All collections can use the methods defined in the Collection class. The
foreach loop is the most useful way for looping once for each of the

elements in the collection.

CollectionEmbeddedPages

This class is used to access the pages embedded in a worksheet.

Column

This class is derived from the DataObject, DataObjectBase and
OriginObject classes, and it inherits their methods and properties. In this
class, methods and properties are provided for dealing with Origin
worksheet columns. A worksheet object contains a collection of Column

objects, and each Column object holds a Dataset. A Column object is

27

http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Axis
http://www.originlab.com/doc/OriginC/ref/AxisObject
http://www.originlab.com/doc/OriginC/ref/Collection
http://www.originlab.com/doc/OriginC/ref/CollectionEmbeddedPages
http://www.originlab.com/doc/OriginC/ref/Column-Class

Origin C Programming Guide

mainly used for controlling the style of data in the associated Dataset.

A Column object is a wrapper object, which refers to an internal Origin

column object, but does not actually exist in Origin.

DataObject

This class is derived from the DataObjectBase class, and is the base
class of worksheet columns and matrix objects. Origin data objects are
contained in layers on an Origin page. For example, columns (data

objects) are contained in a worksheet (layer) on a worksheet window

(page).

DataObjectBase

This class is an abstract base class, which provides methods and
properties for handling the class types related to DataObject and
DataPlot, polymorphically. Thus, objects of this type cannot be
constructed, and objects of its derived classes, such as DataObject,

Column, MatrixObject and DataPlot, should be used instead.

DataPlot

This class is derived from the DataObjectBase and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for Origin data plots. An internal
Origin data plot object is used to store the characteristics of the Origin

data plot, and it is contained in a graph layer on a graph page.

A DataPlot object is a wrapper object, which refers to an internal Origin
data plot object and does not actually exist in Origin. Thus, multiple

wrapper objects can refer to the same internal Origin object.

DataRange

Methods and properties are provided in this class for constructing data
ranges and accessing data in a Worksheet, Matrix or Graph window.
This class does not hold data by itself, it just keeps the data range with
the page name, sheet name (layer index for a graph) and row/column
indices (data plot indices for a graph). Multiple data ranges can be
contained in one DataRange object, and the sub data range can be the
whole data sheet, one column, one row, multiple continuous columns,

or multiple continuous rows.

28

http://www.originlab.com/doc/OriginC/ref/DataObject
http://www.originlab.com/doc/OriginC/ref/DataObjectBase
http://www.originlab.com/doc/OriginC/ref/DataPlot-Class
http://www.originlab.com/doc/OriginC/ref/DataRange-Class

Predefined Classes

DataRangeEx This class is the extensional class of DataRange.
This class is used to access non-numeric data sets, which are usually
DatasetObject members of Column objects.
This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. This class is used to handle
Datasheet
Origin worksheet and matrix layers.
Project Explorer is a user interface inside Origin with folder/sub-folder
structure, just likes Window Explorer. It is used to organize and access
graph, layout, matrix, note, and worksheet windows in an Origin project
file.
The Folder class has the ability to access the methods and properties of
Folder Project Explorer, and contains collections of all Origin pages and
Project Explorer folders.
A Folder object is a wrapper object, which refers to an internal Origin
Project Explorer object but does not actually exist in Origin. Thus,
multiple wrapper objects can refer to the same internal Origin object.
This class is used to handle data points that are located in three-
fpoint3d dimensional space, with double type for their (X, y, z) coordinates.
This class is used to handle data points that are located in two-
fooint dimensional, or planar, space and use double type for their (X, y)
coordinates.
This class is used to get the position (x, y) of a screen point or data
GetGraphPoints point from an Origin graph window.
This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. In this class, methods and
GraphLayer
properties are provided for Origin graph layers.

29

http://www.originlab.com/doc/OriginC/ref/DataRangeEx
http://www.originlab.com/doc/OriginC/ref/DatasetObject
http://www.originlab.com/doc/OriginC/ref/Datasheet-class
http://www.originlab.com/doc/OriginC/ref/folder-class
http://www.originlab.com/doc/OriginC/ref/fpoint3d
http://www.originlab.com/doc/OriginC/ref/fpoint
http://www.originlab.com/doc/OriginC/ref/GetGraphPoints
http://www.originlab.com/doc/OriginC/ref/GraphLayer

Origin C Programming Guide

Internal Origin graph pages contain one or more graph layers, and
graph layers contain one or more data plots. Thus, the GraphPage
class contains a collection of GraphLayer objects, and the GraphLayer
class contains a collection of DataPlot objects. A GraphLayer object is a
wrapper object, which refers to an internal Origin graph layer object, but
does not actually exist in Origin. So multiple wrapper objects can refer

to the same internal Origin object.

