Origin C Programming Guide

Copyright © 2017 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of OriginLab

Corporation.

OriginLa b, Origin, and LabTalk are either registered trademarks or trademarks of
OriginLab Corporation. Other product and company names mentioned herein may be the

trademarks of their respective owners.

OriginLab Corporation

One Roundhouse Plaza
Northampton, MA 01060
USA

(413) 586 - 2013

(800) 969 - 7720

Fax (413)585 - 0126

Table of Contents

Origin C Programming GUIEuiiiiie it ee e e s ettt e e e e e et e e e e e e s e e e e e e e e e s aa st e e e eeeaessaasbbaeeeaeeessastbasaeeeeessassnrreeeaeenan 1
TADIE OF CONENES ...ttt e et s et et e e h bt e e ab e e sh bt e sab e e et e e san e e e beenane e iii
1 Origin C ProgramMiNg GUITEuuueeiiie et ee e e e ettt e e e e e et tee e e e e e e s aaseateeeeaeeaaasneeseeeaaeaaaanntbeeeaaeeeaansseeeaaeeaaannes 1
2 BASIC FRALUIES ...ttt ettt ettt ettt bbbt h e h ekt E e h e h e Rt E e Rt bbbt e e et s 3
21 HEO WOTIA TULOIIAL ...ttt e a bt e s e st e e sne e b e e nnenan 3
3 Language FUNAAMENTAISeiiiieiiiiiiii ettt e e e e e e ettt e e e e e e e atee e e e e e e e e e ntbbeeeeaeeesantbeeeeaeeasaannnnneeaaaean 7
3.1 Language FUNAAMENTAIScoueiieiiiiee ettt e et e st e e e sttt e e s saae e e e anbe e e e sttt e e e smbeeeeanteeeesnteeeeannes 7
3.2 Data TYPES aNd VANIADIESco.eiiiiiiiiie ettt e s e e e et e e s e 7
3.2.1 ANSI C DALA TYPES ..ottt ettt et ettt e e e e et e e e e e et e e et e e e e s e s b e e e et e e e e e e snen et e e e e s aannnnnnreeeeeaennnn 7
3.2.2 Origin C COMPOSILE DALA TYPESeeeeiieieeiitieeaiitieeeateeeeastteeeaateeeeateeeesaseeeeeateeeeaasteeesanseeeesnseeeesaneeeessnnees 7
3.2.3 (2] o PR OPPRRR 8
3.3 (O] 61=T = 1o £= TP PSP PPTPPPRRP 10
33.1 ATTNMETIC OPEIALOTSeieieetiie ettt ettt ettt e e et e e st e e e e b e e e e b bt e e et et e e s b b e e e e anb e e e e ebneeesnreee s 10
3.3.2 COMPAITSON OPEIALOISviieiietiee ittt ee ettt et e et e e e bt e e s bt e e sttt e aasbe e e e aabe e e e sabs e e e s abbe e e e aabaeeesnbreeeeanbneeenan 12
3.3.3 (oo [o2= TN @] 1T = 1 (o] £ SRR 12
3.34 BiItWISE OPEIALONS ...ttt ittt ettt et et e ettt e e et e e e a bt e e ek et e e b e e e e e e s bt e e e R bt e e R b et e et e e e e nne e 13
3.4 StatemMENt FIOW CONIOL ..ottt et e st e s b e e e bt e e nnre e e s nneee s 14
34.1 LIS T= 1= 0 1T o | PSSP UPURP 14
3.4.2 THE SWItCH STAIEMIENT........eeiiiiiii ettt e e e et e e e e e e s bbb e e e e e e e e s nnbbeeeeeeseaannees 15
3.43 The for Statement..................
3.4.4 The while Statement
3.4.5 N[0T 00] o JRS] 21 (=] 11T o £ P PP P PP PP TP PP PP PPPPPPPPPPPPPPPPPPPPPRE
3.4.6 The foreach Statement
3.5 ULVt 1o TP TP PPPPPTN
351 Global Functions
3.5.2 User-Defined Functions
3.6 [=TT USROS
3.6.1 OFigiN DEFINEA ClASSES.cieitiiie ittt e bttt e s b e e e b bt e e aabne e e s b r e e e e anbneeenans 21
3.6.2 USEI DEFINEA CIASSES. ...ttt ettt e oo e bbbt e e e e e e bbbttt e e e e e s anb b e e e e e e e e s annbnbreeeeeeaan 21
3.7 Error and EXCeption HaNGIINGc...eiiiiiiieeee ettt e e e e e st e e e e e e e e s nnebeeeeaeeeannnees 22
N S (=10 [{1 =T o WO o T L TP P PP SPPPPPO 25
41 PredefiNed ClIASSES.coi ettt e e oo ettt e e e e e e e s bbb et e e e e e e e e aabbbb e e e e e e e e e nnbbeeeaaeeeaanee 25
4.2 ANAIYSIS CIASS ...tttk e et e oo bt e b bt e e h et e e e bt e e b bt e e e e e et e e e e b e nnnes 25
4.3 Application COMMUNICALION CIASScccoiiiiiiiiiiiie ettt e e e et e e e e e e e eb b e e e e e e e e annreeeeas 26
4.4 COMPOSILE DALA TYPES CIASS ..eeeiiriiieiiiiieiiieee ettt ettt b et e e st bt e e et et e e s bb e e e e abbr e e e enbneeesbneee s 26
45 INternal Origin OBJECES CIASSciiiiiiiiiiie ettt e e ettt e e e e e s bbb e e e e e e e s e bbbbreeeaeeeaannbbeeeaaeeeaannnes 29

Origin C Programming Guide

4.6 Y (=] L O - U PP SO PPPRPRO 38
4.7 User INtErface CONMIOIS ClASSuuiiiiriieieiiite ettt ettt e s et e e et e e e e e e e s nneee s 39
4.8 L0111 O F= T PR PPPPPRO 43
Creating and USING OFigin € COUE.........euiiiiiieiiiiii ettt et e s e e et e e s b e e e s st e e e annae e e s s reeeeasnreeenans 45
51 [Ofg=F:\ilglolr=Talo UL 1o To @] 4o 1o W O oo [TSRO 45
5.2 Create and Edit an OFigin C Floi it e e e e e st e e e e e s e earaaeeaeee s 45
521 OVBIVIBW ...ttt ettt b ettt b ettt e bt e ket e bt e bt e ekt e ket ek bt e b et e b et e ebe e et et e be e e be e e nne e et 45
5.2.2 Lo Y] o= ST SRTPPRRR 46
523 THE WOTKSPACE VIBW ...ttt ettt et e et e e et e e e e e e s b e e e e nne e e e nnn e e e s s eee s 48
5.2.4 Code BUIlder QUICK STAIM..........uviiiiie et e e e e e e e e e st e e e e e e e s e b e b e e e e e e s aeanraeeeas 51
5.3 [©f]a0] o]1 11 lo BT 12q g lo Ir= 1o o Il Mo - To 1 o F RSP 52
5.3.1 (@o] 001 o] 11T Jr=TaTo Il N1 1241 o PRSP UPPRRN: 52
53.2 AULOMALE BUIITING ...ttt e bt et e e skt e e anb et e e sbe e e e s nreee s 53
5.3.3 (20T o [T g Yol o) VRSl] | SO P TP ORI PPPPP 55
5.34 ([0 [T a1 (13T T T A (o] £ SRR 56
5.4 (D7 o T8 o T [T [P SRR PPRRRRTPR 56
5.4.1 Debugging iN COAE BUIIAETveiiiiiiee ettt et e e e st e e et e e s nnae e e e antbeeeennneeeeennes 56
54.2 Y o Tot oL (o] g =T o 10 o o 19T P O PSSP PP PP PPPPP 56
55 USING COMPIIEA FUNCHIONSciiiiiiieiiitee ettt ettt ettt e et e s b e e e e esb e e e e enbe e e e nnnneeesnneee s 58
551 Accessing Origin C Functions from LabTalk SCHPLeviiiiiiiiiiiiciee e 58
55.2 Defining Functions for the Set Values DiIalogcuuiiiiiiiiiiiiieeciie e 62

5.6 Distributing Origin C Code

56.1 DiIStriDULING SOUICE COUEeeieiiiiieeiie ettt ettt e bt e e s st e e et e e e bn e e e et b e e e snne e e e nanes
5.6.2 Distributing Applications
Matrix Books Matrix Sheets and Matrix Objects

6.1 Matrix Books Matrix Sheets and MatriX ODJECLScoouiiiiiiiiiieeiiiie et e e 67
6.2 Base MatriX BOOK OPEIALION........ouiuutiieieee ettt ettt e e e ettt e e e e e st b et e e e e e s e bbbbbeeeeeeeaanbbbeeeeaeeeannnens 67
6.2.1 WOrKDOOK-IIKE OPEIALIONSeeiiiiiiiiieieee ettt e e e e ettt e e e e e e s neb et e e e e e e s annbbereeaeeeaannnes 67
6.2.2 Show IMage THUMBNGIISoiiiiie et e et e e st e e e 70
6.3 IMBIEFIX SNIEELS ...ttt e e ettt e st e oo b et e ek et e e s bt e e e R et e e aR e e e n e e e et e e e e anbr e e e 70
6.3.1 IMBETIX SNEELS ...ttt ekt a bt e e ek et e e b et e e e s bt e e e b bt e e n et e e et e e e s 70
6.3.2 BasiC MatriX SHEet OPEIatiON........oiiuiiiiiiie ettt ettt e e e e et e e e e e s aab b e e e e e e e e e anbnereeeeeeaan 70
6.3.3 Matrix Sheet Data ManipUIBLIONeiiii i et e e e e e st e e e e e e e e anebereeaeeeean 79
6.4 Y oD Q@ o] =Tl £ PSP PPRPPTN 80
6.4.1 = Q@] o] [=Tox £ PP PPRPP 80
6.4.2 Basic MatriX ODJECT OPEIALION.......ccoiiiiiiiiiiee ittt et s bt et e e e et b e e aanne e e e nanes 80
6.4.3 Matrix Object Data ManipUIALIONcooooiiiiiiiie e et e e e e e e s sebbereeaeeeean 84
6.4.4 Converting MatrixX t0 WOTKSNEETcoouiiiiiiiie ittt e et e e 90
Workbooks Worksheets and WOorkSheet COIUMNSoiiiiiioiiiiee et 93
7.1 Workbooks Worksheets and Worksheet COIUMNS...........ooiiiiiiiiiii e 93
7.2 MV OTKDOOKS ...ttt ettt ekt e ke oot e ekt e oo e bt e e e a kbt e e ekt e e e e e ab et e e et e e e nbe e e e s 93

Table of Contents

7.2.1 WWOPKDOOKS ...ttt ettt oottt e e e oottt e e e e e e s ettt et e e e e e aasnstbeeeeaeeeaamntbeeeaaeeesanntaneeaaeeeeannes 93
7.2.2 BasiC WOrKDOOK OPEIALION.......ciiiiiiiiiiiiee et e e e e e e e st e e e e e e e st e e e e e e e e s sntbrraeeaeenan 94
7.2.3 WOTKDOOK MaANIDUIBLIONceeeiiiiie ettt ettt e ss et e e e e s et e s ann e e e snn e e e s nneee s 97
7.3 WOTKSNEEE COIUMIS ...ttt ettt b et ekttt e nin e e bt e sbe e et e e sbeeenerees 99
7.3. 1 WOTKSNEEE COIUMNS ...ttt ettt ettt ettt ekt b et bt bttt et et e b e et e e abe e e be e e nne e 99
7.3.2 Worksheet ColUMN OPEIATIONccciiiiiieiiiiie ettt s e e e s e e s e e e s ssre e e e ann et e e snneeesnreee s 929
7.3.3 Worksheet Column Data ManipUIAtioNuveiiiiiiiiiiiiee et e e a e e e s eeaar e eeaeeaan 104
7.4 WVOTKSIEEES ... ettt b e et bt bttt et e 110
TAAL WOTKSNEELS ...ttt ettt b e bt s bt ekt e bttt et e st e e s 110
7.4.2 WOrkSheet BaSiC OPEIatiON........cociuuiiiiie e i ettt e ettt e e e e et e e e e e s e st e e e e e e e e s st b e e e e aesessnntaereaaaeenan 110
7.4.3 Worksheet Data ManipPUIALIONeiiiriieiiie ettt e e e e e 121
7.4.4 Converting WOorkShEet 10 MALIIXccoiiuiiiiiie e et e e e e s e e e e e e s e e e e e e e e s e e aarreeeas 131
7.4.5 VIPEUBT IIGEIIX ettt ettt e ettt e et e ek et e e b e e e sk e e e anb et e e nabne e e s nreee s 138
(€T =To] oL T P TP PP PP OUPPPPTTR 141
8.1 (CT= T o] 0 USSR 141
8.2 Creating and CUSLOMIZING GFAPNccoiiiiiiiiieie et e et e et e e s e s 142
8.2.1 Creating Graph Window
8.2.2 Getting Graph Page Format
8.2.3 Setting Graph Page Format
8.2.4 Getting Graph Layer FOIMIALuveiiiiiiieiiee ettt e et e st e e e s nreee s 143
8.2.5 Setting Graph LAYEr FOMMAL.........uuiieiiiiieeiiiee e etiee ettt et e e sttt e e sttt e e s snbe e e e antbeeeeanteeeesnneeeesnaeeean 143
8.2.6 SHOW AAItIONAT LINES ...ttt ettt s bt e e an bt e e enb e e nane e e e anneee s 143
8.2.7 SHOW GEIT LINES ..ttt ettt st e e bt et e bt e e e e et e st e e nneeaa 144
8.2.8 SELHNG AXIS SCAIE ...t e oottt e e e e ettt e e e e e e b b e e et e e e e et et e e e e e et reeeas 145
8.2.9 GEING AXIS FOIMMAL. ...ttt et et e e et et e s bt e e e e et b e e e enbe e e e nnn e e e e s nreee s 146
8.2.10 SettiNg AXIS LADEL.......eeieiiiiie e e e e e e e 146
8.2.11 SIOW TOP AXIS -rreeiuttteeaititeeiteee sttt e e ekttt e ettt e e s bt e e ek bt e e aabe et e o b e e e e e ah b et e e e b e et e e s et e e e b et e e n et e e nn e e e anreee s 147
8.2.12 CUSIOMIZING AXIS TICKS ...eiiiiiiiieiiiiie ettt ettt e e ettt e e et e s st e e sab e e e e anbe e e e snneeeesnreee s 147
8.2.13 Customizing TICK LADEISeeiiieiiiiiie et e e e e e st e e e e e e e e anneeeeeas 148
8.3 Yo (o 1 a o [D= 1= W o (o] £ TP PPPPPSPPPP 149
8.3.1 2D Plot (XY, YEIT, BAr/COIUMN) ...coiiiiiiiiiiii ettt e et e e e e s et e e e e e e e aneeee s
8.3.2 1 = (o SO PP OPRURPPRPI
8.3.3 (0701010 1U] gl [0 AF R PP P TP PP PP PP
8.3.4 [aF= Vo L= (o PP PP PR PPPPPPPPP
8.35 Multi-Axes
8.3.6 Multi-Panels (Multi-Layer, with Shared X-Axis)
8.4 (010153 (o] 4 TV4 T g To T D =1 = W o (o) TP URRP PP
8.4.1 Adding Data Marker
8.4.2 Y21 1] ol ©o] (o] ST TP UPPT PP
8.4.3 Getting Format Tree
8.4.4 Setting Format on Line Plot
8.4.5 Copying Format from One Data Plot t0 ANOINETuiiiiiiiiii e 160
8.4.6 Setting FOrmMat 0N SCAMET POtiiiiiiiieiii et sbe e et s 162
8.4.7 Setting Format on Grouped Line + SYmDBOI PIOLSccooiiiiiiiiiiii e 162
8.4.8 Setting COlOrMEAP SEIINGSeeieiiiiie ettt st e st e e sbb e e e sbneeesnreee s 164

Origin C Programming Guide

8.5 Y g To [T gL I = Y= £ RO PPPPNt 171
8.5.1 Creating @ PNl PlOtcoo it e et e e e e e e s e e e e e e s e e e e e e e e e e arraees 171
8.5.2 Adding Layers to a Graph WINGOW..........uuveiiieiieiiiii ettt e e e s 172
8.5.3 Hiding Layers EXCEPL ACHVE OBuiiiiiiiiiiiiiiiee ettt e e e e e e e e s et e e e e e e s seaabraeaeaeeaan 173
8.5.4 ATaNGING The LAYEIS ...t e e e e e e e e e e e e e e bbb e e e e e e e e ssasb b e e eeaeeessantaereaeaeenan 173
8.5.5 (oY1 g Vo = T == USSP 174
8.5.6 I VA e [o I W = =] PP SPP PR 174
8.5.7 SWAP tWO LAYEIS ...ttt e e e e e e et e s 175
8.5.8 F e 1T o = 1T PR SUPERR 176
8.5.9 LINKING LAYEIS ...ttt et e e e e e et e e e e e e st b e e e e e e e e s aatb b et e eeeeessattbaeeeaeeessansbraeeaeeenan 176
TSI O IS Y= 1] o = Y= G U T o PRSP 177

8.6 Creating and Accessing GraphiCal ODJECTScoiiiiiiiiiie e e e e aeeeas 177
8.6.1 Creating GraphiCal ODJECT.........coiiiii ittt e st e e et e e e e e s nreee s 177
8.6.2 ST 1t To (o] o 1T 1 [T PRSP
8.6.3 Setting Position and Size
8.6.4 Updating Attach Property
8.6.5 Getting and Setting DiSabIE PTrOPEITYcoiuiiiiiiiiee ittt st e et e e et e e eesnnaeee s 182
8.6.6 Programming Control
8.6.7 (8T oTo F= 1a[(ol =T =T o o IO PP U P PP PPPPPPPRRPIN
LSRN Yo [oTaTo [IF-1 o] (@ o] [=Tot A 4 I €1 -1 o o ISR 183

LI Vo 4 g o AT T - L - W ST 185

9.1 WOTKING WItN DBLEAeeeeiiiie ettt ettt e et e e et e e e s b et e e as bt e e ab e e e s snn e e e e anbreeenan 185

9.2 INUMETIC DALA. ...tttk b e he e bt e s bt e e bt e eh bt e hb e e e e bt e na bt e sa bt e na bt e ssbeenane e sbeenaneean 185
9.2.1 MISSING VAIUBS ...ttt e oottt e e e e e s bbbttt e e e e e e et bbb e e e e e e e s annbtreeaeeeaan 185
9.2.2 Precision and COMPATISONoiuiiiiiiiie ettt e e et e st e e st e e e ettt e s sabe e e e s s neeeeaabneeenaes 186
9.2.3 CoNVErt NUMEIIC 10 SHMQ ...ueeeeieiiee ettt ettt e e e e ettt e e e e e e st bb e e e e e e s aabb e b e e e e e e e aannereeeas 187
9.2.4 RV /=To1 (o] PP PP PPPPURRTRO 187
9.25 Y o) P TP UP PP PPPPPPPRRPN 188
9.2.6 JLILCCIS] [Lo =TT TP PR 189
9.2.7 (001171 0] 1) G TP P PO PP U PP PPPPPPPPR 189
9.2.8 DATAR NG . s 190

9.3 S i g[a (o T D= - P TP PRSP PPPRP P 193
9.3.1 SEING VATADIES ...ttt b e et e e st e e n
9.3.2 1070] 0 1V/=T o S 1 g To I (o TN NN U 04 Y o TSP UPPT S PPPP
9.3.3 Append Numeric/String to another String....