GraphObiject

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling Origin graph objects, which include text
annotations, graphic annotations (e.g. rectangles, arrows, line objects,

etc.), data plot style holders, and region of interest objects.

Origin graph objects are generally contained in layers on an Origin
page, thus the GraphLayer class contains a collection of GraphObjects.
A Graph object is a wrapper object, which refers to an internal Origin
graph object and does not exist in Origin. So multiple wrapper objects

can refer to the same internal Origin object.

GraphPage

This class is derived from the Page, PageBase, and OriginObject
classes, and it inherits their methods and properties. In this class,
methods and properties are provided for handling internal Origin graph
pages (windows). A GraphPage object is a wrapper object, which refers
to an internal Origin graph page object but does not exist in Origin.
Thus, multiple wrapper objects can refer to the same internal Origin

object.

The Project class contains a collection of GraphPage objects, named
GraphPages, in the open project file. A GraphPage object can be used
to locate and access layers on an Origin graph page, which can then be
used to access objects in the layer, such as DataPlots or

GraphicObjects.

GraphPageBase

This class is the base class for GraphPage and LayoutPage.

Grid

This class is used to set the format of data sheet windows (Origin

30

http://www.originlab.com/doc/OriginC/ref/GraphObject
http://www.originlab.com/doc/OriginC/ref/GraphPage
http://www.originlab.com/doc/OriginC/ref/GraphPageBase
http://www.originlab.com/doc/OriginC/ref/Grid

Predefined Classes

worksheets and matrix sheets). Extra functions are also provided in this
class for data selection, showing column/row labels, setting cell text

color, merging cells, and so on.

This class is derived from the OriginObject class and can be used to

GroupPlot handle Origin group plots. GroupPlot objects are contained in layers on

an Origin page.

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling internal Origin layers. All Origin pages (windows),
except note pages, contain one or more layers. Origin objects found
"on" a page are generally contained by layers which are themselves
Layer contained by the page. Many graph objects are contained in layers, thus

the Layer class contains the collection of graph objects.

A Layer object is a wrapper object, which refers to an internal Origin
layer object but does not actually exist in Origin. So multiple wrapper

objects can refer to the same internal Origin object.

This class is derived from the Page, PageBase, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling internal Origin layout

pages (windows). The Project class contains a collection of LayoutPage
LayoutPage objects.
A LayoutPage object is a wrapper object, which refers to an internal

Origin layout page object and does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. In this class, methods and
properties are provided for handling internal Origin layout layers. Origin

Layout layout pages contain a layout layer, which contains other objects.

A Layout object is a wrapper object, which refers to an internal Origin

layout object but does not exist in Origin. So multiple wrapper objects

31

http://www.originlab.com/doc/OriginC/ref/GroupPlot
http://www.originlab.com/doc/OriginC/ref/Layer
http://www.originlab.com/doc/OriginC/ref/LayoutPage
http://www.originlab.com/doc/OriginC/ref/Layout

Origin C Programming Guide

can refer to the same internal Origin object.

MatrixLayer

This class is derived from the Datasheet, Layer, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling matrix layers in Origin
matrix pages. An Origin matrix contains a number of matrix objects,
thus the MatrixLayer class contains a collection of the matrix objects in

the matrix layer.

A MatrixLayer object is a wrapper object, which refers to an internal
Origin matrix layer object, and does not actually exist in Origin. So

multiple wrapper objects can refer to the same internal Origin object.

MatrixObject

This class is derived from the DataObject, DataObjectBase, and
OriginObject classes, and it inherits their methods and properties. This

class is used to handle internal Origin matrix objects.

MatrixObject is mainly used to control the style of the data in the internal
Origin matrix, while the Matrix class is used to access the data in the
matrix. Thus, the MatrixObject class has the same relationship with the
Matrix class as the Column class has with the Dataset class. That is to
say, an internal Origin matrix object (MatrixObject) holds a matrix data
set (Matrix), just like a worksheet column (Column) holds a data set
(Dataset). The data values displayed in the cells of a matrix are
considered Z values, whose associated X and Y values are linearly
mapped to the columns and rows of the matrix, respectively. A
MatrixLayer holds a collection of MatrixObjects, even though there is

generally only one MatrixObject per MatrixLayer.