9.34 10T ISTU | S (] o TR PPPPPPRRP
9.35 REPIACE SUD SIING .ttt e e s e e skt e e et b e e st br e e e antr e e e e
9.3.6 Path String Functions

9.4 Date ANd TIME DALA.......eeiiiiiieiiiiie ettt e e bbbt e et e e s nb et e e et e e e e nb e e e a e s
9.4.1 Get Current Date Time
9.4.2 Convert Julian Date to String
9.4.3 Convert StrNG t0 JUIBN DALEuueiiiiiiieiiie ettt e et e s it e e nneee s 198

10 [0] [=Tod £ TP 199

10.1 L 0] [T ox (=T PP PUUUPPPPRN 199

Vi

Table of Contents

10.2 Y g o To [T aTo I d (0] (=Tt ¢3RO UPPPPNt 199
10.2.1 OpPEN @nd SAVE @ PIOJECTuviiiiiiei ittt ettt e et e e e e e et e e e e s e et e e e e e e e e s stbbareeaeeessanabraeeaaeenan 199
10.2.2 Append ONe ProjeCt t0 ANOTNET ittt e e e e e st e e e e e e s e ntbae e e e e e e s aannnreeeaaaenan 199
O e T I LoV Fo T 1 T=To [Vo PP PPRPR 200

10.3 Y =Yg oo TTaTo N o] (o =T R UUUUPPPRN 200
10.3.1 Create a Folder and Get IS Path...........coi it e e e e eeaa e 200
10.3.2 GELthe ACHVE FOIET.......co ittt ettt e e bt e e e bt e e e snbe e e e s nbbeeeeananeeennes 201
10.3.3 ACHVALE @ FOIUET ...ttt e ettt e e e e e ettt e e e e e e s nstb et e e e e e e e antbeeeeaaeesaannnnneeaaaean 201
10.3.4 Get Path for @ SPECITIC PAQE ...ccccei ittt e e e e e e e e e e s st e e e e e e s s enabraaeaaeeaan 201
10.3.5 Move a Page/Folder to ANOther LOCAtIONuueiiieiiiiiiiiiiie ettt e e e e e e e e e e e s eaabaaeeaaeeaan 202

104 Yoo ET] [g o [=T [T SO UPP PP 202
10.4.1 Access a Page by Name @nd INOEXcciieiiiiuiiiiiie et e ettt e e e e et e e e e e s st e e e e e e s s enabraeeaaeeaan 202
10.4.2 Getthe ACHVE Page @nd LAYETccooiuiiiiiiiieiiiiite ettt ettt e e e e s b e e e e 202
10.4.3 ACHVAIE ONE PAGE ..ccoueeiieiiiiie e itiee ettt et e e ettt e e e e st et e e s tt e e e ettt e e e amteeeeaabeeeeaanteeeeanneeaesanbeeeeaneneeeanns 203
10.4.4 USING FOTBACK ...ttt ekttt e e st e et e e e e e e s b e e e e anbneeenaes 203

10.5 Yo ot oIS g o 1Y/ [= Vo F= L - PRSI 204
10.5.1 ACCESS DALARANGE. ..ottt e ettt e e e e e e e e e e e e e e et e e e e e e e e e nann e e eaaeeaan 205
F0.5.2 ACCESS TT . s

10.6 Accessing Operations

10.6.1 LiSt All OPEIALIONS ...cceiuieiieitiete ettt e ettt e ettt e st e e st et e e e bbbt e e asb et e e e b bt e e e anb et e e aabr e e e s anbeeeeanbneeennns
10.6.2 Check Worksheet if Hierarchy
10.6.3 ACCESSING REPOM SNEEL.......oiiiiiiiiieiiti ettt ettt e st e st bt e s sab e e e s nnre e e s anbneeenaes
11 10T T 13T [S EOPPR
111 [4] o o 1411 oo RRR TP PP PT TP OPPPUPPPPRN 213
11.2 IMPOITING DALAeeeeeiite ettt e kbt e e ekt e e o b e e e e e s bt e e et e et e e ea et e e aa b b e e e anb e e e e nnnneeeanneee s 213
11.2.1 Import ASCII Data File int0 WOIKSNEEL.........ccoiiiiieiiiee et 213
11.2.2 Import ASCII Data File iNt0 MatriX SNEETL..........uuiiiiiiiiiiei e 216
11.2.3 Import Data Using an IMPOrt FIlLEEccooo i e e e e 216
11.2.4 Import Files With IMPOIt WIZArc.eoviiiiiiiiiiee ettt e e e e e 219
11.3 IMPOITING IMAGES ...ttt e ke e et e e e b e e e e ah b et e e et e e e e e en et e e e st b e e e snbr e e e nanneeeanneee s 220
11.3.1 IMPOrt IMAGE INTO MALIIX......eeeieiiiiiee ettt e e s et e ettt e s asbr e e e s nnbe e e e annneeenaes 220
11.3.2 Import Image into WOTIKSNEEL Cellooi it e e e 222
R C TR I [g o To gl [FoTo [(o T = T o] o [P OPPPUPTR PP PPPPR 223
114 IMPOITING VIAOS ...ttt ettt ettt e oo oo b bttt e e e e e e e bbbt e e et e e e e aanbbbe e e e e e e aaanbbbeeeeaeeeaannen 223
S R V=T £ To T o I | (T PSP PR PPRRPPORR 223
12 Do T] 11 o TR PP 227
12.1 (oo 1] o o [P PO PP P PP OPPPPTPP 227
12.2 EXPOIING WOIKSNEEIS. ...ttt et e e et e e s bt e e e snbn e e e s nneee s 227
12.3 o (oTo] a1l o [€T =T o o TP PR UUUPPPPRN 228
12.4 EXPOIING MBITICES ...tttk ettt o ket e e ek bt e e e bbbt e e s et e e e st bt e e sbb e e e sabneeeannneee s 229
12.4.1 EXport MatrixX t0 ASCIH DALtA Fil..........uiieiiieiiiiiiee ettt e e e s e e e e 229
12.4.2 Export Image from Matrix to IMage Fileeueiiiiiii e 229

vii

Origin C Programming Guide

125 o qoTo i1 To R/ o L= oL RO UPPPPNt 230
D R VT £ o o I |) (o TP TRRPTPRN 230
(1o ol o= Vo Tl o o] C =T o] o 1 A PRSPPSO 231
13 ANAIYSIS aNA APPLICALIONSeeeiiriie ettt e e s s e e e st e e e e e e s e e e e e e e e e 233
131 ANAIYSIS aNA APPIICALIONSeeeeieie ettt e et e e e st e e s s e e e e et r et e e e n e e e s nnre e e e anree e e 233
13.2 Y o1 g [=T 0= Lo USSP PP 233
R T2 R o1 2= PP OTRRPTPR
13.2.2 Interpolation/Extrapolation
R T B [01 (=T | =1 (T] o I PSP PP UPPRP PRI
13.2.4 Differentiation
13.3] 12 11 [5] 111 PP PP
13.3.1 Descriptive Statistics on Columns and Rows
13.3.2 FreQUENCY COUNT.....eiiiiiiiiititiiee ettt e et e e e e et e e e e e e et e e e e e e s ser e et e e e e e e nsrnn e e e e e e e e nsnnnneeeeeennn
13.3.3 Correlation COBICIENTt e e e et e e e e e e st bt e e e e e e e s sntebeeeeeeeessnebneeeaaaeaan
R TR A o0 1 YN =T PRSPPI
13.4 (101 I 1o SRS PP
R T R O T [Y= 111 o PRSPPI 246
R I W o 1= = U 1] o OO PO OO P PP OPPPP PPN 247
13.4.3 POIYNOMIAL FIEING ...eeeiiiiie ettt e et ettt e e s b et e s e a bt e e sab e e e e s nnne e e s annneeenne 255
T AV [0] o] [=T (=1 (oo PR RRPTPR 257
13,45 NON-NNEAY FIIEING ..veeeeiiiie ettt ettt e e bt e e sttt e e s b et e s ea bt e e sab e e e s b e e e e anbneeenaes 259
R 70 G T 1 o D PRSPPI 264
135 SHONAI PIOCESSINGttteete ettt ettt ettt e e e e ot bbbttt e e e e e e a b bbb et e e e e e e s ab b b e et e e e e e s annbb et e e e e e e e anbanneeeaeeaan 267
R R 70t R 1 14T To 11 11 [0 PSP PP TSP PPPPP 268
R TR0 i PSRRI 268
R TR T = I 1 (=Y o o USSR 269
13.5.4 WAVEIET ANGBIYSISeeeeieiiiiiiei ettt e ettt e e e e e e e bbbttt e e e e e e ab b b e e e e e e e e s aabbe e e e e e e e e annbrreeeaeeaan 270
13.6 PEAKS @NO BASEIINE ...ttt e e e e et e e e e e e e et e e e e e e bbb e e e e e e e e e anens 270
13.6.1 Getting input XY from Graph or WOrKSHEEL...........cooiiiiiiiiiii e 270
13.6.2 CreatliNg 8 BASEIINEcoi ittt oottt e e e e et e e e e e b e e e e e e e e eeaaeeaan 270
13.6.3 REMOVING @ BASEIINE ...ttt e e e ettt e e e e e ettt e e e e e e e et tb et e e e e e e e anebraeeaaee s 271
13.6.4 FINAING PEAKS.eeeeiiiiiii ittt ettt oottt e e e e e ettt e e e e e s s bbbt et e e e e e s aabbeeeeeeeeesnbbrreeaaeeaan 272
13.6.5 Integrating and FittiNg PEaKS.........ccoiiiiiii e 274
13.7 Using NAG Functions
B R o 1= = Vo oY g 1= PR SOUPRRR
13.7.2 Error Structure
13.7.3 Callback Functions
13.7.4 NAG Get DAta FIrOM OFIQINccoiuieieiiiiieiiieee ittt a sttt asb e e sbb e e ettt e s sabe e e e s nsbeeeeanbneeenaes
13.7.5 How to Call NAG e04 Functions
14 (O 101101 Q@] o)1= Tox £ T PO P TP OTP PP
14.1 (O8] o U1 @] o =Tt RO SRR 283
14.2 RS CS3 Io o P TUUPUUPPPPRN 283

viii

Table of Contents

14.3 Yol] o1 ANV g To [0 1 TP P SRR 283
14.4 N0 LTSV T [1T SUTUPPPRN 284
145 REPOIM SNEBLot e oo et e e e e e e et e e e e e e e s e et bt it b e eeeeeeaa et taaeeeaeeaaattberaeaeeaaanres 285
15 F oot g To [B - 1= o = Y= OSSR 287
151 ACCESSING DAADASEeeeeieee ettt e e ettt e e e e e e et e e e e e e e e aae e et e e e e e e e nntbeeeeaeeaanneaeeeas 287
15.2 IMPOrting fromM @ DAtADASEccoiiiiiiei e e e e e e e e e r e e e e e e e ba e e e e e e e aaee 287
15.3 EXPOrting iNt0 & DAADASEccuveiiiiiiieeei ettt n 289
154 ACCESSING SQLItE DAtADASEviviiiiie e e e e e e e e e e e anaaaea s 291
16 ACCESSING LADTAIK ..ottt e e e e ettt e e e e e ettt e e e e e e e e s nebb e e e e e e e s aannaeteeeaaeeaannnraneean 293
16.1 ACCESSING LADTAIKeeeieiiiiee ettt e sttt e sttt e e e sttt e e sttt e e s ab e e e e antbeeesseeeesanneeeeanteeeennn 293
16.2 Getting and Setting Values for LabTalk Variablesoociiiiiiiiii e 293
16.2.1 Getting and Setting LabTalk NUMEIC VAIUES........cccuiiiiiiiiieiiiie et 293
16.2.2 Getting and Setting LabTalk StriNg VAIUES...........c.coiiiiiiiiiiie it 294
16.3 RUNNING LADTAIK SCHIPL ...ttt e sttt e e s eat e e e e nt bt e e sante e e e snneeeeanneee s 295
16.4 Embedding LabTalk Script in Origin € COUEcocuiiiiiiiiieeeiiie et 295
17 Yo ot 1S To [G U] T 1o o T RO 297
17.1 Calling the impFile X-Function From OFigin €ccooiiiiiiiiiie et et s e et e e snneeee e ennes 297
18 (OS]) (T = Lo = S PP PP PP PP PPPRPPPPRPN 301
18.1 USEE INEEITACE ...ttt e oottt e e e oo ettt e e e e e e s bbbt et e e e e e s aan bbbt e e e e e e e annbbeneeaaeeaan 301
18.2 [DIF=1 (oo I PO TP PP O PP PPPPPTPP 301
RS T2 R B - 1o o O TP TP U PP PP OPPPP PPN
18.2.2 Built-in Dialog Boxes
S T2 B © 1\ B =1 (oo B OO PO PP PP UPPPP PPN
L18.2.4 X-FUNCHON ..tteee ittt e ekt e e et e oo bt e ek et oo e sttt e e 4k bt e e e st et e e eabe e e e e b neeeeanbneeeann
18.2.5 PYLNON DHAIOGttt ettt e e e ettt e e e e e e bbbt e e e e e e e e b e e e e e e e e e n b rreeaaeeaan
18.2.6 DIalOG BUIIAET ...ttt e et e et e e s e e e s s e e s anbn e e e e
18.2.7 Origin C HTML Dialog with JaVaSCript SUPPOIT.......ccoiiuiiiiiiiee ittt e e e e e e 338
18.3 L= UL O T o] £ T PP P P PP PUPPPPPPRPIN 370
18.4 Picking POINtS from @ Grapheiiiiiiie ettt et e 371
185 VYo (o 1aTe [@o] 11 7o] SR (o IX- W] £=T o] o IR T O URRP PP 372
19 ACCESSING EXIEINAI RESOUITESceiiuiiiiiiiiiie ittt ettt ettt e e b e e e as bt e e et et e e s bb e e e e anbb e e e ebteeesnanes 377
19.1 ACCESSING EXIEINAI RESOUITESeeiiiieiiiitiei ettt e ettt e e e e et e e e e e e abb b et e e e e e e anbbbeeeeeeeeannneneeeas 377
19.2 Calling Third Party DLL FUNCHONScocuuiiiiiiiiiei ettt ettt e et e s 377
19.2.1 Calling Third Party DLL FUNCHONSctiiiirieiiiiee ettt et e st e s e e eesannneeenaes 377
19.2.2 Calling GNU SCIentific LIDIAIYceueeieiieee ettt e e e e e ebe e e e e e an 379
19.2.3 Access CPIUSPIUS(.Net) ANd CSNAIP DLLcoouiiiiiiiiieiiiie ettt 382
19.2.4 Access PYthon Via EXIEINGAI DLLuioiiiiiiiiiiii ettt e e et e e e e e e sianreeeaaeeean 394

Origin C Programming Guide

19.3 Access an External APPCALIONoiiiiiiiiiiie e e e s e e e e e e e e e e a e s 404
20 RETEIEICE ... s 407
20.1 [(] (T o (o] PP TPPP 407
20.2 (01 TSN o 11=T = (o] 1) Y/ RO UUPRRSRP 407
20.3 [OL0] | L= 110 o 1SRN 411

1 Origin C Programming Guide

Origin provides two programming languages: Origin C and LabTalk.

This guide covers the Origin C Programming language. It also shows you how to create and control Dialog
Builder dialogs. Dialog Builder allows you to create and control custom dialogs such as floating tools, dialog

boxes and wizards.
It is assumed the reader is familiar with C/C++ language including object-oriented programming concepts.

This guide should be used in conjunction with the Origin C Language Reference.

This section covers the following topics:

Basic Features

Language Fundamentals

Predefined Classes

Creating and Using Origin C Code

Matrix Books Matrix Sheets and Matrix Objects

Workbooks Worksheets and Worksheet Columns

Graphs

Working with Data

Projects
Importing

Exporting

Analysis and Applications

Output Objects

Accessing Database

Accessing LabTalk

Accessing X-Function

= =4 =4 =4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 - -

User Interface

http://www.originlab.com/doc/OriginC/ref
http://www.originlab.com/doc/OriginC/guide/Basic-Features
http://www.originlab.com/doc/OriginC/guide/Language-Fundamentals
http://www.originlab.com/doc/OriginC/guide/Predefined-Classes
http://www.originlab.com/doc/OriginC/guide/Creating-and-Using-Origin-C-Code
http://www.originlab.com/doc/OriginC/guide/Matrix-Books-Matrix-Sheets-and-Matrix-Objects
http://www.originlab.com/doc/OriginC/guide/Workbooks-Worksheets-and-Worksheet-Columns
http://www.originlab.com/doc/OriginC/guide/Graphs
http://www.originlab.com/doc/OriginC/guide/Working-with-Data
http://www.originlab.com/doc/OriginC/guide/Projects
http://www.originlab.com/doc/OriginC/guide/Importing
http://www.originlab.com/doc/OriginC/guide/Exporting
http://www.originlab.com/doc/OriginC/guide/Analysis-and-Applications
http://www.originlab.com/doc/OriginC/guide/Output-Objects
http://www.originlab.com/doc/OriginC/guide/Accessing-Database
http://www.originlab.com/doc/OriginC/guide/Accessing-LabTalk
http://www.originlab.com/doc/OriginC/guide/Accessing-X-Function
http://www.originlab.com/doc/OriginC/guide/User-Interface

Origin C Programming Guide

Accessing External Resources

I Reference

http://www.originlab.com/doc/OriginC/guide/Accessing-External-Resources
http://www.originlab.com/doc/OriginC/guide/Reference

2 Basic Features

Origin C is a high level programming language closely based on the ANSI C programming language. In addition,
Origin C supports a number of C++ features including classes, mid-stream variable declarations, overloaded
functions, references, and default function arguments. Origin C also supports collections, and the foreach and

using statements from the C# programming language.

Origin C programs are developed in Origin's Integrated Development Environment (IDE) named Code Builder.
Code Builder includes a source code editor with syntax highlighting, a workspace window, compiler, linker, and a

debugger. Refer to Help: Programming: Code Builder for more information about Code Builder.

Using Origin C allows developers to take full advantage of Origin's data import and handling, graphing, analysis,
image export capabilities, and much more. Applications created with Origin C execute much faster than those

created with Origin's LabTalk scripting language.

2.1 Hello World Tutorial

This tutorial will show you how to use Code Builder to create an Origin C function, and then access the function
from Origin. Though the function itself is very simple, the steps provided here will help you get started with writing

your own Origin C functions.

E5]
1. Click the Code Builder button b on Origin's Standard toolbar to open Code Builder.

2. In Code Builder, click the New button D on Code Builder's Standard toolbar to open the New File

dialog.

Origin C Programming Guide

3. Select C File from the list box of the dialog, and then type HelloWorld in the File Name text box.

[New File =

-

Origin C gource files contain functions that
C++ File can be called from other functions and

H File from LabT alk scnptz once the file iz added
LabTalk Script File to the Code Builder wark zpace, compiled,
QCZ File and linked. Origin C files may contain
Text File mozt AMNS| C statements. a zelection of

C++ and CH statements, and
pre-proceszor directives.

File: M arne: Add to wWorkspace
Hellatorld = Fill with default contents
Location:

O Swaffsoriging2sOriginCh EI

Idze path like "src' without leading "' to indicate subdirecton from
Origity directory

4. Click OK and the new file will be opened in Code Builder's Multiple Document Interface (MDI).

5. Copy or type the following Origin C code beneath the line that reads // Start your functions here.

int test ()
{
printf("hello, world \'n"); [/ Call printf function to output our text
/I \ nrepresents the newline character
return 0; // Exit our function, returning zero to the ¢ aller
}

source file. The Output window of Code Builder should display as

7.

Basic Features

i

&3 Untitled - Code Builder - HelloWorld.c

File Edit View Build Debug Tools Window Help
NS @S KL B B RN
Workspace w 0 X HelloWorld.c Xl v
L‘E Origin C Workspace 31 /¢ Start your functions here. T'
- Packages 32

[Project 33 int tesat()

[System 34 {

b O Temporary 35 printf("hello, world\n™); // Call printf fun
ﬁ User [Autoload] = E : // \n represents t

, . 37

"b User ‘D:\uff\origin 38 return 0; // Exit our function, returning ze

D-- HelloWorld.c 19 } H

Workspace View Edit Window

" m b J F| Tl] 2
Cutput * 0 X Variables + 0 X (Command & Fes... v Q1 X
compiling... test -
HelloWorld.c

Linking... LabTalk Console| _
Done! Local Variables

Qutput Window 1> test
hello, world
« [3

= output |@Call 5t... |5 Find R...| (@ Breakp..| Elvariabi..| 3 Bookm...

Now you can use this function in Origin. For example, you can call this function in Origin's Script

Window. If the Script Window is not open, select the Window: Script Window menu item from the

Origin menu to open it.

Origin C Programming Guide

8. Type the function name test in the Script Window and then press the ENTER key to execute the

command. The Origin C function will be executed and hello, world will be displayed in the next line.

i "

7| Seript Window : LabTalk =
File(Tedt) Edit Hide Tools
tests i

hello, world

9. Besides the Script Window, the function can also be called from the LabTalk Console Window in Code

Builder. Select View:LabTalk Console in Code Builder if this console window is not open.

\ ;' / Once an Origin C file has been successfully compiled and linked, all functions defined in the file

can be called as script commands from anywhere in Origin that supports LabTalk script during
the current Origin session. The function parameters and return value need to meet certain
criteria for the function to be accessible from script and there are techniques to make such
functions always avaliable. To learn more, please refer to the LabTalk Programming: LabTalk
Guide: Calling X-Functions and Origin C Functions: Origin C Functions chapter of the
LabTalk help file. This help file is accessible from the Help: Programming: LabTalk main menu

in Origin.

3 Language Fundamentals

3.1 Language Fundamentals

Origin C is closely based on the ANSI C/C++ programming languages. This means Origin C supports the same
data types, operators, flow control statements, user defined functions, classes and error and exception handling.

The next sections will elaborate on these areas of Origin C.

This section covers the following topics:

Data Types and Variables

Operators

Statement Flow Control

Functions
Classes

Error and Exception Handling

=A =/ =4 =4 =4 =

3.2 DataT ypes and Variables

3.2.1 ANSI C Data Types

Origin C supports all the ANSI C data types: char, short, int, float, double and void. In addition, you can have an

array of, and a pointer to, each of these data types.

char name[50] ; /l Declare an array of chara cters
unsigned char age; /I Declare an unsigned 8 - bit integer
unsigned short year; // Declare an unsigned 16 - bit integer

3.2.2 Origin C Composite Data Types

Although the C syntax for declaring an array is supported, Origin C provides string, vector and matrix classes

to simplify working with data types in one or two dimensional arrays. These data types include char, byte, short,

http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Operators
http://www.originlab.com/doc/OriginC/guide/Statement-Flow-Control
http://www.originlab.com/doc/OriginC/guide/Functions
http://www.originlab.com/doc/OriginC/guide/Classes
http://www.originlab.com/doc/OriginC/guide/Error-and-Exception-Handling

Origin C Programming Guide

word, int, uint, complex. A vector can be of type string for a string array, but a matrix cannot. A matrix can be of

numerical types only.

string str = "hello, world \n"; /I Declare and initialize a string

vector <double > vAl = {15, 1.8, 1.1}; // Declare and initialize doubles

vector VA2 = {25, 28, 21, 24};

vector <string > vs(3); /I Declare a string array

vs[0] = "This" ; /I Assign string to each string array item
vs[1] = "is" ;

vs[2] = "test" ;

matrix <int > mAl; /I Declare a matrix of integers

matrix mA2; /I Declare a matrix of doubles

/I NOTE: The double data type is implied when a data type is not
/I specified in the declaration of vector and matrix variables.

Another useful class provided by Origin C is the complex class. The complex class supports humeric data

containing both a real and an imaginary component.

complexcc (45, 7.8); // Declare a complex value.
/I The real component is set to 4.5 and
// the imaginary component is set to 7.8

out _complex (“"value =" ,cc); [/l Outputthe complex value

3.2.3 Color

Language Fundamentals

Colors in Origin C are represented with a DWORD value. These values can be an index into Origin's internal

color palette or an actual color composed of red, green, and blue components.

3.2.3.1 Palette Index

Origin's internal Palette contains 24 colors. An index into Origin's internal color palette is a zero based value from
0 to 23. Origin C provides named constants for each of these colors. Each name begins with the prefix

SYSCOLOR_ followed by the name of the color. The following table lists the 24 color names and their indices.

Index Name Index Name

0 SYSCOLOR_BLACK 12 SYSCOLOR_DKCYAN

1 SYSCOLOR_RED 13 SYSCOLOR_ROYAL

2 SYSCOLOR_GREEN 14 SYSCOLOR_ORANGE

3 SYSCOLOR_BLUE 15 SYSCOLOR_VIOLET

4 SYSCOLOR_CYAN 16 SYSCOLOR_PINK

5 SYSCOLOR_MAGENTA 17 SYSCOLOR_WHITE

6 SYSCOLOR_YELLOW 18 SYSCOLOR_LTGRAY

7 SYSCOLOR_DKYELLOW 19 SYSCOLOR_GRAY

8 SYSCOLOR_NAVY 20 SYSCOLOR_LTYELLOW
9 SYSCOLOR_PURPLE 21 SYSCOLOR_LTCYAN

10 SYSCOLOR_WINE 22 SYSCOLOR_LTMAGENTA
11 SYSCOLOR_OLIVE 23 SYSCOLOR_DKGRAY

DWORD dwColor = SYSCOLOR_ORANGE;

3.2.3.2 Auto Color
There is a special color index referred to as Auto. When this index is used the element will be colored using the
same color as its parent. Not all elements support the Auto index. See Origin's graphical user interface for the

element to determine if the Auto index is supported.

The INDEX_COLOR_AUTOMATIC macro is used when the Auto index value is needed.

DWORD dwColor = INDEX_COLOR_AUTOMATIC;

Origin C Programming Guide

3.23.3 RGB
An Origin color value can also represent an RGB value. RGB values are made up of 8-bit red, green, and blue

components. These values can easily be made using the RGB macro}.

DWORD brown = RGB(139,69,19); // saddle brown

The values returned from the RGB macro cannot be directly used as Origin color values. You will need to use the
RGB20OCOLOR macro to convert the RGB values to Origin color values.
DWORD brown = RGB20OCOLOR(RGB(139,69,19)); // saddle brown

If you ever need to know whether an Origin color value represents an RGB value or an index into a palette then
you can use the OCOLOR_IS_RGB macro. This macro returns true if the value represents an RGB value and

returns false otherwise.

if (OCOLOR_IS _RG@ocolor))

out_str ("color value repr esents an RGB color");
else

out_str ("color value represents a color index");

Once you determine that an Origin color value represents an RGB value, then you can use the
GET_CRF_FROM_RGBOCOLOR macro to extract the RGB value from the Origin color value.

if (OCOLOR_IS_RG@ocolor))

{
DWORD rgb = GET_CRF_FROM_RGBOCO[6®lor) ;
printf("red = %d, green = %d, blue = %d \n",
GetRValue (rgb), GetGValue (rgb), GetBvalue (rgb)) ;
}

3.3 Operators

Operators support the same arithmetic, logical, comparative, and bitwise operators as ANSI C. The following

sections list the four types of operators and show their usage.

3.3.1 Arithmetic Operators

10

Language Fundamentals

Operator Purpose
* multiplication
/ division
% modulus (remainder)
+ addition
- subtraction
n exponentiate
See note below.

Note: Origin C, by default, treats the caret character(”) as an exponentiate operator. This is done to be consistent
with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can force Origin C to treat the

caret character as the exclusive OR operator by using a special pragma statement before your code.

out_int ("10 raised to the 3rd is " , 1073);
#pragma xor (push, FALSE

out_int ("I0XOR3is" , 1073);

#pragma xor (pop) // set back to the default action of xor

Dividing an integer by another integer will give an integer result by default. Use the pragma statement below

before codes to make Origin C compiler to treat all numeric literals as double type.

out_double ("3/2is" , 3/2); /loutputl

#pragma numlittype (push, TRUB
out_double ("3/2is" , 3/2); [loutputl5
#pragma numlittype (pop) // set back to the default action of numlittype

The modulus operator calculates the remainder of the left operand divided by the right operand. This operator

can only be applied to integral operands.

out_int ("The remainder of 11 divided by 2 is " , 11 % 2);

11

Origin C Programming Guide

3.3.2 Comparison Operators

Comparison operators evaluate to true or false with true yielding 1 and false yielding 0.

Operator Purpose
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
I= not equal to
if (aa >=0)
out_str ("aaisg reater than or equal to zero");
if (12 == aa)
out_str ("aais equal to twelve");
if (aa <99)
out_str ("aais less than 99");

3.3.3 Logical Operators

Logical operators evaluate to true or false with true yielding 1 and false yielding 0. The operands are evaluated

from left to right. Evaluation stops when the entire expression can be determined.

Operator Purpose
! NOT
&& AND
Il OR

Consider the following two examples:

12

Language Fundamentals

exprlA && expr2
exprlB || expr2

expr2 will not be evaluated if exprlA evaluates to false or exprlB evaluates to true. This behavior is to the
programmer's advantage and allows efficient code to be written. The following demonstrates the importance of

ordering more clearly.

if (NULL != ptr && ptr ->dataValue < upperLimit)
process_data (ptr);

In the above example the entire 'if* expression will evaluate to false if ptr is equal to NULL. If ptr is NULL then it is
very important that the dataValue not be compared to the upperLimit because reading the dataValue member

from a NULL pointer can cause an application to end abruptly.

3.3.4 Bitwise Operators

Bitwise operators allow you to test and set individual bits. The operator treats the operands as an ordered array

of bits. The operands of a bitwise operator must be of integral type.

Operator Purpose
~ complement
<< shift left
>> shift right
& AND
n exclusive OR (XOR)
See note below.
| inclusive (normal) OR

Note: Origin C, by default, treats the caret character as an exponentiate operator. This is done to be consistent
with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can force Origin C to treat the

caret character as the exclusive OR operator by using a special pragma statement before your code.

out_int ("10 raised to the 3rd is " , 1073);
#pragma xor (push, FALSE)

out_int ("10 XOR 3is™" , 1073);

13

Origin C Programming Guide

#pragma xor (pop)

3.4 Statement Flow Control

Origin C supports all ANSI C flow control statements including the if, if-else, switch, for, while, do-while, goto,
break and continue statements. In addition, Origin C supports the C# foreach for looping through a collection of

objects.

3.4.1 The if Statement

The if statement is used for testing a condition and then executing a block of statements if the test results are
true. The if-else statement is similar to the if statement except the if-else statement will execute an alternative

block of statements when the test results are false.

The following are examples of if statements in Origin C, using different input types:

bool bb = true ; /I boolean type
if (bb)
{
out_str ("bbis true");
}
int nn = 5;
if (nn) Il integer type, 0 = false, non - zero = true
{

out_str ("nnnot0");

double * pData = NULL

if (NULL == pData) //checkif pointer is NULL

{

out_str ("Pointer pData is NULL");

14

Language Fundamentals

The following is a simple if-else block in Origin C. Note that the if-block and the else-block are enclosed in

separate sets of curly braces, {}.

if (bRet)
{

out_str ("Valid input") /l when bRet is true
}
else
{

out_str ("INVALID input"); /l when bRet is false
}

The curly braces are optional if the block contains only one statement. This means the above code can also be

written without the braces.

if (bRet)

out _str ("Valid input"); / when bRet is true
else

out_str ("INVALID input”); /I when bRet is false

3.4.2 The switch Statement

The switch statement is used when you need to execute a different block of statements dependent on a set of

mutually exclusive choices.

Cases are executed by ascending integer, starting with the number given in the integer argument to the switch

statement. Note that the break command will exit the switch-block from any of the cases.

switch (nType) //integer type value as condition

{

15

Origin C Programming Guide

case 1:
case 2:
out_str ("Case 1 or2")

break ;

case 3:
out_str ("Case 3");

/I no break keyword here, so fall through to case 4

case 4:
out_str ("Case4");

break ;

default
out_str ("Other cases");

break ;

3.4.3 The for Statement

The for statement is often used to execute one or more statements a fixed number of times or for stepping

through an array of data wherein each element is referenced by an index.

char str [] = "Thisis a string" ;
for (int index = 0;index < strlen(str);index ++)
{
printf("char at %2d is %c \'n", index, str [index 1) ;
}

3.4.4 The while Statement

16

Language Fundamentals

The while and do-while statements execute a block of statements until a condition has been met. The while
statement tests the condition at the beginning of the loop and the do-while statement tests the condition at the

end of the loop.

int count = 0O;

while (count < 10) // execute statements if condition is true

{
out_int ("count=" ,count);
count ++;
}
int count = O;
do
{
out_int ("count=" ,count);
count ++;
} while (count < 10); // execute statements if condition is true

3.4.5 Jump Statements

Jump statements are used to unconditionally jump to another statement within a function. The break, continue,
and goto statements are considered jump statements. The following examples demonstrate these jump

statements.

3.45.1 break

for (int index = 0;index < 10;index ++)

if (pow(index, 2) > 10)

break ; // terminate for loop

17

Origin C Programming Guide

out_int ("index=" ,index) ;

3.4.5.2 continue

printf("The odd numbers from 1 to 10 are:");
for (int index = 1;index <= 10;index ++)
{

if (modindex, 2) == 0)

continue ; // nextindex

printf("%d\ n",index);

}
3.45.3 goto
out_str ("Begi n");
goto Marki,
out_str ("Skipped statement");
Mark1 :
out_str ("First statement after Mark1");

3.4.6 The foreach Statement

The foreach statement is used for looping through a collection of objects. The following code loops through all

the pages in the project and outputs their name and type.

foreach (PageBase pg in Project. Pages)

{

18

Refer to the Collections section for a list of all the Collection based classes in Origin C.

printf("%s is of type %d \'n", pg.

3.5 Functions

351

Global Functions

GetName() , pg.

GetType())

Language Fundamentals

Origin C provides many global functions for performing a variety of tasks. These global functions fall into twenty-

six categories.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Basic 10

Character and String Manipulation

COoM
Communications
Curve

Data Conversion

Data Range

Date Time

File 10

File Management
Fitting

Image Processing
Import Export

Internal Origin Objects
LabTalk Interface
Math Functions
Mathematics

Matrix Conversion and Gridding
Memory Management
NAG

Signal Processing
Spectroscopy

Statistics

19

http://www.originlab.com/doc/OriginC/guide/Collections

Origin C Programming Guide

24. System
25. Tree

26. User Interface

Please refer to the Global Functions section for a complete list of functions with examples.

3.5.2 User -Defined Functions

Origin C supports user-defined functions. A user-defined function allows Origin C programmers to create
functions that accept their choice of arguments and return type. Their function will then operate on those

arguments to achieve their purpose.

The following creates a function named my_function that returns a double value and accepts a double value as

its only argument.

double my_function (double dData)

dData += 10;

return dData;

The following code snippet shows how to call the above function.

double d = 3.3; /I Declare 'd' as a double value
d = my_function (d); /I Call the above function
out_double ("d==" ,d); //Outputnew value of 'd'

Origin C functions can also be called from LabTalk.

d = 33; /I Assign 3.3 to 'd"’

o
1

my_funct ion (d); // Call the above function

d=; /I Output new value of 'd'

20

http://www.originlab.com/doc/OriginC/ref/Global-Functions

3.6 Classes

Origin C supports many built-in classes, but also allows users to create their own.

3.6.1 Origin Defined Classes

Language Fundamentals

Origin C comes with predefined classes for working with Origin's different data types and user interface objects.

These classes will help you quickly write Origin C code to accomplish your tasks. This section will discuss the

base classes to give you an overview of the capabilities these classes offer. See the next chapter, Predefined

Classes, or the Origin C Wiki for more details and examples of Origin defined classes.

3.6.2 User Defined Classes

Origin C supports user-defined classes. A user-defined class allows Origin C programmers to create objects of

their own type with methods (member functions) and data members.

The following code creates a class named Book with two methods, GetName and SetName.

cla ss Book

public

private

string GetName ()

{

return ~ m_strName;

void SetName(LPCSTR IpcszName)

{

m_strName = IpcszName;

string m_strName;

21

Origin C Programming Guide

And below is a simple example using the class and method definitions above to declare an instance of the Book

class, give it a name using SetName, and then output the name using GetName.

void test class ()

S Book OneBook; // Declare a Book object
/I Call public function to Set/Get name for the Book object
OneBook. SetName("ABC") ;
out_str (OneBook. GetName()) ;

}

The above example is very simple. If you want to know more class features, for example, constructors and
destructors, or virtual methods, please download this zip file, unzip and browse to the \Origin C

Examples\Programming Guide\Extending Origin C subfolder to view the EasyLR.c, EasyLR.h and EasyFit.h files.

3.7 Error and Exception Handling
Origin C supports C++ exception handling using the try, catch, and throw statements.
The try block consists of the try keyword followed by one or more statements enclosed in braces. Immediately

after the try block is the catch handler. Origin C supports only a single catch handler that accepts an integer

argument. After the catch keyword comes one or more statements enclosed in braces.

try
{

LPSTR Ipdest = NULL /I NULL pointer on purpose

strepy(Ipdest, "Test"); [/l copyto NULL pointer to cause error
}

catch (int nErr)

{

out_int ("Error=" ,nErr);

22

http://blog.originlab.com/wp-content/uploads/2017/01/OriginCExamples.zip

Language Fundamentals

The try-catch works by executing the statements in the try block. If an error occurs, the execution will jump to the

catch block. If no error occurs then the catch block is ignored.

The throw keyword is optional and is used to trigger an error and cause execution to jump to the catch block.

void TryCatchThrowEx ()

{
try
{
DoSomeWork 4) ; // pass a valid number to show success
DoSomeWorl - 1) ; // pass an invalid number to cause error
}
catch (int iErr)
{
printf("Error code = %d \n" iErr);
}
}

void DoSomeWork double num)

{
if (num< 0)
throw 100; // Force error
if (0 == num)
throw 101; // Force error
double result = sgrt(num) / log(num);
printf("sqrt(%f) / log(%f) = %g \ n", num, num, result);
}

23

4 Predefined Classes

4.1 Predefined Classes

In this section, the predefined classes in Origin C will be described. Please see class hierarchy as a reference for

more information about the relationships among Origin C built-in classes.

This section covers the following topics:

Analysis Class

Application Communication Class

Composite Data Types Class

Internal Origin Objects Class

System Class

User Interface Controls Class

=A = =4 =4 =4 A A

Utility Class

4.2 Anal ysis Class

The following classes are used to perform data analysis. For more details, please refer to the Origin C: Origin C

Reference: Classes: Analysis chapter in the help document of OriginC.

Class Brief Description

This class provides a method for accessing the information of the fitting function, as

well as the current evaluation state that is generated by implementing the fitting

NLFitContext
function in Origin C.
This class is the higher level Origin class. It wraps the NLFit class with a friendly
interface to aid in implementing the fitting evaluation procedure. It is the kernel of the
NLFitSession

NLFit dialog. This class is recommended for coding in Origin C, because it takes care

of all the complexities that arise from the process of interfacing to Origin.

25

http://www.originlab.com/doc/OriginC/guide/Class-Hierarchy
http://www.originlab.com/doc/OriginC/guide/Analysis-Class
http://www.originlab.com/doc/OriginC/guide/Application-Communication-Class
http://www.originlab.com/doc/OriginC/guide/Composite-Data-Types-Class
http://www.originlab.com/doc/OriginC/guide/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/guide/System-Class
http://www.originlab.com/doc/OriginC/guide/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/guide/Utility-Class
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/NLFitContext
http://www.originlab.com/doc/OriginC/ref/NLFitSession

Origin C Programming Guide

4.3 Application Communication Class

The following classes are used to enable communication between Origin and other applications. For more

details, please refer to the Origin C: Origin C Reference: Classes: Application Communication chapter in

the help document of OriginC.

Class Brief Description

Matlab Used to enable communication between Origin and MATLAB.

4.4 Composite Data Types Class

The following classes are composite data types classes. For more details, please refer to the Origin C: Origin

C Reference: Classes: Composite Data Types chapter in the help document of OriginC.

Class Brief Description

A data set of CategoricalData type is an array of integers. This array is tied to
an internal Origin data set of Text type, and will be allocated and sized
CateqoricalData dynamically. A data set of this type maps the text values to categories by
referring to indices (1 based offset). The text values of mapping indices are

stored in the data member of CategoricalMap.

A data set of CategoricalMap type is an array of text values. This array will be
allocated and sized dynamically, but not tied to any internal Origin data set.

. This data set contains a set of unique text values, which are sorted alpha-
CateqgoricalMap
numerically and typically referenced by the elements of the associated object of

CategoricalData type.

This class is used to handle number data of complex type. It contains both the

complex Real part and Imaginary part of the complex number.

This class is derived from the curvebase and vectorbase classes, whose
methods and properties it inherits. An object of Curve type can be plotted using
methods defined in the GraphLayer class easily, and it is comprised of a Y data
Curve set and, typically (but not necessarily), an associated X data set. For example,
a data set plotted against row numbers will not contain an associated X data

set.

26

http://www.originlab.com/doc/OriginC/ref/Application-Communication
http://www.originlab.com/doc/OriginC/ref/Matlab
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/CategoricalData
http://www.originlab.com/doc/OriginC/ref/CategoricalMap
http://www.originlab.com/doc/OriginC/ref/complex
http://www.originlab.com/doc/OriginC/ref/Curve-Class

Predefined Classes

This class, which is derived from the vectorbase class, from which it inherits
methods and properties, is an abstract base class and is used to handle the
curvebase classes of Curve type, polymorphically. So objects of curvebase type cannot be

constructed, and a derived class, such as Curve, should be used instead.

This class is derived from the vector and vectorbase classes, and it inherits
their methods and properties. A Dataset is an array, which is allocated and
sized dynamically. It can be tied or not tied to an internal Origin data set. By
Dataset default, the Dataset is of type double, but it can also be of any basic data type,
including char, byte, short, word, int, uint and complex (but not string). The

syntax Dataset<type> can be used to construct these types of Dataset.

This class is derived from the matrix and matrixbase classes, from which it
inherits methods and properties. A Matrix (upper case M) is a two-dimensional
array, which is allocated and sized dynamically, and tied to an internal Origin
matrix window. The default type of a Matrix is double, but any basic data type is
allowed as well, including char, byte, short, word, int, uint and complex (but not

string). The syntax Matrix<type> is used to construct these types of Matrix.

This class is used to access the data in the internal Origin matrix, while the
Matrix MatrixObiject class is used to control the style of the matrix. That is to say, the
relationship between the MatrixObject and Matrix classes is the same as the

one between the Column and Dataset classes.

The data values displayed in the cells of the Origin matrix (referenced by a
Matrix object) are typically referred to, in the worksheet, as Z values, whose
associated X and Y values are linearly mapped to the columns and rows of the

matrix, respectively.

This class is derived from the matrixbase class, from which it inherits methods
and properties. A matrix (lower case m) is a two-dimensional array, which is
allocated and sized dynamically, and is not tied to any internal Origin matrix
matrix window, which provides more flexibility. The default type of a matrix is double,
but any basic data type can be used as well, including char, byte, short, word,
int, uint and complex (but not string). The syntax matrix<type> is used to

construct these types of matrix.

27

http://www.originlab.com/doc/OriginC/ref/curvebase
http://www.originlab.com/doc/OriginC/ref/Dataset
http://www.originlab.com/doc/OriginC/ref/Matrix-Class
http://www.originlab.com/doc/OriginC/ref/matrix

Origin C Programming Guide

matrixbase

This class is an abstract base class for handling the matrix and Matrix class
types polymorphically. Thus, objects of matrixbase type cannot be constructed,
and objects of its derived classes, such as matrix and Matrix, should be used

instead.