A MatrixObject is a wrapper object, which refers to an internal Origin
matrix object yet does not actually exist in Origin . So multiple wrapper

objects can refer to the same internal Origin object.

MatrixPage

This class is derived from the Page, PageBase, and MatrixPage
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling internal Origin matrix

pages (windows).

A MatrixPage object is a wrapper object, which refers to an internal

32

http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixPage

Predefined Classes

Origin matrix page object but does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

The Project class contains a collection of MatrixPage objects, named
MatrixPages, in the open project file. A MatrixPage object can be used
to locate and access layers on the Origin matrix page, which can then
be used to access objects in the layers, such as MatrixObjects and

GraphicObjects.

This class is derived from the PageBase and OriginObject classes, from
which it inherits their methods and properties. In this class, methods
and properties are provided for handling internal Origin Note pages

(windows). The Project class contains a collection of Note objects.

A Note object is a wrapper object, which refers to an internal Origin
Note page but does not actually exist in Origin. And so, multiple

wrapper objects can refer to the same internal Origin object.

OriginObject

This class is the Origin C base class for all Origin objects. Member
functions and data members are provided in this class for all Origin

objects.

This class is derived from the PageBase and OriginObject classes, and
it inherits their methods and properties. In this class, methods and
properties are provided for handling internal Origin pages, which contain
one or more layers (except Note windows). The Page class contains a

collection of the layers in the page.

A Page object is a wrapper object, which refers to an internal Origin
page object but does not exist in Origin. So multiple wrapper objects

can refer to the same internal Origin object.

PageBase

This class provides methods and properties for internal Origin pages
(windows). Usually, this class is used in one of two ways. One way is by
using a PageBase object as a parameter of a general function, but not
using a specific Page object. The other way is by attaching a PageBase
object to an unknown active page. Both usages can handle the specific

page objects polymorphically. That is also the purpose of this class: to

33

http://www.originlab.com/doc/OriginC/ref/Note
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/PageBase

Origin C Programming Guide

act as an abstract class for its derived page types, which include Note,

GraphPage, WorksheetPage, LayoutPage, and MatrixPage.

point

This class is used to handle data points located in two-dimensional, or

planar, space, with integer (x, y) coordinates.

Project

This class provides methods and properties for accessing most objects
in an Origin project file. The Project class includes collections of
different page types, and collections of all the data sets (including loose
data sets, that are not in a worksheet column) in the Project file. This
class also provides methods for getting active objects in a project file,
as well as RootFolder properties, including ActiveCurve, ActiveLayer,

and ActiveFolder.

A Project object is a wrapper object, which refers to an internal Origin
project object but does not actually exist in Origin. Only one project file
can be open in Origin at a time, so all Project objects refer to the

currently open project file.

ROIODbject

This class is derived from the GraphObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for working with Origin region of interest objects. An Origin
region of interest object is used to identify a region of interest in an

Origin matrix.

A ROIObject is a wrapper object, which refers to an internal Origin
region of interest object but does not actually exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

Scale

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling Origin axis scales. Two scale objects (X scale and

Y scale) are contained in every graph layer on a graph page.

A Scale object is a wrapper object, which refers to an internal Origin
scale object but does not actually exist in Origin. This means that

multiple wrapper objects can refer to the same internal Origin object.

34

http://www.originlab.com/doc/OriginC/ref/Point-class
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/ROIObject
http://www.originlab.com/doc/OriginC/ref/Scale

Predefined Classes

Origin allows for saving binary type (TreeNode type) and INI type

(INIFile type) information in Origin objects, which can be any Origin C

storage objects derived from the OriginObject class, such as a WorksheetPage,
Column, Folder, GraphPage, GraphLayer, DataPIot, Project, etc.
This class is derived from the GraphObject and OriginObject classes,
and it inherits their methods and properties. In this class, methods and
properties are provided for data plot style holders. A data plot style
holder is used to store plot type information.

StyleHolder
A StyleHolder object is a wrapper object, which refers to an internal
Origin StyleHolder object but does not actually exist in Origin. So
multiple wrapper objects can refer to the same internal Origin object.
This class provides two functions for accessing projects safely,

UndoBlock

UndoBlockBegin() and UndoBlockEnd().