PropertyNode

This class is only used for including the properties of different data types, such

as Bool, int, float, double, string, vector, matrix, and picture, etc.

This class is used to construct a null terminated array of characters, which is

similar to an MFC CString object. A lot of methods for manipulating strings (text

string data) are defined in this class. It can also be used together with the vector

class by syntax vector<string> to define string arrays.

This class is used to save Origin C trees as XML files, as well as to load XML
Tree files to Origin C trees.

This class provides several methods for constructing multilevel trees, traversing
TreeNode

trees and accessing the attributes of tree nodes.

TreeNodeCollection

This class is used to get a collection of child tree nodes with an enumerative

name prefix.

This class is an abstract base class used for handling objects of vector and

Dataset types polymorphically. Thus, objects of this type cannot be

vectorbase constructed, and objects of its derived classes, such as vector and Dataset,
should be used instead.
This class is derived from the vectorbase class, from which it inherits methods
and properties. A vector is an array, which is allocated and sized dynamically,
and not tied to any internal Origin data set, which allows for more flexibility. The
vector

default type of vector is double, but other basic data types are also allowed,
including char, byte, short, word, int, uint, complex, and string. The syntax

vector<type> can be used to construct these types of vector.

28

http://www.originlab.com/doc/OriginC/ref/matrixbase
http://www.originlab.com/doc/OriginC/ref/PropertyNode
http://www.originlab.com/doc/OriginC/ref/string
http://www.originlab.com/doc/OriginC/ref/Tree-Class
http://www.originlab.com/doc/OriginC/ref/TreeNode
http://www.originlab.com/doc/OriginC/ref/TreeNodeCollection
http://www.originlab.com/doc/OriginC/ref/vectorbase
http://www.originlab.com/doc/OriginC/ref/vector

Predefined Classes

4.5 Internal Origin Objects Class

The following classes are used to handle Origin objects. For more details, please refer to the Origin C: Origin C

Reference: Classes: Internal Origin Objects chapter in the help document of OriginC.

Class

Brief Description

This class is derived from the OriginObject class, and can be used to

access Origin axes. Origin axes are contained by layers on an Origin

page.

AxisObject

This class is derived from the OriginObject class, and can be used to
access Origin axis objects, including axis ticks, grids and labels. Origin

axis objects are contained by axes on an Origin graph page.

Collection

This class provides a template for collections of various internal Origin
objects, such as Pages (the collection of all PageBase objects in a
project file), etc. This class contains an implicit templatized type
_TemplType, which is the type of one element of the collection. For
example, the templatized type of the Pages collection in the Project

class (Collection<PageBase> Pages;) is PageBase.

Each collection usually has a parent class, whose data member is the
collection. For example, Collection<PageBase> Pages is one member
of the Project class, because Project contains all the pages. Therefore,

each collection can be attached or unattached to an internal object.

All collections can use the methods defined in the Collection class. The
foreach loop is the most useful way for looping once for each of the

elements in the collection.

CollectionEmbeddedPages

This class is used to access the pages embedded in a worksheet.

Column

This class is derived from the DataObject, DataObjectBase and
OriginObject classes, and it inherits their methods and properties. In this
class, methods and properties are provided for dealing with Origin
worksheet columns. A worksheet object contains a collection of Column

objects, and each Column object holds a Dataset. A Column object is

29

http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Axis
http://www.originlab.com/doc/OriginC/ref/AxisObject
http://www.originlab.com/doc/OriginC/ref/Collection
http://www.originlab.com/doc/OriginC/ref/CollectionEmbeddedPages
http://www.originlab.com/doc/OriginC/ref/Column-Class

Origin C Programming Guide

mainly used for controlling the style of data in the associated Dataset.

A Column object is a wrapper object, which refers to an internal Origin

column object, but does not actually exist in Origin.

DataObject

This class is derived from the DataObjectBase class, and is the base
class of worksheet columns and matrix objects. Origin data objects are
contained in layers on an Origin page. For example, columns (data

objects) are contained in a worksheet (layer) on a worksheet window

(page).

DataObjectBase

This class is an abstract base class, which provides methods and
properties for handling the class types related to DataObject and
DataPlot, polymorphically. Thus, objects of this type cannot be
constructed, and objects of its derived classes, such as DataObject,

Column, MatrixObject and DataPlot, should be used instead.

DataPlot

This class is derived from the DataObjectBase and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for Origin data plots. An internal
Origin data plot object is used to store the characteristics of the Origin

data plot, and it is contained in a graph layer on a graph page.

A DataPlot object is a wrapper object, which refers to an internal Origin
data plot object and does not actually exist in Origin. Thus, multiple

wrapper objects can refer to the same internal Origin object.

DataRange

Methods and properties are provided in this class for constructing data
ranges and accessing data in a Worksheet, Matrix or Graph window.
This class does not hold data by itself, it just keeps the data range with
the page name, sheet name (layer index for a graph) and row/column
indices (data plot indices for a graph). Multiple data ranges can be
contained in one DataRange object, and the sub data range can be the
whole data sheet, one column, one row, multiple continuous columns,

or multiple continuous rows.

30

http://www.originlab.com/doc/OriginC/ref/DataObject
http://www.originlab.com/doc/OriginC/ref/DataObjectBase
http://www.originlab.com/doc/OriginC/ref/DataPlot-Class
http://www.originlab.com/doc/OriginC/ref/DataRange-Class

Predefined Classes

DataRangeEx This class is the extensional class of DataRange.
This class is used to access non-numeric data sets, which are usually
DatasetObject members of Column objects.
This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. This class is used to handle
Datasheet
Origin worksheet and matrix layers.
Project Explorer is a user interface inside Origin with folder/sub-folder
structure, just likes Window Explorer. It is used to organize and access
graph, layout, matrix, note, and worksheet windows in an Origin project
file.
The Folder class has the ability to access the methods and properties of
Folder Project Explorer, and contains collections of all Origin pages and
Project Explorer folders.
A Folder object is a wrapper object, which refers to an internal Origin
Project Explorer object but does not actually exist in Origin. Thus,
multiple wrapper objects can refer to the same internal Origin object.
This class is used to handle data points that are located in three-
fpoint3d dimensional space, with double type for their (X, y, z) coordinates.
This class is used to handle data points that are located in two-
fooint dimensional, or planar, space and use double type for their (X, y)
coordinates.
This class is used to get the position (X, y) of a screen point or data
GetGraphPoints point from an Origin graph window.
This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. In this class, methods and
GraphLayer
properties are provided for Origin graph layers.

31

http://www.originlab.com/doc/OriginC/ref/DataRangeEx
http://www.originlab.com/doc/OriginC/ref/DatasetObject
http://www.originlab.com/doc/OriginC/ref/Datasheet
http://www.originlab.com/doc/OriginC/ref/Folder-class
http://www.originlab.com/doc/OriginC/ref/fpoint3d
http://www.originlab.com/doc/OriginC/ref/fpoint
http://www.originlab.com/doc/OriginC/ref/GetGraphPoints
http://www.originlab.com/doc/OriginC/ref/GraphLayer

Origin C Programming Guide

Internal Origin graph pages contain one or more graph layers, and
graph layers contain one or more data plots. Thus, the GraphPage
class contains a collection of GraphLayer objects, and the GraphLayer
class contains a collection of DataPlot objects. A GraphLayer object is a
wrapper object, which refers to an internal Origin graph layer object, but
does not actually exist in Origin. So multiple wrapper objects can refer

to the same internal Origin object.

GraphObiject

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling Origin graph objects, which include text
annotations, graphic annotations (e.g. rectangles, arrows, line objects,

etc.), data plot style holders, and region of interest objects.

Origin graph objects are generally contained in layers on an Origin
page, thus the GraphLayer class contains a collection of GraphObjects.
A Graph object is a wrapper object, which refers to an internal Origin
graph object and does not exist in Origin. So multiple wrapper objects

can refer to the same internal Origin object.

GraphPage

This class is derived from the Page, PageBase, and OriginObject
classes, and it inherits their methods and properties. In this class,
methods and properties are provided for handling internal Origin graph
pages (windows). A GraphPage object is a wrapper object, which refers
to an internal Origin graph page object but does not exist in Origin.
Thus, multiple wrapper objects can refer to the same internal Origin

object.

The Project class contains a collection of GraphPage objects, named
GraphPages, in the open project file. A GraphPage object can be used
to locate and access layers on an Origin graph page, which can then be
used to access objects in the layer, such as DataPlots or

GraphicObjects.

GraphPageBase

This class is the base class for GraphPage and LayoutPage.

Grid

This class is used to set the format of data sheet windows (Origin

32

http://www.originlab.com/doc/OriginC/ref/GraphObject
http://www.originlab.com/doc/OriginC/ref/GraphPage
http://www.originlab.com/doc/OriginC/ref/GraphPageBase
http://www.originlab.com/doc/OriginC/ref/Grid

Predefined Classes

worksheets and matrix sheets). Extra functions are also provided in this
class for data selection, showing column/row labels, setting cell text

color, merging cells, and so on.

This class is derived from the OriginObject class and can be used to

GrounPlot handle Origin group plots. GroupPIlot objects are contained in layers on

an Origin page.

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling internal Origin layers. All Origin pages (windows),
except note pages, contain one or more layers. Origin objects found
"on" a page are generally contained by layers which are themselves
Layer contained by the page. Many graph objects are contained in layers, thus

the Layer class contains the collection of graph objects.

A Layer object is a wrapper object, which refers to an internal Origin
layer object but does not actually exist in Origin. So multiple wrapper

objects can refer to the same internal Origin object.

This class is derived from the Page, PageBase, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling internal Origin layout

pages (windows). The Project class contains a collection of LayoutPage
LayoutPage objects.
A LayoutPage object is a wrapper object, which refers to an internal

Origin layout page object and does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

This class is derived from the Layer and OriginObject classes, and it
inherits their methods and properties. In this class, methods and
properties are provided for handling internal Origin layout layers. Origin

Layout layout pages contain a layout layer, which contains other objects.

A Layout object is a wrapper object, which refers to an internal Origin

layout object but does not exist in Origin. So multiple wrapper objects

33

http://www.originlab.com/doc/OriginC/ref/GroupPlot
http://www.originlab.com/doc/OriginC/ref/Layer
http://www.originlab.com/doc/OriginC/ref/LayoutPage
http://www.originlab.com/doc/OriginC/ref/Layout

Origin C Programming Guide

can refer to the same internal Origin object.

MatrixLayer

This class is derived from the Datasheet, Layer, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling matrix layers in Origin
matrix pages. An Origin matrix contains a number of matrix objects,
thus the MatrixLayer class contains a collection of the matrix objects in

the matrix layer.

A MatrixLayer object is a wrapper object, which refers to an internal
Origin matrix layer object, and does not actually exist in Origin. So

multiple wrapper objects can refer to the same internal Origin object.

MatrixObject

This class is derived from the DataObject, DataObjectBase, and
OriginObject classes, and it inherits their methods and properties. This

class is used to handle internal Origin matrix objects.

MatrixObject is mainly used to control the style of the data in the internal
Origin matrix, while the Matrix class is used to access the data in the
matrix. Thus, the MatrixObject class has the same relationship with the
Matrix class as the Column class has with the Dataset class. That is to
say, an internal Origin matrix object (MatrixObject) holds a matrix data
set (Matrix), just like a worksheet column (Column) holds a data set
(Dataset). The data values displayed in the cells of a matrix are
considered Z values, whose associated X and Y values are linearly
mapped to the columns and rows of the matrix, respectively. A
MatrixLayer holds a collection of MatrixObjects, even though there is

generally only one MatrixObject per MatrixLayer.

A MatrixObject is a wrapper object, which refers to an internal Origin
matrix object yet does not actually exist in Origin . So multiple wrapper

objects can refer to the same internal Origin object.

MatrixPage

This class is derived from the Page, PageBase, and MatrixPage
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling internal Origin matrix

pages (windows).

A MatrixPage object is a wrapper object, which refers to an internal

34

http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixPage

Predefined Classes

Origin matrix page object but does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

The Project class contains a collection of MatrixPage objects, named
MatrixPages, in the open project file. A MatrixPage object can be used
to locate and access layers on the Origin matrix page, which can then
be used to access objects in the layers, such as MatrixObjects and

GraphicObjects.

This class is derived from the PageBase and OriginObject classes, from
which it inherits their methods and properties. In this class, methods
and properties are provided for handling internal Origin Note pages

(windows). The Project class contains a collection of Note objects.

A Note object is a wrapper object, which refers to an internal Origin
Note page but does not actually exist in Origin. And so, multiple

wrapper objects can refer to the same internal Origin object.

OriginObject

This class is the Origin C base class for all Origin objects. Member
functions and data members are provided in this class for all Origin

objects.

This class is derived from the PageBase and OriginObject classes, and
it inherits their methods and properties. In this class, methods and
properties are provided for handling internal Origin pages, which contain
one or more layers (except Note windows). The Page class contains a

collection of the layers in the page.

A Page object is a wrapper object, which refers to an internal Origin
page object but does not exist in Origin. So multiple wrapper objects

can refer to the same internal Origin object.

PageBase

This class provides methods and properties for internal Origin pages
(windows). Usually, this class is used in one of two ways. One way is by
using a PageBase object as a parameter of a general function, but not
using a specific Page object. The other way is by attaching a PageBase
object to an unknown active page. Both usages can handle the specific

page objects polymorphically. That is also the purpose of this class: to

35

http://www.originlab.com/doc/OriginC/ref/Note
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/PageBase

Origin C Programming Guide

act as an abstract class for its derived page types, which include Note,

GraphPage, WorksheetPage, LayoutPage, and MatrixPage.

point

This class is used to handle data points located in two-dimensional, or

planar, space, with integer (x, y) coordinates.

Project

This class provides methods and properties for accessing most objects
in an Origin project file. The Project class includes collections of
different page types, and collections of all the data sets (including loose
data sets, that are not in a worksheet column) in the Project file. This
class also provides methods for getting active objects in a project file,
as well as RootFolder properties, including ActiveCurve, ActiveLayer,

and ActiveFolder.

A Project object is a wrapper object, which refers to an internal Origin
project object but does not actually exist in Origin. Only one project file
can be open in Origin at a time, so all Project objects refer to the

currently open project file.

ROIODbject

This class is derived from the GraphObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for working with Origin region of interest objects. An Origin
region of interest object is used to identify a region of interest in an

Origin matrix.

A ROIObject is a wrapper object, which refers to an internal Origin
region of interest object but does not actually exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

Scale

This class is derived from the OriginObject class, from which it inherits
methods and properties. In this class, methods and properties are
provided for handling Origin axis scales. Two scale objects (X scale and

Y scale) are contained in every graph layer on a graph page.

A Scale object is a wrapper object, which refers to an internal Origin
scale object but does not actually exist in Origin. This means that

multiple wrapper objects can refer to the same internal Origin object.

36

http://www.originlab.com/doc/OriginC/ref/point
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/ROIObject
http://www.originlab.com/doc/OriginC/ref/Scale

Predefined Classes

Origin allows for saving binary type (TreeNode type) and INI type

(INIFile type) information in Origin objects, which can be any Origin C

storage objects derived from the OriginObject class, such as a WorksheetPage,
Column, Folder, GraphPage, GraphLayer, DataPlot, Project, etc.
This class is derived from the GraphObject and OriginObject classes,
and it inherits their methods and properties. In this class, methods and
properties are provided for data plot style holders. A data plot style
holder is used to store plot type information.

StyleHolder
A StyleHolder object is a wrapper object, which refers to an internal
Origin StyleHolder object but does not actually exist in Origin. So
multiple wrapper objects can refer to the same internal Origin object.
This class provides two functions for accessing projects safely,

UndoBlock

UndoBlockBegin() and UndoBlockEnd().

WorksheetPage

This class is derived from the Page, PageBase, and OriginObject
classes, and it inherits their methods and properties. In this class,
methods and properties are provided for internal Origin worksheet
pages (windows). The Project class contains a collection of

WorksheetPage objects.

A WorksheetPage object is a wrapper object, which refers to an internal
Origin worksheet page object, but does not actually exist in Origin. So

multiple wrapper objects can refer to the same internal Origin object.

Worksheet

This class is derived from the Datasheet, Layer, and OriginObject
classes, from which it inherits methods and properties. In this class,
methods and properties are provided for handling worksheet layers on
Origin worksheet pages. An Origin worksheet may contain a number of
worksheet columns, thus the Worksheet class contains a collection of

all the columns in the worksheet.

A Worksheet object is a wrapper object, which refers to an internal
Origin worksheet object, and does not exist in Origin. So multiple

wrapper objects can refer to the same internal Origin object.

37

http://www.originlab.com/doc/OriginC/ref/storage
http://www.originlab.com/doc/OriginC/ref/StyleHolder
http://www.originlab.com/doc/OriginC/ref/UndoBlock
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class

Origin C Programming Guide

This class is derived from the DataRange class, from which it inherits
methods and properties. By using methods defined in this class, the
data range, which has one independent variable (X) and one dependent
variable (Y), can be gotten from matrix and worksheet windows, and put
into matrix and worksheet windows. It can also be used to make a plot

XYRange on a graph window.

Just like the DataRange class, XYRange does not hold data itself, but
just keeps the data range with page name, sheet name (layer index for
a graph) and row/column indices (data plot indices for a graph). Every

XYRange object can contain multiple sub XY data ranges.

This class is derived from the XYRange and DataRange classes, and it
inherits their methods and properties. This class is used to get and set

XY data sets of complex type for matrix and worksheet windows.

XYRangeComplex Just like the DataRange class, the XYRangeComplex class does not

hold data itself, but just keeps the data range with page name, sheet
name and row/column indices. Every XYRangeComplex object can

contain multiple sub XY complex data ranges.

This class is derived from the DataRange class, from which it inherits
methods and properties. This class is used to get and set XYZ data sets

for matrix and worksheet windows.

XYZRange Just like the DataRange class, the XYZRange class does not hold data
itself, but just keeps the data range with page name, sheet name and
row/column indices. Every XYZRange object can contain multiple sub

XYZ data ranges.

4.6 System Class

The following classes are about system settings. For more details, please refer to the Origin C: Origin C

Reference: Classes: System chapter in the help document of OriginC.

Class Brief Description

fil This class is used to control the permission to read/write the binary files by using

38

http://www.originlab.com/doc/OriginC/ref/XYRange
http://www.originlab.com/doc/OriginC/ref/XYRangeComplex
http://www.originlab.com/doc/OriginC/ref/XYZRange
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/file

Predefined Classes

unbuffered io (accessing immediate disk). It is similar to the MFC CFile class. Please also

refer to the stdioFile class, which is for buffered stream io to text files.

This class is used to access the data stored in the initialization file.

INIFile
. The methods in this class are used to access Windows registry.
Registry
This class is derived from the file class, from which it inherits methods and properties. This
class is used to control the permission to read/write the text and binary files by using
stdioFile buffered stream io. However, this class does not support stream io to stdin, stdout, and

stderr. Please also refer to the file class, which is for unbuffered io to binary files.

4.7 User Interface Controls Class

The following classes are about user interface. For more details, please refer to the Origin C: Origin C

Reference: Classes: User Interface Controls chapter in the help document of OriginC.

The classes marked with * are only available in Origin with the DeveloperKit installed.

Class

Brief Description

*BitmapRadioButton

This class provides the functionality of bitmap radio button controls.

*Button

This class provides the functionality of button controls. A button control is a
small rectangular child window, which can be clicked on and off. The button
will change its appearance when clicked. Typical buttons include check boxes,

radio buttons and push buttons.

*CmdTarget

This class is the base class for message map architecture. A message map is
used to send a command or message to the member functions you have
written, and then the member functions handle the command or message. (A

command is a message from a menu item, command button, or accelerator

key.)

Two key framework classes are derived from this class: Window and
ObjectCmdTarget. To create a new class for handling messages, you can just

derive your new class from one of these two classes. There is no need to

39

http://www.originlab.com/doc/OriginC/ref/INIFile
http://www.originlab.com/doc/OriginC/ref/Registry
http://www.originlab.com/doc/OriginC/ref/stdioFile
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/BitmapRadioButton
http://www.originlab.com/doc/OriginC/ref/Button
http://www.originlab.com/doc/OriginC/ref/CmdTarget

Origin C Programming Guide

derive from CmdTarget directly.

This class is derived from the RichEdit class. It is used to display the redefined

*CodeEdit color for key words in coding text.
This class is only available in Origin packages that have the DeveloperKit
*ColorText installed.
This class is used to define combobox control.
*ComboBox
This class provides the base functionality of all controls.
*Control
o~ This class is used to define device-context objects.
DeviceContext

*DhtmlIControl

/ladd description here

This class is the base class for displaying dialog boxes on the screen.

*Dialog
This class is used to create a Dockable control bar with a child Origin C-driven
*DialogBar dialog.

*DynaControl

This class is used to generate various types of customized interface controls
dynamically, such as an edit box, combo box, check box, or radio button. The
values will be stored in a tree node, and the on dialog will display as a tree

structure.

*Edit

This class is used to create edit controls. An edit control is a rectangular child

window, which can be filled with text.

*GraphControl

This class is derived from the OriginControls, Control and Window classes,
from which it inherits methods and properties. Methods defined in this class
can be used to display an Origin Graph within the specified control on the

dialog.

40

http://www.originlab.com/doc/OriginC/ref/CodeEdit
http://www.originlab.com/doc/OriginC/ref/ColorText
http://www.originlab.com/doc/OriginC/ref/ComboBox
http://www.originlab.com/doc/OriginC/ref/Control
http://www.originlab.com/doc/OriginC/ref/DeviceContext
http://www.originlab.com/doc/OriginC/ref/DhtmlControl
http://www.originlab.com/doc/OriginC/ref/Dialog-class
http://www.originlab.com/doc/OriginC/ref/DialogBar
http://www.originlab.com/doc/OriginC/ref/DynaControl
http://www.originlab.com/doc/OriginC/ref/Edit
http://www.originlab.com/doc/OriginC/ref/GraphControl

Predefined Classes

This class is the base class of GraphObjCurveTool. It is used to create and

GraphObiTool manage a rectangle on an Origin graph window, around the region of interest

and containing the data.

This class is derived from GraphObjTool, from which it inherits methods and
properties. With these methods and properties, it can be used to create and

manage a rectangle on an Origin graph window, around the region of interest

GraphObjCurveTool

and containing the data. This class also provides methods for adding a context

menu and the related event functions.

This class is used to define list boxes. A list box shows a list of string items for
*ListBox viewing and selecting.

This class is used to handle menus, including creating, tracking, updating and
*Menu destroying them.

*OriginControls This class is the base class for displaying the Origin window on dialog.

. This class is used to paint a PictureHolder object within the control on dialog.
*PictureControl

This class provides methods and properties for opening and controlling
progress dialog boxes. A progress dialog box is a small dialog box that
r0aressBox indicates the software is busy processing data. This dialog box contains a
progress bar for showing the fraction of the completed processing. The

progress dialog box is usually used in iterative loops.

This class is used to construct individual page objects of property sheets in a
*PropertyPage wizard dialog.

This class is used to construct property sheets in a wizard dialog. One property

*PropertySheet sheet object can contain multiple property page objects.

This class provides methods for formatting text. A rich edit control is a window,
*RichEdit . . .
- in which text can be written and edited. The text can be in character and

41

http://www.originlab.com/doc/OriginC/ref/GraphObjTool
http://www.originlab.com/doc/OriginC/ref/GraphObjCurveTool
http://www.originlab.com/doc/OriginC/ref/ListBox
http://www.originlab.com/doc/OriginC/ref/Menu
http://www.originlab.com/doc/OriginC/ref/OriginControls
http://www.originlab.com/doc/OriginC/ref/PictureControl
http://www.originlab.com/doc/OriginC/ref/progressBox
http://www.originlab.com/doc/OriginC/ref/PropertyPage
http://www.originlab.com/doc/OriginC/ref/PropertySheet
http://www.originlab.com/doc/OriginC/ref/RichEdit

Origin C Programming Guide

paragraph formatting.

*Slider

A slider control is a window with a slider and optional ticks. When the slider is
moved by the mouse or the directional keys on the keyboard, the control will

send a naotification message to implement the change.

*SpinButton

A spin button control is a pair of arrow buttons that can be used to increase or
decrease a value, such as scroll position or the number displaying in an

accompanying control. This value is called the current position.

A tab control is used to display different information under different tabs in a

dialog. This class provides methods to add/delete tab items for displaying a

*TabControl

group of controls.

A wait cursor is a visual sign for indicating that the software is busy processing
waitCursor data. This class provides methods and properties for opening and controlling

wait cursors.

This class is the base class of all window classes. It is similar to the MFC
*Window

CWnd class.

*WizardControl

This class is used to construct wizard controls for implementing something
step by step in a dialog. The methods available in this class enable you to

add/delete steps.

This class is used to construct property sheet objects in a wizard dialog. A

*WizardSheet property sheet contains one or more property page objects.
This class is derived from the OriginControls, Control and Window classes,
and it inherits their methods and properties. The methods available in this
*WorksheetControl

class can be used to display an Origin Worksheet within the specified control in

a dialog.

42

http://www.originlab.com/doc/OriginC/ref/Slider
http://www.originlab.com/doc/OriginC/ref/SpinButton
http://www.originlab.com/doc/OriginC/ref/TabControl
http://www.originlab.com/doc/OriginC/ref/waitCursor
http://www.originlab.com/doc/OriginC/ref/Window
http://www.originlab.com/doc/OriginC/ref/WizardControl
http://www.originlab.com/doc/OriginC/ref/WizardSheet
http://www.originlab.com/doc/OriginC/ref/WorksheetControl

Predefined Classes

. . This class is the base class of the derived control classes.
WndContainer

4.8 Utility Class

For more details about the following classes, please refer to the Origin C: Origin C Reference: Classes: Utility

chapter in the help document of OriginC.

Class Brief Description

This class is a collection of almost all data types and objects. When Array::IsOwner is

TRUE, the array will be the owner of the memories that are allocated to the objects. And
Array

the objects will be destroyed when the array is resized or destructed.

This class is used to compress byte vectors (1 and 0) to hexadecimal strings, and
BitsHex decompress hexadecimal strings to byte vectors.

This class can be used to measure the call times of various functions to find out the slower
Profiler ones.

43

http://www.originlab.com/doc/OriginC/ref/WndContainer
http://www.originlab.com/doc/OriginC/ref/Utility
http://www.originlab.com/doc/OriginC/ref/Array
http://www.originlab.com/doc/OriginC/ref/BitsHex
http://www.originlab.com/doc/OriginC/ref/Profiler

5 Creating and Using Origin C Code

5.1 Creating and Using Origin C Code

This section covers the following topics:

Create and Edit an Origin C File

Compiling, Linking and Loading

Debugging

Using Compiled Functions

=A =2 =4 -4 -4

Distributing Origin C Code

5.2 Create and Edit an Origin C File

5.2.1 Overview

Code Builder is an Integrated Development Environment (IDE) for Origin C and LabTalk programming. Code
Builder provides tools for writing/editing, compiling, linking, debugging, and executing your Origin C code.
Although Origin C code can be written in any text editor, it must be added to Code Builder's Workspace to be

compiled and linked.

45

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File
http://www.originlab.com/doc/OriginC/guide/Compiling-Linking-and-Loading
http://www.originlab.com/doc/OriginC/guide/Debugging
http://www.originlab.com/doc/OriginC/guide/Using-Compiled-Functions
http://www.originlab.com/doc/OriginC/guide/Distributing-Origin-C-Code

Origin C Programming Guide

P "

433 Untitled - Code Builder - OCExample.c = EeR =

File Edit View Build Debug Tools Window Help

NEEH@ S| %L B2 o =2l
Workspace v 0 X @ OCExample.c X b
5] Origin C Workspace 32 T

b T Apps 33 wold plot_xvz_contour() i

» 3 Project 34 1

- £ System & 35 int npts = 30;

: £ Temporary 36 Worksheet wks;

: 37 wks.Create();

----- [User [Autoload)

; igi - ks.SetSize(-1,3);
» - User 'D:\uffyorigin wk3.Set3ize|

o> 39 wks.SetColDesignations ("KYZ");

41 S £ill wka with zome ¥YZ data

Ba |

4 Dataset ds¥(wks, 0); o
o ([F—— v (L] ¢ i b
Output w 0 X Variables + 0 X Command & Res... = O X
compiling. .. wics Book3 : ({Works... | |plot_xyz contour| -
OCExample.c ripts 0
Linking... i
Done!

3> plot_xyz_contout

< [p

=] output | g Call St.. |G Find R...| | @ Breakp..| Elvariabl..|) Bookm...| | « i b

The Code Builder window

5.2.2 File Types

Origin C utilizes four types of files: source, object, preprocessed, and workspace.

5.2.2.1 Source (*.c, *.cpp, *.h, *.0cz)

Source files are essentially text files that contain human-readable Origin C code. You may create them in Code
Builder or another text editor, and save them to any location. Code Builder's text editor provides syntax coloring,
context-sensitive help and debugging features. Code Builder also allows you to create an encrypted Origin C

source file (*.0cz) so it can be safely shared with others.

Until source files have been compiled, linked and loaded, the functions they contain cannot be used in Origin.

5.2.2.2 Object (*.ocb)

When a source file is compiled, an object file is produced. The object file will have the same file name as the

source file, but will be given the *.ocb file extension. The object file is machine readable, and is what Origin uses

46

Creating and Using Origin C Code

to execute functions that are called. Origin compiles a source file for the first time, and then recompiles only

when the source file is changed.

Object files in Origin are version specific, and therefore, sharing them is discouraged. If you wish to share some

functions or Origin C applications, share preprocessed files instead.

5.2.2.3 Preprocessed (*.0p)

By default, Origin compiles source files to produce object files. However, the system variables below can be
changed to produce a preprocessed file instead of an object file. Preprocessed files still require compiling, but

have the following advantages for code sharing:
9 Origin version independent

9 Functions can be shared without sharing source code

9 The build process happens much faster than with source files

The system variables that allow you to produce either object (OCB) or preprocessed (OP) files are @OCS and
@OCSB. You can change their values in the Script Window or in the Code Builder LabTalk Console. For

example, in the Script Window, enter:

@OCSH); /I Hereafter, on compile, generate OP files
5.2.2.3.1@0CS

The default value of this variable is 1, which allows you to create an OCB file or OP file. If @OCS=0, the

compiler will not create an OCB file or an OP file.

5.2.2.3.200CSB

The default value of @OCSB=1; this generates an object file at compile time. To generate an OP file, set
@OCSB=0, after which OP files will be generated at compile time. The OP file will be saved in the same folder
as its source file and have the same file name, but with the OP extension. Note that if @OCS=0, this variable is

meaningless.

' Notes:

Q 1. The generated OP and OCB have 32 bit and 64 bit versions. For example, the op file

generated from abc.c file on a 32 bit version will be named as abc_32.0P.

a7

Origin C Programming Guide

2. Since Origin 9.0, the generated 32 bit or 64 bit version file works only in its corresponding
version (32 bit or 64 bit) of Origin.

5.2.2.4 Workspace (*.ocw)

In Code Builder, you may create or use a project that contains many Origin C source files. These files may or
may not be hierarchically organized in folders. It would be very inconvenient to have to load many such files

manually each time you switched between projects.

For this reason, the structure and files contained in the User folder can be saved to a workspace file. Upon
loading a workspace file into Code Builder, a project is restored to the state in which it was last saved; all of your

source files are available in whatever structure they were assigned.

5.2.3 The Workspace View

The Code Builder Workspace view contains six folders:

1. Apps
2. Project
3. System

4. Temporary
5. User [AutoLoad]

6. User

48

Creating and Using Origin C Code

Workspace x
il Origin C Workspace

> £ Apps

> - Project

4 - System

v

analysis_utils.c
»-|&| internal.c
LT_PE.c

LT whs.c

rmatrix.c

v

v

OriginEvents.c
page_utils.c
sys_utils.c

EEEEEEDEE

theme_utils.c
B tree_utils.c

b B XFunction.c

» [l GetNBox_32.0P
> Temporary

1__[User [Autoload]

5 3 User ‘Dihuffuerigind2\Origin

»

4 1L 2

The Workspace View

The files in each folder are compiled and linked following different events.

5.2.3.1 Apps_
This folder is used to manage packages. This folder contains only folders, and each folder represents a disk
folder in User Files Folder. A special folder named Common is used for holding files that are shared between all
packages. Each package folder contains a subfolder named "User Files", which contains files that are in the User

Files Folder.

9 Context menu of "Apps" folder

When you right click on the Apps folder, there is a context menu with two items:

1. Add Existing Folder...

2. New

The first is for choosing a folder that already exists in the User Files Folder, and the second is for creating a new
folder named Untitled which also creates a new disk folder named Untitled in User Files Folder. Repeating New

will create enumerated Untitled folders.

49

Origin C Programming Guide

 Context menus of each package folder except Common.

Add Files...
v Show Full Path

Rename
Delete...
Duplicate

Generate...

Generate with Comman...

1. Add Files

This is used to add files to the folder. Each package folder represent a disk folder in User Files
Folder. If an added file is from your User Files Folder, then the file is placed in the "User Files"
subfolder to indicate where it will be installed. If selected files are not already in the User Files
Folder and not in User Files Folder\packageFolder\, they will be copied to User Files

Folder\packageFolder\ folder.

2. Show Full Path

Show or hide the full path of the files.

3. Rename

Rename the package folder.

4, Delete

Delete the package folder. If a disk folder exists, you will be asked if you want to delete the disk

folder and files also.

5. Duplicate

Duplicate the package folder and its files.

6. Generate

Launch the Package Manager and add the files from the package folder. If an OPX in the User
Files Folder with the same name exists, that OPX will be loaded and all files removed before

adding all the files from the package folder.

7. Generate with Common

Same as Generate, but the files in the Common folder are also added.

Note: Because Common is not a package, its Context menu has only the first two items. This is also true for

User Files folder found in each package.

50

Creating and Using Origin C Code

5.2.3.2 Project
Files in the Project folder are saved within the current Origin project file (*.OPJ). They are added to the Project
folder of the Code Builder workspace when you open an Origin project file containing them. They are

automatically compiled and linked upon opening the project file.

5.2.3.3 System
Files in the System folder are externally saved in Windows folders (usually in the Origin C folder or one of its
subfolders). They are automatically added to the System folder of the Code Builder workspace, compiled, and

linked whenever Origin starts.

5.2.3.4 Temporary
All files that are not listed in the Project, System, or User folders, and get loaded and compiled when using
Origin, will appear in the Temporary folder. For example, if you export a graph then all the files used for handling

a graph export will appear in the Temporary folder.

5.2.3.5 User[Au toload
This folder is similar with the User Folder described below, except that the files in this folder will be compiled
and linked automatically when Origin is started, and then the functions defined in the files under this folder are

available, and no need to compile and link manually.

5.2.3.6 User
Files in the User folder are externally saved in Windows folders and are manually added to the User folder of the

Code Builder workspace, compiled, and linked by the user in Code Builder.

' Notes:

Q The contents of the Apps and User [AutoLoad] folders persist across all Origin sessions, while

the contents of the Project folder are unique to each Project file (OPJ).

5.2.4 Code Builder Quick Start

Get started using Code Builder in just a few steps:

S
1. Open Code Builder by pressing Alt+4 on the keyboard or by clicking the Code Builder toolbar button s .
2. Create a new source code file by pressing Ctrl-N or by clicking the New toolbar button. When the New File

dialog appears enter a name for your source code file and then press Enter or click the OK button.

51

Origin C Programming Guide

3. An editor window will open. Go to the end of the last line in the editor window and press enter to start a

new blank line. Enter the following function:

void HelloWorld ()

{

printf("Hello World, from Origin C \n");

4. Before we can call this function we need to compile and link the code. You can do this by pressing

Shift+F8 or by clicking the Build toolbar button
5. The Output window will show the compiling and linking progress. If any errors appear, then double check
your function and fix the errors. When no errors appeatr, the function is ready to be called.
6. Click in the top part of the Command & Results window. Type the name of your function and press Enter.
In the bottom part of the Command & Results window you should see a repeat of your function's name,

and the line you entered, followed by a line with your function's output.

While these steps are sufficient to get you going with Code Builder, there are many more details that will help

you write, debug and execute your Origin C files effectively. These are covered in the sections that follow.

5.3 Compiling, Linking and Loading

Before you can access your Origin C functions, you will need to compile and link them (a process known as

building) using Code Builder.

Once your functions compile and link without error, they are loaded automatically, and you will be able to access
them from the current Origin session. To access your functions in future sessions of Origin you will need to

ensure that they are reloaded and linked; a process that is fast and can be automated.

This chapter covers the manual and automated build process for Origin C source files and preprocessed files.

5.3.1 Compiling and Linking

In order to make the functions defined in an Origin C source file or preprocessed file executable for the first time,

the following steps are necessary:

52

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Creating and Using Origin C Code

9 Add the file to the Code Builder workspace

9 Compile the file

i Link the file to all dependents, compiling dependents where necessary, and load the object files that are

created.

The act of compiling and linking all the files is referred to as building.

5.3.1.1 Addthe Filet o the Workspace

Before a source file or preprocessed file can be compiled and linked, the file must be added to one of the Code

Builder workspace folders: Project, User, System, or Temporary. Note that all source files are initially created or

loaded into the User folder.

5.3.1.2 Compile the File

After adding the file to the workspace, it needs to be compiled (by clicking the Compile button) to generate
the object file, which will have the same name as the source/preprocessed file, but with the OCB file extension.
In Origin versions 8.1 and later, the object file will be saved in the Application Data folder. In older versions the

file was saved to the User Files\OCTemp folder.

5.3.1.3 Build the Workspace

To build the active file and all its dependents, select the Build button, or select the Rebuild All button to

build all files in the workspace. The object file that is created will be automatically loaded into memory and linked

so that the functions defined in the file are executable within Origin.

Once the object file is generated, subsequent build processes will be much faster. If there are no changes to the

built source/preprocessed file, Code Builder will load and link the object file directly, but not rebuild the file.

5.3.1.3.Build vs. Build All

Build: All of the files in a given folder are compiled and linked when that folder is the active window in the Code

Build All: files in all Code Builder folders are compiled and linked when the Code Builder Rebuild All toolbar

button is clicked.

5.3.2 Automated Building

Initially, all Origin C source or preprocessed files are created or opened in the User folder, and the discussion

above gives details for manually building Origin C source files. Many times, however, it is advantageous to

53

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

automate the build process. This can be done by making use of Code Builder's folder structure, each with slightly

different functionality, or by utilizing the Build on Startup option:

5.3.2.1 Add files to the Project Folder

When you add files to Code Builder's Project folder, they will be built automatically each time the associated

Origin project is opened.

You can add files to the Project folder using the following methods:

9 Right-click on the Project folder and choose Add files.

9 Drag a file from another Workspace folder and drop it on the Project folder.

5.3.2.2 Add files to the User [Autoload] Folder

Formerly, you could right-click on the System folder in Code Builder and Add Files. Since Origin 2015, you are
prevented from adding user files to this folder. When you want your files to be compiled and linked automatically

on Origin startup, you should add these files to the User [Autoload] folder.

You can add files to the User [AutoLoad] folder using the following methods:

9 Right-click on the User [AutoLoad)] folder and choose Add files.

9 Drag a file from another Workspace folder and drop it on the User [AutoLoad] folder.

5.3.2.3 Build Workspace on Origin Startup

The Build on Startup option will build the most recently opened Code Builder workspace upon Origin startup.

When Origin starts it will examine the contents of the Origin C Workspace System folder and if it finds any
changed files then it will try to compile and link them. You also can have this procedure done to the files in the

User folder by enabling the Build on Startup option.

1. Run Code Builder

2. If the Workspace view is not visible then choose Workspace on the View menu.
3. Right-click on Origin C Workspace.

4. If the Build on Startup item is not checked then click it.

The next time you start Origin it will check the files in the User folder and try to compile and link any changed

files.

5.3.2.4 Build Individual Source File on Origin Startup

The following steps show how to modify the Origin.ini to load and compile Origin C source files on startup.

54

Creating and Using Origin C Code

1. Make sure Origin is not running. Open the Origin.ini file in your User Files Folder(type "%Y="<Enter> in
the Script or Command window to locate your User File Folder). If you do not find the file there, turn to the
Origin installation folder.

2. Inthe [Config] section, uncomment (remove the leading ";") OgsN = OEvents. N here can be any unique
number. Save and close this file.

3. Open OEvents.ogs under the Origin installation folder. Find the [AfterCompileSystem] section and add

the following line as a new line

run. LoadOC(Originlab \ AsclmpOptions, 16);

Save and close this file.

4. Restart Origin and open Code Builder. In the Temporary folder, there are 3 files. AscimpOptions depends
on fu_utils.c and Import_utils.c, so the compiler compiles Asclmp, along with the two files. For more

details please search run.LoadOC in your Labtalk documentation.

Alternately, use the User [AutoLoad] folder in your Workspace. Files added in the folder will be automatically

loaded on Origin startup (see above).

5.3.3 Building by Script

When you want to call an Origin C function in LabTalk script, you need to make sure the source file has been
compiled and linking is done. You can then use the LabTalk command Run.LoadOC to compile and link the

specific source file. For example:

1. Choose File->New Workspace... to create a new workspace. The Temporary folder should be empty now.
2. Run the following script in the Command Window... the dragNdrop.c file together with its dependent files

all are loaded into the Temporary folder and compiled.

if (run. LoadOC(OriginLab \dragNdrop. c, 16) != 0)

{

55

Origin C Programming Guide

type "Failed to load dragNdrop.c!"

return 0;

5.3.4 Identifying Errors

When you compile and link source files in Code Builder, the compiling and linking results are displayed in the
Code Builder Output window.

If the compiling and linking was successful, the Output window lists the source files that were compiled. The

Done! line indicates success.