WorksheetPage

This class is derived from the Page, PageBase, and OriginObject
classes, and it inherits their methods and properties. In this class,
methods and properties are provided for internal Origin worksheet
pages (windows). The Project class contains a collection of

WorksheetPage objects.

A WorksheetPage object is a wrapper object, which refers to an internal
Origin worksheet page object, but does not actually exist in Origin. So

multiple wrapper objects can refer to the same internal Origin object.

Worksheet

This class is derived from the Datasheet, Layer, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling worksheet layers on
Origin worksheet pages. An Origin worksheet may contain a number of
worksheet columns, thus the Worksheet class contains a collection of

all the columns in the worksheet.

A Worksheet object is a wrapper object, which refers to an internal
Origin worksheet object, and does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

35

http://www.originlab.com/doc/OriginC/ref/storage
http://www.originlab.com/doc/OriginC/ref/StyleHolder
http://www.originlab.com/doc/OriginC/ref/UndoBlock
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class

Origin C Programming Guide

This class is derived from the DataRange class, from which it inherits
methods and properties. By using methods defined in this class, the
data range, which has one independent variable (X) and one dependent
variable (Y), can be gotten from matrix and worksheet windows, and put
into matrix and worksheet windows. It can also be used to make a plot

XYRange on a graph window.

Just like the DataRange class, XYRange does not hold data itself, but
just keeps the data range with page name, sheet name (layer index for
a graph) and row/column indices (data plot indices for a graph). Every

XYRange object can contain multiple sub XY data ranges.

This class is derived from the XYRange and DataRange classes, and it
inherits their methods and properties. This class is used to get and set

XY data sets of complex type for matrix and worksheet windows.

XYRangeComplex Just like the DataRange class, the XYRangeComplex class does not

hold data itself, but just keeps the data range with page name, sheet
name and row/column indices. Every XYRangeComplex object can

contain multiple sub XY complex data ranges.

This class is derived from the DataRange class, from which it inherits
methods and properties. This class is used to get and set XYZ data sets

for matrix and worksheet windows.

XYZRange Just like the DataRange class, the XYZRange class does not hold data
itself, but just keeps the data range with page name, sheet name and
row/column indices. Every XYZRange object can contain multiple sub

XYZ data ranges.

3.6 System Class

The following classes are about system settings. For more details, please refer to the Origin C: Origin C

Reference: Classes: System chapter in the help document of OriginC.

Class Brief Description

fil This class is used to control the permission to read/write the binary files by using

36

http://www.originlab.com/doc/OriginC/ref/XYRange
http://www.originlab.com/doc/OriginC/ref/XYRangeComplex
http://www.originlab.com/doc/OriginC/ref/XYZRange
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/file

Predefined Classes

unbuffered io (accessing immediate disk). It is similar to the MFC CFile class. Please also

refer to the stdioFile class, which is for buffered stream io to text files.

This class is used to access the data stored in the initialization file.

INIFile
. The methods in this class are used to access Windows registry.
Reqistry
This class is derived from the file class, from which it inherits methods and properties. This
class is used to control the permission to read/write the text and binary files by using
stdioFile buffered stream io. However, this class does not support stream io to stdin, stdout, and

stderr. Please also refer to the file class, which is for unbuffered io to binary files.

3.7 User Interface Controls Class

The following classes are about user interface. For more details, please refer to the Origin C: Origin C

Reference: Classes: User Interface Controls chapter in the help document of OriginC.

The classes marked with * are only available in Origin with the DeveloperKit installed.

Class

Brief Description

*BitmapRadioButton

This class provides the functionality of bitmap radio button controls.

*Button

This class provides the functionality of button controls. A button control is a
small rectangular child window, which can be clicked on and off. The button
will change its appearance when clicked. Typical buttons include check boxes,

radio buttons and push buttons.

*CmdTarget

This class is the base class for message map architecture. A message map is
used to send a command or message to the member functions you have
written, and then the member functions handle the command or message. (A
command is a message from a menu item, command button, or accelerator

key.)

Two key framework classes are derived from this class: Window and
ObjectCmdTarget. To create a new class for handling messages, you can just

derive your new class from one of these two classes. There is no need to

37

http://www.originlab.com/doc/OriginC/ref/INIFile
http://www.originlab.com/doc/OriginC/ref/Registry
http://www.originlab.com/doc/OriginC/ref/stdioFile
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/BitmapRadioButton
http://www.originlab.com/doc/OriginC/ref/Button
http://www.originlab.com/doc/OriginC/ref/CmdTarget

Origin C Programming Guide

derive from CmdTarget directly.