If errors were encountered during the compiling and linking process, the Output window lists the file name, line
number, and the error encountered. You can double-click on the error line in the Output window to activate the

source file and position the cursor on the line of code containing the error.

= Siring getStrlest()
void nytest()
{

Douhle-click printf({ “%s-n", getStrTest(});
here to .
)) String getStrTest()
activate this {
i 1 gl String st¥B:
hnalﬁmissmg double ff = FI;
"miﬂ'ﬂﬂﬂi- atrB. Format (" The value of PI i1s %", Ef);

) return strB,
*_IJ\H of |1l

ﬂ com piitg:“;
=l giringtest,c

C:\Progra™ Files\OriginLab\Origin7 0\Origin Cistringtest.c[25] :Error, sy
C:AProgram Files}OriginLab\Origin# \Origin Cstringtest.c|25] :Error, sy

5.4 Debugging

5.4.1 Debugging in Code Builder

Code Builder has features that allow you to debug your Origin C and LabTalk code. You can set and remove
breakpoints, step through your code one statement at a time, step into and out of functions, and monitor the
values of variables. Debugging is turned on by default. You can turn debugging on or off using the Enable

Breakpoints item on the Debug menu. If there is a check mark next to the item then debugging is turned on.

5.4.2 Macros for Debugging

56

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Creating and Using Origin C Code

Origin C allows users to define multi-parameter macros which have many uses. Many programmers use output

statements while developing code to indicate program flow and display the values of variables at key moments.

5.4.2.1.XCreate an Output Macro

A convenient debugging technique is to define an output macro and then place that macro throughout your code

as shown below.

#define DBG_OUT _text, _value) out_int (_text, _value)

void DebugStatements ()

{
int i
DBG_OUT"iiatt0 =" i)
i ++;
DBG_OU("ii at t 1=" i)
i ++;
DBG_OUT"iiatt2 =" Ji)
i ++;
DBG_OUT"iiatt3 =" S)
printf("Finished running DebugMacros.");
}

5.4.2.1.Zomment the Debug Macro Body

During the development cycle the body of the macro can remain defined as above causing the desired debug
messages to be shown on the message box. However, once development is complete (or at least stable) the

macro can be redefined as below causing the debug statements to disappear.

#define DBG_OU _text, _value) /I out_int(_text , _value);

Commenting out the body of the DBG_OUT macro (and rebuilding) causes the debug statements to disappear

without having to remove the many possible instances of its use, saving them for possible reuse in the future.

57

Origin C Programming Guide

Should the code ever need to be modified or debugged again the body of the macro can simply be

uncommented.

5.5 Using Compiled Functions

Once Origin C functions have been compiled, linked and loaded, they are ready to be used in Origin. This means
calling the function by its name and providing the necessary arguments from any location in Origin that accepts
LabTalk script commands. Common locations include the script window, the command window, or a custom

button in the Origin GUI. Running Scripts chapter of the LabTalk Scripting Guide details all of the locations in

Origin from which script, and therefore Origin C functions, can be used.

5.5.1 Accessing Origin C Functions from LabTalk Script

Origin C functions can be called from other Origin C functions and from LabTalk scripts. This section talks about

how to control the access to Origin C functions from LabTalk.

For information about accessing LabTalk from your Origin C code, refer to the Accessing LabTalk chapter.

5.5.1.1 Origin C Access from LabTalk

You can control LabTalk access to your Origin C code by putting a pragma statement in your Origin C code

before your function definitions.

#pragma labtal k(0) // Disable OC functions in LabTalk

void fooO ()

#pragma labtalk (1) // Enable OC functions in LabTalk (default)

void fool ()

{

}

#pragma labtalk (2) // Require "'run - oc™ LabTalk command

58

http://www.originlab.com/doc/LabTalk/guide/Running-Scripts
http://www.originlab.com/doc/OriginC/guide/Accessing-LabTalk

Creating and Using Origin C Code

void foo2 ()

The above code prevents fooO from being called from LabTalk, allows fool to be called from LabTalk, and allows
foo2 to be called from LabTalk using the run -oc command. If you were to comment out the second pragma,
then both foo0 and fool would be prevented from being called from LabTalk. This is because a single pragma

statement applies to all functions after the pragma and up to the next pragma or the end of the file.

There is also a LabTalk system variable that controls LabTalk access to all Origin C functions. The variable is

@OC, and it defaults to 1, which enables access. Setting the variable to 0 disables access.

5.5.1.2 Listing Functions that can be Called from LabTalk
The LabTalk list command can be used to output all the names of Origin C functions that can be called from

LabTalk. Options let you modify which type of functions is listed:

list f; /I List functions callable from LabTalk

list fs; /I List only those returning a string

list fv; /I List only those returning a vector
list fn; /I List only those returning a numeric

list fo; /I List only those returning void

Note that setting @OC=0 will make Origin C functions effectively invisible to LabTalk, such that the list f

command will give no result.

5.5.1.3 Passing Arguments to Functions

LabTalk script does not support all of the data types used internally by Origin C. The following table lists the

LabTalk variable types that should be passed (or returned) when calling an Origin C Function with the given

argument (or return) type. The final column indicates whether or not that argument type can be passed by

reference.
Origin C LabTalk Pass By Reference?
int int Yes
double double Yes
string string Yes

59

http://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

Origin C Programming Guide

bool int No
matrix matrix range Yes
vector<int> dataset Yes
vector<double> dataset Yes
vector<complex> dataset No
vector<string> dataset, string array* No

* string arrays cannot be passed by reference

As the table above indicates, arguments of Origin C functions of type string, int, and double may be passed by
value or by reference from LabTalk. Note, however, that the Origin C function must be written for the type of pass

being performed.

5.5.1.3.PPassing by Value

Below are examples of passing arguments by value from LabTalk to Origin C. The format for each example is to
give the Origin C function declaration line, and then the LabTalk code used to call it. The Origin C function body

is left out since it is unimportant for demonstrating variable passing.

The simple case of a function accepts an argument of type double and returns a double.

double square (double a) // Origin C functio n declaration
doubledd = 3.2; /l LabTalk function call
double ss = square (dd);

ss = /I ss =10.24

Here, an Origin C function that takes a vector argument and returns a vector, is called by LabTalk using data set

variables, or ranges that are assigned to data types.

vector <string > PassStrArray (vector <string > strvec)

Can be called three ways from LabTalk:

60

Creating and Using Origin C Code

dataset dA, dB;
dB = Col (B);

dA=PassStrArray (dB);
Col (A) =PassStrArray (Col (B)) ; // Or, use Col directly, Col = dataset

/I O r, LabTalk ranges may also be used
rangera = [Book1]1!1,rb = [Bookl] 1! 2;
ra = PassStrArray (rb);

5.5.1.3.2Passing by Reference

For the Origin C function below, note the ampersand & character in the argument declaration, indicating that the

argument will be passed by reference.

double increment (double & a, double dStep)

doubled = 4;
increment (d, 6);
type -a "d=$d)" ; /d=10

The following example demonstrates some arguments being passed by reference and others being passed by

value.

int get_min_max_double_ar r(vector <double > vd, double & min, double & max)

dataset ds = data (2, 30, 2);

double dMin, dMax;

get_min_max_double_arr (ds, dMin, dMax);

/IOr use a data set from a column; be sure to put data in Col(A)

61

Origin C Programming Guide

get_min_max_double_arr (Col (A, dMin, dMax);

The following example shows passing a LabTalk matrix range variable by reference to an Origin C function.

/I set data from vector to matrix

void set mat _data (const vector <double >& vd, matrix & mat)

mat. SetSize(4, 4);

mat. SetByVector(vd);

rangem m = [MBook1] 1! 1;
dataset ds = data (0, 30, 2);

set_mat_data (ds, mm);

5.5.1.4 Precedence Rules for Functions with the Same Name

When a user-defined or global Origin C function has the same name as a built-in LabTalk function, the Origin C
function has higher precedence, except when using LabTalk vector notation.

Precedence:

1. LabTalk Function (vector)
2. Origin C Function

3. LabTalk Function (scalar)

Thus, LabTalk functions like Normal and Data (which return a range of values and are thus used in vector
notation) would have higher precedence than Origin C functions of the same name. In all other cases, the Origin

C function is called.

5.5.2 Defining Functions for the Set Values Dialog

You may want to define a function using Origin C, that will appear in the Set Values menu of either a column or

a matrix.

62

Creating and Using Origin C Code

If an Origin C function is built as part of an Origin project---either automatically by being placed in the Project or
System folder of Code Builder, or manually by building a function in the User folder---it will be available in the
User-Defined section of the F(x) menu in the Set Values dialogs (for both Columns and Matrices). To assign a
function to a different section of the F(x) menu, issue a pragma containing the new section name as part of the
function header. For instance, the following code will add function add2num to the Math section and function

mean2num to the Statistics section:

#pragma labtalk (1,Math)

double add2num(double a, double b)

{

return a + b;

#pragma labtalk (1,Statistics)

double mean2nun(double a, double b)

return (a + b)/2;

In this way, many functions can be defined in a single source file and, upon building, be immediately available in

the desired locations of the F(x) menu.

Functions to be added to the F(x) menu must conform to the following additional restrictions:

9 The return type of the function cannot be void

9 The function should not have reference or pointer (&) for argument type

5.6 Distributing Origin C Code

5.6.1 Distributing Source Code

Origin users can share Origin C source code with one another by distributing either the source files themselves
(.C, .CPP, .OCZ) or preprocessed files (.OP).

63

Origin C Programming Guide

If it is not necessary for others to see your application's source code, it is highly recommended that you distribute
the encrypted Origin C source files (.OCZ) or preprocessed files (.OP) for version before Origin 2015 instead of

the source files (.C or .CPP).

For encrypted OCZ files, users only need to drag and drop them into Code Builder in Origin to view and edit
content. A prompt will show up to ask for the password when you try to open it for the first time but it will be only

asked once in same Origin session.

See the File Types in the Create and Edit an Origin C File section for more information.

' When an encrypted OCZ file is open in Origin session, since Origin 2016 SRO user can choose

Q to re-save the *.ocz file as not encrypted *.c or *.cpp by selecting menu File: Save As and

choose a file type in Save as type drop-down list.

5.6.2 Distributing Applications

After creating an application, you can distribute it as a single package file to other Origin users.

Use Package Manager to package all the application files into a single package file ((OPX). Note that when
adding your application files into the package, be sure to add the preprocessed files (.OP) or the source files (.C

or .CPP). It is not necessary to add both.
Users can install your application by dropping the package file directly into Origin.

The following is an example that shows how to package all the application files into one OPX file. The user can

drop the package file into Origin to install, then click a button to run the source file.

1. Prepare an Origin C source file. In Code Builder, choose menu File: New to create a new c file named

MyButton.c, copy the following code to it and save it to the User File Folder\OriginC\ subfolder.

void OnButtonClick ()
Worksheet wks = Project. ActiveLayer() ;

DataRange dr;

dr. Add(wks, 0, "X");

64

http://www.originlab.com/doc/
http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Creating and Using Origin C Code

dr. Add(wks, 1, "Y");

GraphPage gp;
gp. Create() ;

GraphLayer gl = gp. Layers(0);

int nn = gl. AddPlot(dr);

gl. Rescale() ;

2. Create an OGS file named MyButton.ogs to load the Origin C source file and call function. Copy the

following and save it to the User File Folder.

[Main]
if (0 == Run. LoadOC(%" OriginC \ MyButton. c))

{

OnButtonClick;

3. Inthe Origin menu, choose View: Toolbars. In the Customize Toolbar dialog, choose the Button
Groups tab, and click New button to open the Create Button Group dialog. Set MyButton as the Group
Name, keep Number of Buttons as 1, choose the Userdef.bmp file from the User File Folder as Bitmap,
and click the OK button. In the ensuing Save As dialog, click the Save button to save the MyButton.ini file

to the default path.

4. Inthe Customize Tool dialog, select MyButton item from Groups list, and click to choose the % button
from Buttons panel, then click Settings button from Button group to open a Button Settings dialog.
Choose MyButton.ogs as the File Name, type "Main" in for Section Name, then make sure the following

check-boxes are unchecked: Matrix, Excel, Graph, Layout and Excel. Click OK to close the dialog.

65

Origin C Programming Guide

66

5.

Click Export to open the Export Button Group dialog, then click Add File and choose the above

MyButton.c file.

Export Button Group E'

The follawing files will be exported with the group:

kB uttor. i
|1zerdef brop
kB utton.ogs

Additional files:

OriginCsMuB utton.c

Faor Uze By: |.-’-'-.I| sers vl

Click Export button, then in the Save As dialog click Save to save the MyButton.OPX file to the specified
folder.
Choose menu Tools: Package Manager, and in the dialog that opens, choose File: Open to open the

MyButton.OPX file. Put the script

Run. LoadOC(9%\ OriginC \ MyButton. c¢);

into LabTalk Script: After Installation in gird view to load the Origin C source file. This script will be run

when you drop OPX into Origin to install this application.

6 Matrix Books Matrix Sheets and Matrix Objects

6.1 Matrix Books Matrix Sheets and Matrix Objects

The Origin C MatrixPage class is for working with Origin matrix books. Each matrix book contains a collection of

MatrixLayers and each matrix layer contains a collection of MatrixObjects.

s

£ MBookl :111 =R =
1 | 2 Ib]
1 — - — -
2 : - -
51| MatrixPage _ _
4 — — _
5 - - -
MatrixObject
MatrixLayer
] p\mgﬂd1f ||4' 1 b —

This section covers the following topics:

I Base Matrix Book Operation

I Matrix Sheets

I Matrix Objects

6.2 Base Matrix Book Operation

The Origin C MatrixPage class provides methods and properties common to Origin matrix books. This class is
derived from Page class, from which it inherits its methods and properties. And matrix book has the same data

structure level with WorksheetPage in Origin, both are windows. So, they contain lots of similar operations.

6.2.1 Workbook -like Operations

67

http://www.originlab.com/doc/OriginC/ref/MatrixPage
http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/guide/Base-Matrix-Book-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Sheets
http://www.originlab.com/doc/OriginC/guide/Matrix-Objects
http://www.originlab.com/doc/OriginC/ref/MatrixPage
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/WorksheetPage

Origin C Programming Guide

Both matrix book and workbook are windows, and they share lots of similar operations, and the Basic Workbook

Operation chapter can be referred to.

1. Create New Matrix Book

The same Create method is used.

MatrixPage matPg;
matPg. Create("Origin"); /I create a matrix book using the Origin template
2. Open Matrix Book
The difference to open a matrix book by Open method is that the extension of a matrix book is ogm.
3. Access Matrix Book
There are multiple ways to access an existing matrix book and the methods used are the same as

workbooks. The Project class contains a collection of all the matrix books in the project. The following

example shows how to loop through them.

foreach (MatrixPage matPg in Project. MatrixPages)

out_str (matPg. GetName()) ; //out put matrix book name

You can also access a matrix book by passing its index to the Item method of the Collection class.

MatrixPage matPg;
matPg = Project. MatrixPages . Item(2);
if (matPg) //if thereis a 3rd matrix book

out_str (matPg. GetName()) ; // output matrix book name
If the matrix book name is known, this matrix book can be accessed by passing its name to the class

constructor.

MatrixPage matPg ("MBook1") ;

if (matPg) //if there is a matrix book named "MBook1"

68

http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/ref/Page-Create
http://www.originlab.com/doc/OriginC/ref/Worksheet-Open
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/Collection-Item
http://www.originlab.com/doc/OriginC/ref/Collection

Matrix Books Matrix Sheets and Matrix Objects

matPg. SetName("MyBook1"); // rename the matrix book

4, Save Matrix Book

The methods SaveToFile will be used for saving matrix book as *.ogm file.

MatrixPage matPg ("MBook1") ;

/I Save matrix book as OGM file

bool bRetl = matPg. SaveToFi le("D: \\" + matPg. GetName() + ".ogm");

5. Show or Hide Matrix Book

This is the same as workbook's show and hide by using the Show property derived from OriginObject

class.

6. Activate Matrix Book

To activate a workbook, the method SetShow can be used by passing parameter of value

PAGE_ACTIVATE, which is the same as to activate a workbook.

MatrixPage matPg ("MBook1") ;

matPg. SetShow(PAGE_ACTIVATE; // Activate the matrix book

7. Delete Matrix Book

The Destroy method can also be used to destroy (delete) a matrix book.

MatrixPage matPg;
matPg = Project. MatrixPages . Item(0); // get first matrix book
if (matPg) //if thereis a matrix book

matPg. Destroy() ; // delete the matrix book

8. Clone/Duplicate Matrix Book

The Clone method is also used to clone the matrix page.

in project

69

http://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile
http://www.originlab.com/doc/OriginC/ref/OriginObject-Show
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/PageBase-SetShow
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
http://www.originlab.com/doc/OriginC/ref/Page-Clone

Origin C Programming Guide

/l Duplicate "MBook1" window with data and style
/I Before calling make sure these windows exist
MatrixPage matPage ("MBookl");

MatrixPage matPagel = matPage. Clone()

9. Name and Label Matrix Book
To handle with matrix book's short name, Long Name and Comments, Origin C provides the same ways

as handling workbook's, including the inherited methods SetName, SetLongName, SetComments, and

Label property.

6.2.2 Show Image Thumbnails

To show or hide image thumbnails, the method MatrixPage::ShowlmageThumbnails is available.

MatrixPage mp (“tangent”);

mp. ShowlmageThumbnails(true); // Pass true to make thumbnail v isible

6.3 Matrix Sheets

6.3.1 Matrix Sheets

Origin C provides the MatrixLayer class for working with a matrix sheet.

This section covers the following topics:

I Basic Matrix Sheet Operation

I Matrix Sheet Data Manipulation

6.3.2 Basic Matrix Sheet Operation

Examples in this section are similar to those found in the Basic Worksheet Operation section, because matrix

sheet and worksheet are at the same level in the Origin object structure.

6.3.2.1 Add New Matrix Sheet

70

http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
http://www.originlab.com/doc/OriginC/ref/PageBase-Label
http://www.originlab.com/doc/OriginC/ref/MatrixPage-ShowImageThumbnails
http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Sheet-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation

Matrix Books Matrix Sheets and Matrix Objects

Add a matrix sheet in a matrix book using the AddLayer method.

/I Access the matrix book named "MBook1"

MatrixPage mp ("MBook1");

/I Add a ne w sheet to the matrix book

int index = mp.AddLayer("New Matrix Sheet")

/I Access the new matrix sheet

MatrixLayer mlayerNew = mp.Layers(index);

6.3.2.2 Activate a Matrix Sheet

To make a matrix sheet in matrix book to be activated, the function set_active layer can be used.

/I Access a matrix sheet by full name

MatrixLayer mLayer ("[MBook1]MSheet1l");

/I Set this matrix sheet to be active
set_active_layer (mLayer) ;

6.3.2.3 Delete Matrix Sheet

Use the Destroy method to delete a matrix sheet.

MatrixLayer ly = Project. ActiveLayer() ;
if (ly) /lIfthe active layer is a matrix sheet

ly. Destroy() ; /I Delete the matrix sheet

6.3.2.4 Access Matrix Sheets in Matri X Book

Similar to accessing worksheets in workbook, matrix sheets in matrix book can also be accessed by the following

ways.

71

http://www.originlab.com/doc/OriginC/ref/Page-AddLayer
http://www.originlab.com/doc/OriginC/ref/set_active_layer
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

Origin C Programming Guide

1. By full layer name.

2.

/I Full matrix sheet n ame
string strFullName = "[MBookl1l]MSheetl!" ;
/I Construct a matrix sheet instance and attach it to the named sheet

MatrixLayer matLy1 (strFullName) ;

/I Attach an existing matrix sheet instance to the named sheet
matLy2. Attach(strFullName);

3. A matrix book constains a collection of matrix layers. Loop through all matrix layers in a specified matrix

book using the foreach statement.

MatrixPage matPage ("MBookl1");
foreach (Layer ly in matPage. Layers)

out_str (ly. GetName()) ;

5. Access a specified matrix sheet by its name or index.

6.

/I Assume there are at least two matrix sheets on the page MBook1,
/l and they are named MSheetl and MSheet2 separately.
MatrixPage matPage ("MBook1");

MatrixLayer lyFirst = matPage. Layers(0); //byindex

MatrixLayer lySecond = matPage. Layers("MSheet2"); //by name

72

Matrix Books Matrix Sheets and Matrix Objects

6.3.2.5 Modify Matrix Sheet Properties
6.3.2.5.1Get and Set Dimensions

In Origin, all matrix objects in matrix sheet share the same dimension (the same number of columns and rows).

1. To get number of rows and columns in a matrix sheet, you can get the first matrix object of a matrix sheet,

and then use the methods (GetNumCols and GetNumRows) in MatrixObject class.

/I get num rows and cols
MatrixLayer ml = Project. ActiveLayer() ; // Getactive matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; /I Get the first matrix object

int nNumRows = mo.GetNumRows() ; // Get the row number

int nNumCols = mo.GetNumCols() ; // Getthe column number

3. To set dimensions of a matrix sheet, you can use the MatrixLayer::SetSize method.

4.

/I set num rows and cols
MatrixLayer ml = Project. ActiveLayer() ; /] Get active mat rix sheet

ml. SetSize(-1, 5, 5); [/ Setdimensions by 5x5

5. Also, the MatrixObject class has provided the SetSize method for setting dimensions. However, please

note, even this method is defined in MatrixObject, what it changes is the matrix sheet's dimension,

because all matrix objects in the same matrix sheet have the same dimensions.

/I set num rows and cols

73

http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumCols
http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumRows
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetSize
http://www.originlab.com/doc/OriginC/ref/MatrixObject

Origin C Programming Guide

MatrixLayer ml = Project. ActiveLayer() ; /I Get active matrix sheet

MatrixObje ctmo = ml. MatrixObjects(0); // Get the first object

int nNumRows = 5, nNumCols = 5;
mo. SetSize(nNumRows, nNumCols); // Set dimensions by 5x5
7. Matrices have numbered columns and rows which are mapped to linearly spaced X and Y values. You

can use the SetXY method to set the XY mapping coordinates. Note: this method is available by matrix

object, however, the XY mapping is shared by all matrix objects in the same matrix sheet.

MatrixLayer ml = Project. ActiveLayer() ;I Get active layer

MatrixObject mo = ml. MatrixObjects(0); /I Get the first matrix object

mo. SetXY(- 10, 20, -2.3, 12.4); /I SetX from -10to 20, and Y from -2.3to
12.4

6.3.2.5.25et and SetlLabels

A matrix label includes a Long Name, Units, and Comments for X, Y, Z. The labels of X and Y are for all matrix
objects in the matrix sheet, the label of Z is for each matrix object. The following code shows how to get and set

the labels.

1. Set XY Labels

2.

MatrixPage mp ("MBook1") ;

MatrixLayer ml = mp.Layers(0); //the first matrix sheet
Tree tr;
tr. Root. Dimensions . X. LongName. strVal = "X Values" ;

74

http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetXY

3.

4.

tr. Root . Dimensions . X. Unit . strval = "X Units" ;
tr. Root . Dimensions . X. Comment strVal = "X Comment" ;
tr. Root. Dimensions . Y. LongName. strVal = "Y Values"
tr. Root. Dimensions . Y. Unit . strval = "Y Units" ;
tr. Root. Dimensions . Y. Comment strVal = "Y Comment" ;
/I Note, set format on matrix sheet for XY labels.
if (0 == nml. UpdateThemelDs(tr. Root))
ml. ApplyFormat(tr, true , true);

Get XY Labels

MatrixPage mp ("MBook1");

MatrixLayer ml = mp.Layers(0);

Matrix Books Matrix Sheets and Matrix Objects

/I Note, get XY labels from matrix sheet, not matrix object.

Tree tr;
tr = ml. GetFormat(FPB_ALL, FOB_ALL,
TreeNode trX = tr.
if (!'trX. LongName. ISEmpty()
printf(
if (!'trX. Unit . ISEmpty())
printf("X Unit: %s
if (!trX. Comment ISEmpty ()

Root . Dimensions

)

"X Long Name: %s \n

\'n", trX.

)

TRUE TRUB

. X

, trX. LongName. strVal)

Unit . strval)

/I the first matrix sheet

75

Origin C Programming Guide

printf("X Comment: %s \n\n",trX. Comment strval) ;

TreeNode trY = tr. Root. Dimensions .Y;
if (!'trY . LongName. ISEmpty())
printf("Y Long Name: %s \n", trY . LongName. strvVal) ;
if (!trY .Unit .ISEmpty())
printf(Y Unit: %s \n", trY . Unit . strVval) ;
if (!trY .Comment ISEmpty())
printf(Y Comment: %s \n", trY .Comment strval) ;

5. SetZ Labels

6.

MatrixPage mp ("MBook1");
MatrixLayer ml = mp.Layers(0); //the first matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // the first matrix object

/I construct format tree and assign string value to tree nodes

Tree tr;

tr. Root. LongName. strVal = "Z Long Name" ;
tr. Root. Unit . strval = "ZUnits" ;

tr. Root. Comment strVal = "Z Comment" ;

/I Note, h ere apply format on matrix object to set Z labels, not matrix
sheet.

if (0 == mo.UpdateThemelDs(tr. Root)) //add id for each tree node

mo. ApplyFormat(tr, true , true); Il do apply

7. GetZ Labels

76

Matrix Books Matrix Sheets and Matrix Objects

MatrixPage mp ("MBook1");

MatrixLayer ml = mp.Layers(0); //the first matrix sheet
MatrixObject mo = ml. MatrixObjects(0);
Tree tr;

tr = mo.GetFormat(FPB_ALL, FOB_ALL, TRUE TRUB;

printf("Z Short Name: %s \n",tr. Root. ShortName . strval) ;
if (!tr. Root.LongName. ISEmpty())//if notempty
printfit ~ "ZLong Nameis %s \n",tr. Root.LongName. strvVal) ;
if (!tr. Root.Unit .ISsEmpty())
printf("Z Unit is %s \'n",tr. Root.Unit .strval) ;
if (!'tr. Root.Comment ISEmpty())

printf("Z Commentis %s \n",tr. Root.Comment strval) ;

6.3.2.5.3ormat Matrix Sheet
A matrix sheet can be formatted programmatically using a theme tree.

The example below formats a block of cells in the active matrix sheet to have a blue background and light-

magenta text.

MatrixLayer ml = Project. ActiveLayer() ;

Tree tr;

tr. Root. Common$/le . Fill . FillColor .nVal = SYSCOLOR_BLUE;

tr. Root. CommonStyle . Color . nVal = SYSCOLOR_LTMAGENTA;

i

Origin C Programming Guide

DataRange dr;
dr. Add(NULL, ml, 2, 2, 5, 3); //firstrow, col, last row, col
if (0 == dr. UpdateThemelDs(tr. Root))
dr. ApplyFormat(tr, TRUE TRUB;
6.3.2.5.45et and Set Matrix Cell Text Color

The next example shows how to get and set the text color of a cell.

/I Wrap the 'set' code into a simpler utility function.

bool setCellTextColor (Datasheet & ds, int row, int col, uint color

{

Grid grid;

if (!grid. Attach (ds))

return false ;

vector <uint > vTextColor (1);

vTextColor [0] = color;

return grid. SetCellTextColors(vTextColor, col, row, row);
}

/I Wrap the 'get' code into a simpler utility function.

bool getCellTextColor (Datasheet & ds, int row, int col, uint & color)

Grid grid;
if (!grid. Attach(ds))
return false ;
vector <uint > vTextColor;
if (!grid. GetCellTextColors(vTextColor, col, row, row))

return false ;

78

Matrix Books Matrix Sheets and Matrix Objects

color = vTextColor [0];

return true ;

/I Simpl e function for testing the above utility functions.

testCellTextColor (int nRow = 3, int nCol = 4)

MatrixLayer ml = Project. ActiveLayer() ;
/I nRow, nCol use LT/GUI indexing, 1 - offset, but OC is 0 - offset
int row = nRow 1, col = nCol -1;

setCellTextColor ('ml, row, col, SYSCOLOR_BLUE);

uint color;

getCellTextColor ('ml, row, col, color);

printf("color==%d \n",color);

6.3.3 Matrix Sheet Data Manipulation

6.3.3.1 Conversion Between

Matrix Sheets and Matrix Objects

In Origin, a matrix sheet can hold multiple matrix objects. Using the matobj_move function, you can split multiple

matrix objects into separate matrix sheets, or combine multiple matrix sheets into one (provided all matrices

share the same dimensions).

/I This code snippet is to merge the matrix objects in three sheets to

/I a new sheet

MatrixPage mp ("MBook1");

MatrixLayer ml1
MatrixLayer ml2

MatrixLayer mi3

/I Matrix book
mp.Layers(1); //2nd sheet
mp. Layers(2); // 3rd sheet

mp.Layers(3); // 4th sheet

79

http://www.originlab.com/doc/OriginC/ref/matobj_move

Origin C Programming Guide

MatrixLayer miMerge;

miMerge. Create("Origin®); // Create a new sheet for merging |
MatrixObject mol = mll. MatrixObjects(0); /I Matrix object in 2nd sheet

MatrixObject mo2
MatrixObject mo3

ml2. MatrixObjects(0); /I Matrix object in 3rd sheet
ml3. MatrixObjects(0); /I Matrix object in 4th sheet

matobj_move (mol, miMerge); // Move the matrix object to t he end of the sheet
matobj_move (mo2, miMerge);

matobj_move (mo3, miMerge);

6.4 Matrix Objects

6.4.1 Matrix Objects

Matrix object, which is MatrixObject class, is the basic unit for storing matrix data, and its container is matrix
sheet, that relationship is like column and worksheet. The following pages will show the practical examples on

the operation of matrix object.

This chapter covers the following topics:

I Basic Matrix Object Operation

 Matrix Object Data Manipulation

I Converting Matrix to Worksheet

6.4.2 Basic Matrix Object Operation

A matrix sheet can have multiple matrix objects, which share the same dimensions. A matrix object is analogous
to a worksheet column and can be added or deleted, etc. The following sections provide some practical

examples on the basic operations of matrix object.

6.4.2.1 Add or Insert Mat rix Object

It allows to set the number of matrix objects in the matrix sheet by using MatrixLayer::SetSize, so to add matrix

objects.

/l Set5ma trix objects in the active matrix sheet

80

http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Object-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Object-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize

Matrix Books Matrix Sheets and Matrix Objects

MatrixLayer ml = Project. ActivelLayer() ;
ml. SetSize(5);

The method MatrixLayer::Insert will insert a specified number of matrix objects before the current matrix object.

/I add matrix object to sheet

MatrixLayer ml = Project. ActiveLayer() ; /I Get active matrix sheet

int nNum = 1; //the number of added matrix objects
int nPos = -1; // -1, addasthe end
int nDataType = -1; // Optional, - 1 as default for double type.

int index = ml Insert(nNum,nPos, nDataType); // Returns the index of the first one

6.4.2.2 Activate Matrix Object

To activate a matrix object in the matrix sheet, the MatrixLayer::SetActive is available.

MatrixLayer ml = Project. ActiveLayer() ;

ml. SetActive(2); // Set3rd (indexis 0 - based) matrix object active

6.4.2.3 Access Matrix Object

To access a matrix object, you can use the collection of MatrixObjects from MatrixLayer.

/I Attach to one matrix page by name

MatrixPage matPage ("MBook3") ;

/I Attach to the sheet named MSheetl from matrix page

/I Also support get sheet from matrix page by index

MatrixLayer ml1 = matPage. Layers ("MSheetl");

/I Get a matrix object from sheet by index

81

http://www.originlab.com/doc/OriginC/ref/MatrixLayer-Insert
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetActive
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-MatrixObjects
http://www.originlab.com/doc/OriginC/ref/MatrixLayer

Origin C Programming Guide

MatrixObject mo = mll. MatrixObjects(0);

/I The data type of matrix object must keep consistent with the matrix window
if (FSI_SHORT == mo. GetInternalDataType())

{

matrix <short >& mat = mo.GetDataObject() ;

6.4.2.4 Delete Matrix Object

To delete a specified number of matrix objects from a matrix sheet, you can use the MatrixLayer::Delete method.

/I delete matrix object from sheet

MatrixLayer ml = Project. ActiveLayer() ; // Getactive matrix sheet

/I Delete two matrix objects from the beginning

int nPos 0;

int nNum = 2;
ml. Delete (nPos, nNum);

6.4.2.5 Switch Between Image Mode and Data Mode

The MatrixLayer::SetViewlmage method has provided the option for switching between image mode and data

mode of the specified matrix object (by index).

/I set image view

MatrixLayer ml = Project. ActiveLayer() ; Il Get active matrix sheet
int nimgindex = 0;
MatrixObject mo = ml. MatrixObjects(nimgindex);

82

http://www.originlab.com/doc/OriginC/ref/MatrixLayer-Delete
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetViewImage

Matrix Books Matrix Sheets and Matrix Objects

if (! mo.IslmageView())

{

BOOL bAIIObjs = FALSE

ml. SetViewlmage(TRUE bAIIObjs, nimgindex); /I FALSE for data view

6.4.2.6 Getand Set Labels

For each matrix object, you can set Long Name, Comments, and Units. And it actually is to get and set the Z

labels, please refer to the Get and Set Z Labels on Base Matrix Sheet Operation chapter.

6.4.2.7 Data Type and Format
6.4.2.7.XGet and Set Data Type

Matrix object's internal data types include double, real, short, long, char, text, mixed, byte, ushort, ulong, and

complex, etc. And Origin C provides the GetinternalDataType and SetinternalDataType methods in MatrixObject

class to get and set matrix object internal data type respectively.

/I get and set data type

MatrixLayer ml = Project. ActivelLayer() ; /I Get active ma trix sheet
MatrixObject mo = ml. MatrixObjects(0);

if (mo.GetlinternalDataType() I = FSI_BYTE) // Getdata type

{

/Il OCD_RESTORE to backup the data and
/I attempt to restore it after changing type
DWORD dwFlags = OCD_RESTORE;

mo. SetinternalDataType(FSI_BYTE, dwFlags); // Setdata type

6.4.2.7.25et and Set Data Format

The MatrixObject::GetFormat and MatrixObject::SetFormat are provided for getting and setting the data format of

a matrix object respectively.

83

http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
http://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataType
http://www.originlab.com/doc/OriginC/ref/DataObject-SetInternalDataType
http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetFormat
http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetFormat

Origin C Programming Guide

/I get and set data format
MatrixLayer ml = Project. ActiveLayer() ; /I Get active matrix sheet

MatrixObject mo = ml. MatrixObjects(0);

int nFormat = mo.GetFormat() ; // Only OKCOLTYPE_NUMERIC(= 0) supported

mo. SetFormat(OKCOLTYPE_NUMER)IC

6.4.3 Matrix Object Data Manipulation

6.4.3.1 Set Values by Formula

The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set column/matrix

values, which is the same as setting values in the Set Values dialog. The example below shows how to set

values to a matrix object by formula.

/I new a matrix window
MatrixPage matPage;

matPage. Create("Origin");

MatrixLayer ml = matPage. Layers() ; // getactive matrix sheet

/I set form ula and execute

MatrixObject mo = ml. MatrixObjects(0); //get first matrixobject
mo. SetFormula("sin(i) + cos(j)");

mo. ExecuteFormula()

6.4.3.2 Copy Matrix Data

The matobj copy function is used to copy matrix data.

MatrixLayer mISrc = Project. ActiveLayer() ; Il Get the active matrix sheet
MatrixObject moSrc = miSrc. MatrixObjects(0); /I Gett he 1st matrix objectin the
sheet

MatrixLayer miDst;

miDst. Create("Origin"); // Create a new matrix sheet

84

http://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
http://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula
http://www.originlab.com/doc/OriginC/ref/matobj_copy

Matrix Books Matrix Sheets and Matrix Objects

MatrixObject moDst = miDst. MatrixObjects(0); [/l Getthe 1st matrix object

bool bRet = matobj_copy (moDst, moSrc); // Copy the active data to the new ly
created matrix

6.4.3.3 Math on Matrix Data

To perform mathematical operation on matrix, it always gets the data out of matrix object into a data matrix, and
then do the calculation, and put the data back into matrix object. The math includes multiplying matrix by

constant, dot multiply, dot divide, dot power, cross, cumulative product, cumulative sum, difference, etc.

The following shows two examples on the matrix operations, one is multiply matrix by constant, and the other is

dot multiply.

6.4.3.3. Multiply Matrix by Constant

MatrixLayer ml = Project. ActiveLayer() ;
MatrixObject mo = ml. MatrixObjects(0); /I Get the first matrix object
/IGet the referenc e of the internal data object of matrix window.

/[Here assume data type of the matrix is double.

matrix <double >& mat = mo.GetDataObject() ;

/I multiply 10 for each data in matrix, this change also effect on window
mat = mat * 10;

6.4.3.3.Dot Multiply Two Matrix

/I Attach to two matrix pages
MatrixPage matPagel ("MBook1");
MatrixPage matPage2 ("MBook2") ;
if (!'matPagel || ! matPage2)

return

/I Get the matrix sheet from page by name or index

MatrixLayer matLayerl = maPagel. Layers("MSheetl");

85

http://www.originlab.com/doc/OriginC/ref/matrixbase-DotMultiply
http://www.originlab.com/doc/OriginC/ref/matrixbase-DotDivide
http://www.originlab.com/doc/OriginC/ref/matrixbase-DotPower
http://www.originlab.com/doc/OriginC/ref/matrixbase-Cross
http://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeProduct
http://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeSum
http://www.originlab.com/doc/OriginC/ref/matrixbase-Difference

Origin C Programming Guide

MatrixLayer matLayer2 = matPage2. Layers(1); // getthe second sheet
if (!'matLayerl || ! matLayer2)
return

/I Get matrix object from matrix sheet by index, name is not allowed.
MatrixObject mol = matLayerl. MatrixObjects(0);

MatrixObject mo2 = matLayer2. MatrixObjects(0);

/I Get the reference of the internal data object of matrix window
matrix <double >& matl = mol.GetDataObject() ;

matrix <double >& mat2 = mo2.GetDataObject() ;

/I Prepare new matrix window

MatrixPage matPageNew ;

matPageNew. Create("Origin");

MatrixLayer mINew = matPageNew. Layers(0);
MatrixObject moNew = miNew. MatrixObjects(0);

matrix <double >& matNew = moNew.GetDataObject() ;

/I Copy values from matl to new matrix

matNew = matl,

/I Multiply two matrices element b y element and put result
/l to a newly created matrix window

matNew. DotMultiply(mat2) ;

6.4.3.4 Conversion between Matrix Object and Vector

86

Matrix Books Matrix Sheets and Matrix Objects

The methods matrixbase::GetAsVector and matrixbase::SetByVector can be used to convert between matrix

object and vector.

/I To vector

MatrixLayer m | = Project. ActiveLayer() ; // Active matrix sheet
MatrixObject mo = ml. MatrixObjects(0); /I The 1st matrix object
matrixbase ~ &mb = mo.GetDataObject() ; // Get data from matrix object
vector vb;

mb. GetAsVector(vb); // Convert the matrix data into vector

/I From vector

MatrixLayer ml1;

mll. Create("Origin"); // Create a matrix sheet

MatrixObject mol = mll. MatrixObjects(0); /I Get matrix object
matrixbase ~ &mbl = mol. GetDataObject() ; // Get data object
mb1l. SetSize(2, 3); // Setsize 2 rows x 3 columns

vectorv = {1, 2, 3, 4, 5, 6}; [/ Vectordata

/I Set vector data to matrix object

/l Firstrow: 1, 2, 3

/I Second row: 4, 5, 6

int iRet = mbl.SetByVector(Vv);

6.4.3.5 Manipulate Matrix Object with Complex Values

Origin C provides a set of methods in matrixbase class for handling complex, including making a complex matrix

from two real matrices, getting real and imaginary, getting phase and amplitude, calculating conjugate, etc.

The following code is used to set a matrix object as complex matrix with two real matrices data, and then get its
real, imaginary, phase, and amplitude into separate matrix objects, and then use the conjugate to replace the

original complex matrix object.

87

http://www.originlab.com/doc/OriginC/ref/matrixbase-GetAsVector
http://www.originlab.com/doc/OriginC/ref/matrixbase-SetByVector
http://www.originlab.com/doc/OriginC/ref/matrixbase
http://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
http://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetReal
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetImaginary
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetPhase
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetAmplitude
http://www.originlab.com/doc/OriginC/ref/matrixbase-Conjugate

Origin C Programming Guide

void MatrixObject_Complex_EX 0
{
// Original data for real

matrix mR =

{2, 2, 2, 0},
{0, 1, 99, 99}
}
/I Original data for imaginary

matrix ml =

{3, -3, 0, 3},
{0, 99, 1, 99}

}

matrix <complex > mC;

/I Create a complex data

int iRet = mC.MakeComplex(mR, ml);

if (iRet == 0)

{
/I Create a new matrix sheet for complex data
MatrixLayer ml;
ml. Create("Origin");
MatrixObject mo = ml. MatrixObjects(
ml. SetinternalData(FSI_COMPLEX;
matrixbase &mb = mo. GetDataObject()

mb = mC;

88

0);

Matrix Books Matrix Sheets and Matrix Objects

/Il Get real part

matrix mReal

mb. GetReal(mReal) ;

/I Get imaginary part

matrix mimg;

mb. Getimaginary(mimg) ;

/I Get phase

matrix mPha;

mb. GetPhase(mPhg) ;

/I G et amplitude

matrix mAmp;

mb. GetAmplitude(mAmp;

/I Create new matrix sheet for the results
MatrixLayer miIRes;

mlIRes. Create("Origin");

/I Set 4 matrix objects, the same size as the matrix

mlIRes. SetSize(4, mb. GetNumRows() , mb. GetNumCols()) ;

MatrixObject moReal = mlRes. MatrixObjects(0);
MatrixObject molmg = miRes. MatrixObjects(1);
MatrixObject moPha = miRes. MatrixObjects(2);
MatrixObject moAmp = miRes. MatrixObjects(3);

matrixbase &mbReal moReal. GetDataObject() ;
matrixbase &mblmg = molmg. GetDataObject() ;
matrixbase &mbPha = moPha. GetDataOb ject() ;
matrixbase &mbAmp= moAmp.GetDataObject() ;

mbReal = mReal; // Setreal part to matrix object

mbimg = mimg; // Setimaginary part to matrix object

89

Origin C Programming Guide

mbPha = mPha; // Set phase to matri X object

mbAmp= mAmp; // Set amplitude to matrix object

/I Use the conjugate to replace the original complex matrix

mb. Conjugate() ;

6.4.3.6 Transform Matrix Object Data

Origin C contains a set of methods in matrixbase for the matrix transformation, such as flip a matrix horizontally

or vertically, rotate a matrix, shrink a matrix, transpose a matrix, etc.