This class is derived from the RichEdit class. It is used to display the redefined

*CodeEdit color for key words in coding text.
This class is only available in Origin packages that have the DeveloperKit
*ColorText installed.
This class is used to define combobox control.
*ComboBox
*Control This class provides the base functionality of all controls.

*DeviceContext

This class is used to define device-context objects.

*DhtmIControl

/ladd description here

This class is the base class for displaying dialog boxes on the screen.

*Dialog
This class is used to create a Dockable control bar with a child Origin C-driven
*DialogBar dialog.

*DynaControl

This class is used to generate various types of customized interface controls
dynamically, such as an edit box, combo box, check box, or radio button. The
values will be stored in a tree node, and the on dialog will display as a tree

structure.

*Edit

This class is used to create edit controls. An edit control is a rectangular child

window, which can be filled with text.

*GraphControl

This class is derived from the OriginControls, Control and Window classes,
from which it inherits methods and properties. Methods defined in this class
can be used to display an Origin Graph within the specified control on the

dialog.

38

http://www.originlab.com/doc/OriginC/ref/CodeEdit
http://www.originlab.com/doc/OriginC/ref/ColorText
http://www.originlab.com/doc/OriginC/ref/ComboBox
http://www.originlab.com/doc/OriginC/ref/Control
http://www.originlab.com/doc/OriginC/ref/DeviceContext
http://www.originlab.com/doc/OriginC/ref/DhtmlControl
http://www.originlab.com/doc/OriginC/ref/Dialog-class
http://www.originlab.com/doc/OriginC/ref/DialogBar
http://www.originlab.com/doc/OriginC/ref/DynaControl
http://www.originlab.com/doc/OriginC/ref/Edit
http://www.originlab.com/doc/OriginC/ref/GraphControl

Predefined Classes

This class is the base class of GraphObjCurveTool. It is used to create and

GraphObiTool manage a rectangle on an Origin graph window, around the region of interest

and containing the data.

This class is derived from GraphObjTool, from which it inherits methods and
properties. With these methods and properties, it can be used to create and

manage a rectangle on an Origin graph window, around the region of interest

GraphObjCurveTool

and containing the data. This class also provides methods for adding a context

menu and the related event functions.

This class is used to define list boxes. A list box shows a list of string items for
*ListBox viewing and selecting.

This class is used to handle menus, including creating, tracking, updating and
*Menu destroying them.

*OriginControls This class is the base class for displaying the Origin window on dialog.

D This class is used to paint a PictureHolder object within the control on dialog.
PictureControl

This class provides methods and properties for opening and controlling
progress dialog boxes. A progress dialog box is a small dialog box that
roaressBox indicates the software is busy processing data. This dialog box contains a
progress bar for showing the fraction of the completed processing. The

progress dialog box is usually used in iterative loops.

This class is used to construct individual page objects of property sheets in a
*PropertyPage wizard dialog.

This class is used to construct property sheets in a wizard dialog. One property

*PropertySheet sheet object can contain multiple property page objects.

This class provides methods for formatting text. A rich edit control is a window,
*RichEdit
in which text can be written and edited. The text can be in character and

39

http://www.originlab.com/doc/OriginC/ref/GraphObjTool
http://www.originlab.com/doc/OriginC/ref/GraphObjCurveTool
http://www.originlab.com/doc/OriginC/ref/ListBox
http://www.originlab.com/doc/OriginC/ref/Menu
http://www.originlab.com/doc/OriginC/ref/OriginControls
http://www.originlab.com/doc/OriginC/ref/PictureControl
http://www.originlab.com/doc/OriginC/ref/progressBox
http://www.originlab.com/doc/OriginC/ref/PropertyPage
http://www.originlab.com/doc/OriginC/ref/PropertySheet
http://www.originlab.com/doc/OriginC/ref/RichEdit

Origin C Programming Guide

paragraph formatting.

*Slider

A slider control is a window with a slider and optional ticks. When the slider is
moved by the mouse or the directional keys on the keyboard, the control will

send a naotification message to implement the change.

*SpinButton

A spin button control is a pair of arrow buttons that can be used to increase or
decrease a value, such as scroll position or the number displaying in an

accompanying control. This value is called the current position.

A tab control is used to display different information under different tabs in a

dialog. This class provides methods to add/delete tab items for displaying a

*TabContr