MatrixLayer ml = Project. Activ elLayer() ;
MatrixObject mo = ml. MatrixObjects(0);

matrixbase &mb = mo.GetDataObject() ;

mb. FlipHorizontal() ;I Flip horizontally
mb. FlipVertical() ; Il Flip vertically
mb. Rotate(90); // Rotate 90 degrees counter - clockwise, need to be multiple of 90

mb. Shrink(2, 2); // Shrink by factor of 2 for both row and column

mb. Transpose() ; // Transpose

6.4.4 Converting Matrix to Worksheet

You may need to re-organize your data by converting from matrix to worksheet, or vice versa, for certain analysis
or graphing needs. This page provides information and examples of converting matrix to worksheet, and please

refer to Converting Worksheet to Matrix for the "vice versa" case.

6.4.4.1 Matrix to Worksheet

To convert a matrix object data to worksheet, you can firstly get the data in matrix object out to a data matrix, and

then use the CopyTo method defined in class.

Here is the example on how to convert the whole matrix object directly into worksheet.

90

http://www.originlab.com/doc/OriginC/ref/matrixbase-FlipHorizontal
http://www.originlab.com/doc/OriginC/ref/matrixbase-FlipVertical
http://www.originlab.com/doc/OriginC/ref/matrixbase-Rotate
http://www.originlab.com/doc/OriginC/ref/matrixbase-Shrink
http://www.originlab.com/doc/OriginC/ref/matrixbase-Transpose
http://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
http://www.originlab.com/doc/OriginC/ref/matrixbase-CopyTo

Matrix Books Matrix Sheets and Matrix Objects

/I Convert the active matrix object's data into a newly created worksheet directly,

[/l without tranposing, and with setting the column type the same as matrix

MatrixLayer ml = Project. ActiveLayer() ; // Active matrix sheet
MatrixObject mo = ml. MatrixObjects(0); /I Get the first matrix object
matrixbas e &mb = mo.GetDataObject() ; // Get the data from matrix object
Worksheet wks;

wks. Create("Origin®); // Create a new worksheet

mb. CopyTo(wks, 0, 0, -1, -1, 0, 0, FALSE TRUB; // Convertthe data to worksheet

91

7 Workbooks Worksheets and Worksheet Columns

7.1 Workbooks Worksheets and Worksheet Columns

The Origin C WorksheetPage class is for working with Origin workbooks. Each workbook contains a collection of

Worksheets and each worksheet contains a collection of Columns.

oot =R

AlX) B(Y) i

Long Mam=

— WorksheetPage |

m

(=l SNl e) [YN Y T Y

5

rksheet }

—
l_u

This section covers the following topics:

I Workbooks

f Worksheet Columns

f Worksheets

7.2 Workbooks

7.2.1 Workbooks

The Origin C WorksheetPage class provides methods and properties common to Origin workbooks. This class is

derived from Page class, from which it inherits its methods and properties.

93

http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/guide/Workbooks
http://www.originlab.com/doc/OriginC/guide/Worksheet-Columns
http://www.originlab.com/doc/OriginC/guide/Worksheets
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Page-Class

Origin C Programming Guide

This chapter covers the following topics:

I Basic Workbook Operation

I Workbook Manipulation

7.2.2 Basic Workbook Operation

7.2.2.1 Create New Workbook

The Create method is used for creating new workbooks.

/I create a hidden workbook using the STAT template
WorksheetPage wksPg;

wksPg. Create("STAT", CREATE_HIDDEN) ;

7.2.2.2 Open Workbook

If the workbook with data is saved (as extension of ogw), it can be opened by the Open method.

Worksheet wks; /I The Open method belongs to Worksheet
string strOGW = "D: \\ Bookl.ogw" ; /I Path of the workbook

wks. Open(strOGW) ; /I Open the workbook

7.2.2.3 Access Workbook

There are multiple ways to access an existing workbook. The Project class contains a collection of all the

workbooks in the project. The following example shows how to loop through them.

foreach (WorksheetPage wksPg in Project. WorksheetPages)
out_str (wksPg. GetName()) ; // output workbook name

You can also access a workbook by passing its index to the ltem method of the Collection class.

WorksheetPage wksPg;
wksPg = Project. WorksheetPages . Item(2);

if (wksPg) //if thereis a 3rd workbook

94

http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/guide/Workbook-Manipulation
http://www.originlab.com/doc/OriginC/ref/Page-Create
http://www.originlab.com/doc/OriginC/ref/Worksheet-Open
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/Collection-Item
http://www.originlab.com/doc/OriginC/ref/Collection

Workbooks Worksheets and Worksheet Columns

out_str (wksPg. GetName()) ; // output workbook name

If the workbook name is known, this workbook can be accessed by passing its name to the class constructor.

WorksheetPage wksPg ("Bookl1");
if (wksPg) // if there is a workbook named "Book1"

wksPg. SetName("MyBook1"); // rename the workbook

7.2.2.4 Save Workbook
Origin allows you to save a workbook with data to a file (*.ogw), or as a template without data (*.otw), and for the
workbook with analysis, it is able to be saved as an analysis template (*.ogw). And methods SaveToFile and

SaveTemplate are used for saving workbook as *.ogw and *.otw files respectively.

WorksheetPage wksPg ("Bookl1");
/I Save workbook as OGW file

bool bRetl = wksPg. SaveToFile("D: \\" + wksPg. GetName() + ".ogw");
/I Save workbook as OTW template

bool bRet2 = wksPg. SaveTemplate("D: \\" + wksPg. GetName() + ".otw");

7.2.2.5 Show or Hide Workbook

The WorksheetPage class inherits the Show property from OriginObject class to show or hide itself.

WorksheetPage wksPg ("Bookl");

wksPg. Show = false ; //Hide the workbook. If true, show the workbook

7.2.2.6 Activate Workbook

To activate a workbook, the method SetShow can be used by passing parameter of value PAGE_ACTIVATE.

WorksheetPage wksPg ("Bookl");

wksPg. SetShow(PAGE_ACTIVATE; // Activate the workbook
/I More operations can be done by passing different values, such as

/I wksPg.SetShow(PAGE_HIDDEN); // Hide the workbook
/I wksPg.SetShow(PAGE_MINIMIZED); // Minimize the workbook

/I wksPg.SetShow(PAGE_MAXIMIZED); // Maximize the workbook

95

http://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile
http://www.originlab.com/doc/OriginC/ref/PageBase-SaveTemplate
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/OriginObject-Show
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/PageBase-SetShow

Origin C Programming Guide

7.2.2.7 Delete Workbook

All of Origin C's internal classes are derived from the OriginObject class. This class has a Destroy method that is
used to destroy the object. Calling this method on a workbook will destroy it, together with all the sheets in the

workbook, and all the columns in each sheet.

WorksheetPage wksPg;
wksPg = Project. WorksheetPages . Iltem(0); // get first wo rkbook in project
if (wksPg) //if there is a workbook

wksPg. Destroy() ; // delete the workbook

7.2.2.8 Clone/Duplicate Workbook

The WorksheetPage class (for a Workbook) is derived from the Page class. This class has a Clone method that

is used to clone the source page.

/I Duplicate "Book1" window with data and style
/I Before calling make sure t hese windows exist
WorksheetPage wksPage ("Bookl");

WorksheetPage wksPagel = wksPage. Clone() ;

7.2.2.9 Name and Label Workbook

For a workbook, there will be short name, Long Name, and Comments. The inherited methods, SetName,

SetLongName, SetComments, which are defined in OriginObject class, can be used to control workbook's name

(both short name and Long Name) and comments.

WorksheetPage wksPg ("Bookl1");
if (wksPg)
{
wksPg. SetName("MyBook"); // Rename workbook
wksPg. SetLongName("This is Long Name" , false); /I Set Long Name

wksPg. SetComments("Comments”); // Set Comments

96

http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/Page-Clone
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
http://www.originlab.com/doc/OriginC/ref/OriginObject

Workbooks Worksheets and Worksheet Columns

Also, Label property is provided for changing Long Name. And TitleShow property is for how to show short name

and Long Name on the workbook's title.

WorksheetPage wksPgl ("Book2");
if (wksPgl)
{
wksPgl. Label = "My Label" ; // Set Label (also called Long Name)
/I Show only Label on workbook's title
wksPgl. TitteShow = WIN_TITLE_SHOW_LABEL;
/I Show only short name on workbook's title
/I wksPg1.TitleShow = WIN_TITLE_SHOW_NAME;
/I Show both short name and Label on workbook's titl e

/| wksPg1.TitleShow = WIN_TITLE_SHOW_BOTH;

7.2.3 Workbook Manipulation

Origin provides the capabilities for workbook manipulation by using Origin C, such as merging, splitting, etc.

7.2.3.1 Merge Workbook S

To merge many workbooks into one workbook, actually it is to copy the worksheets from the source workbooks

to the target workbook. To add worksheet to a workbook, the AddLayer method is available.

The following example is to merge all workbooks in current folder to the newly created workbook.

WorksheetPage wksPgTarget;

wksPgTarget. Create("Origin®); // Create the target workbook

Folder fld = Project. ActiveFo Ider() ; // Getthe active/current folder
foreach (PageBase pb in fld. Pages)

{ /I Loop all Pages in folder

97

http://www.originlab.com/doc/OriginC/ref/PageBase-Label
http://www.originlab.com/doc/OriginC/ref/PageBase-TitleShow
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

WorksheetPage wksPgSource = pb; // Convert the Page to WorksheetPage

/I If convert failed, that is to say the Page is not W orksheetPage
if (!wksPgSource)

{

continue ; // Next Page

}

/I Skip the target workbook

if (wksPgTarget. GetName() == wksPgSource. GetName())
{

continue ;
}

/I Lo op all worksheet in workbook for merging

foreach (Layer lay in wksPgSource. Layers)

{
Worksheet wks = lay; /I Get the worksheet

/I Add the worksheet to target workbook
wksPgTarget. AddLayer(wks, 0, false);
}
/'If not to keep the source workbook, destroy it

wksPgSource. Destroy() ;

7.2.3.2 Split Workbook

The example above is merging multiple workbooks into one workbook. It is also able to split a workbook into

multiple workbooks, which contain single worksheet.

WorksheetPage wksPgSource ("Book1"); // Workbook with multiple worksheets
/I Loop over all worksheets

foreach (Layer lay in wksPgSource. Layers)

98

Workbooks Worksheets and Worksheet Columns

{ Worksheetwks = lay; /I Get worksheet
WorksheetPage wksPg Target;
wksPgTarget. Create("Origin®); // Create new workbook
wksPgTarget. AddLayer(wks); // Add worksheet to the new workbook
wksPgTarget. Layers(0). Destroy() ; // Delete the first worksheet

}

7.3 Worksheet Columns

7.3.1 Worksheet Columns

Origin C provides the Column class for handling the columns in a worksheet. A Column object is usually used to

control the style, format and data type of the dataset, which is contained in the column. Example codes,

demonstrating how to use the Column class, are provided in this sub-chapter.

This section covers the following topics:

Worksheet Column Operation

Worksheet Column Data Manipulation

7.3.2 Worksheet Column Operation

To perform operation on worksheet column, you can use Column class or Worksheet class.

7.3.2.1 Add or Insert Column

To add a column to the end of the worksheet, the AddCol method in Worksheet class is available, and also the

InsertCol for inserting a column before a specified position.

/I Add column with default name

int nColindex = wks. AddCol()

/I Add column with namestring strName;

99

http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Operation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Data-Manipulation
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-InsertCol

Origin C Programming Guide

int nColindex = wks. AddCol("AA" , strName); // Returns the index of column
/I If the column named AA already exist, name enumeration automatically
out_str (strName);

Column col (wks, nCollndex); // Construct column object by column index

/I Insert a new column as the first co lumn
int nPos = 0; // The position to insert

string strNewCreated; /l the real name of the new column
/I The name will be auto enumerated if name MyCol already existed

if (wks. InsertCol(nPos, "MyCol" , strNewCreated))

{

printf("Insert column succe ssfully, name is %s \'n", strNewCreated) ;

7.3.2.2 Delete Column

The Worksheet::DeleteCol method is capable of removing a column from worksheet.

/I Delete the column by index

wks. DeleteCol(0);

7.3.2.3 Rename and Label Column

To rename (short name) a column, Origin provides the SetName method.

Columncol = wks. Columns(0) ; // Get the 1st column in worksheet
BOOL bRet = col. SetName("MyNewName"); // Rename the column

Worksheet column labels support Long Name, Units, Comments, Parameters and User-Defined labels. We can

use Origin C code to show/hide labels or to add text to the specified column label.

Worksheet wks;

wks. Create() ;

Grid gg;

100

http://www.originlab.com/doc/OriginC/ref/Worksheet-DeleteCol
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName

Workbooks Worksheets and Worksheet Columns

gg. Attach(wks) ;

/I if Parameters lable not show, show it.
bool bShow = gg. IsLabel sShown(RCLT_PARAM;
if (!bShow)

gg. ShowlLabels(RCLT_PARAM;

wks. Columns(0) . SetLongName("X Data");

wks. Columns(1) . SetLongName("Y Data");
wks. Columns(0) . SetComments("This is a test");

wks. Columns(0) . SetUnits("AA");

wks. Columns(1) . SetUnits("BB");

/l put text to Parameters label for two columns.
wks. Columns(0) . SetExtendedLabel("Param A" , RCLT_PARAM) ;

wks. Columns(1) . SetExtendedLabel("Param B" , RCLT_PARAM) ;

\ ;' / RCLT_PARAM is the type of Parameters column label, other types see

OriginC\system\oc_const.h fle ROWCOLLABELTYPE enum.

7.3.2.4 Hide/Unhide Column

To hide/unhide column(s), you can use the Workhseet::ShowCol method.

wks. ShowCol(1, 1, false); //to hide column 1.

7.3.25 Move and _Swap Column__s

101

http://www.originlab.com/doc/OriginC/ref/Worksheet-ShowCol

Origin C Programming Guide

Move Column To move columns or swap columns, the super class of Worksheet class, Datasheet class,

provides the method MoveColumns and [[OriginC:Datasheet-SwapColumns|SwapColumns] respectively for such

purposes.

/l Move three columns - starting with colu mn5 - to the first column
/I Example requires first worksheet in project with at least 7 columns

Worksheet wks = Project. ActiveLayer() ;
if (wks)

wks. MoveColumns(4, 3, MOVE_COL_TO_FIRST) ;

/I Reverse the column order in the active worksheet
for (int i = 1;ii <= wks. GetNumCols() [/ 2 ;ii ++)
wks. SwapColumns(ii - 1,wks. GetNumCols() - ii);

7.3.2.6 Add Sparkline to Column
To add sparkline to column(s), Origin C provides the wks_set show_labels with the RCLT_SPARKLINE label
type.

/I Configure active sheet to show Sampling Inverval and SparkLine in order
/I append to the curernt Labels

Worksheet wks = Project. ActiveLayer() ;

vector <int > vn = {RCLT_SAMPLE_RATE, RCLT_SPARKLINE;

wks_add_show_labels (wks, vn, false);

7.3.2.7 Data Type, Format, SubFormat
7.3.2.7.)Get & Set Data Type

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0);

102

http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Datasheet
http://www.originlab.com/doc/OriginC/ref/Datasheet-MoveColumns
http://www.originlab.com/doc/OriginC/ref/wks_set_show_labels

Workbooks Worksheets and Worksheet Columns

/I Get column type, can be:

110:Y

/I 1: None

/l'2:Y Error

113: X

II4: L

I1'5:Z

/I 6: X Error

int nType = col. GetType() ;

out_int ("Type:" ,nType);

/I Set column type. See mor e define OKDATAOBJ_DESIGNATION_*in oc_const.h

col. SetType(OKDATAOBJ_DESIGNATION)Z

7.3.2.7.%et & Set Data Format

/I Get and set data format

/I The default format of column is OKCOLTYPE_TEXT_NUMERIC.
/I Set the format of ¢ olumn to Date

if (OKCOLTYPE_DATE = col. GetFormat())

{

col. SetFormat(OKCOLTYPE_DATE

7.3.2.7.35et & Set Data Subformat

/I Get and set data subformat
/I The options of the sub format will be different according to the above format,

/I numeric, date, time and so on.

103

Origin C Programming Guide

if (LDF_YYMMDD = col. GetSubFormat())

{

col. SetSubFormat(LDF_YYMMDQD

7.3.3 Worksheet Column Data Manipulation

7.3.3.1 Basic Arithmetic Operation
To perform the base arithmetic operation on the column data, you can first get the column data into vector, and

then operate on the corresponding vectors.

/I Get data from the 1st and 2nd columns
/I Then add two columns togethe r,

/I and put results to 3rd column

Worksheet wks = Project. ActiveLayer() ;
if (!wks)
{
return ;
Columncoll = wks. Columns(0); // 1st column
Columncol2 = wks. Columns(1); //2nd column
Column col3 = wks. Columns(2); //3rd column
vectorbase &1 = coll. GetDataObject() ; // Getdata object

vectorbase &2 = col2. GetDataObject() ;
vectorbase &3 = col3. GetDataObject() ;

v3 = vl + v2; // Add together

7.3.3.2 Set Value by Formula

The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set column/matrix values,

which is the same as setting values in the Set Values dialog. The following example is of creating a worksheet

with three columns, and then setting values by a formula to each column.

104

http://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
http://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula

Workbooks Worksheets and Worksheet Columns

Worksheet wks;
wks. Create("origin® , CREATE_VISIBLE);

wks. AddCol() ;

/I set value to the first column
Column colA;

colA. Attach(wks, 0);

colA. SetFormula("5*(ii -1)");

colA. ExecuteFormula() ;

/I for the next two columns we will set Recalculate = Auto
Column colB;

colB. Attach(wks, 1);

colB. SetFormula("sin(4*col(A)*pi/180)" ,AU_AUTO) ;

colB. ExecuteFormula() ;

/I using declared variables in Before Formula Script
Column colC;

colC. Attach(wks, 2);

string StrExp ression = "cos(Amp*x*pi/180)" ;
string strBeforeScript = "double Amp=4.5;" + "\r\n" + "range x=col(A);" ;
string strFormula = strExpression + STR_COL_FORMULAR_SEPARAT®RstrBeforeScript;

colC. SetFormula(strFormula, AU_AUTO);

colC. ExecuteFormula() ;

7.3.3.3 Sort Colu _mn

105

Origin C Programming Guide

To sort a specified column, first get the column's data into a vector, and then put the data back after sorting the
vector. By using a vector reference for getting data object from column, the vector will attach to the column

automatically, and the data update on vector will map back to column.

Worksheet wks = Project. ActivelLayer() ;
if (!wks)
{
return ;
}
Columncoll = wks. Columns(0); // 1st column
vectorbase &1 = coll. GetDataObject() ; // Getdata object using reference

vl. Sort(SORT_DESCENDING // Sort descendingly

7.3.3.4 Reverse Column
To reverse column's data, first you can get the column data into a vector, and then reverse the data in vector and

put them back.

/I Reverse the 1st column's data

Worksheet wks = Project. ActiveLayer() ;
if (!wks)
{
return
}
Columncoll = wks. Columns(0); // 1st column
vectorbase &1 = coll. GetDataObject() ; // Get data object
vector <uint > vnindices; /' vector for reverse indices
vnindices. Data(v1. GetSize() - 1, 0, -1); // Reverse indices

v1l. Reorder(vnindice s); // Reverse the data

7.3.3.5 Get & Set Data from Column

7.3.3.5.1Get & Set Numeric Data Values from Column

106

Workbooks Worksheets and Worksheet Columns

/I Attach to the first column, make sure the format of the column is
/I Text & Numeric(default) or Numeric.

Col umn col (wks, 0);

/I Here assume the data type of the column is double.
/I Other numeric data type supported, for example, int, short, complex.

vector <double >& vec = col. GetDataObject() ;

/I Append 100 at the end of this column
vec. Add(100);

Or we can use a Dataset object to get and set numeric data for a column. For example:

Worksheet wks = Project.ActiveLayer();
Datasetds (wks, 1);

for (int i =0;ii <ds. GetSize();ii ++)
out_double (™ ,ds [ii]) ;
7.3.3.5.%et & Set String Values from Column
Column col(wks, 0); /I Attach to the first column
/I Get string array from column
vector <string > vs;
col. GetStringArray(vVsS);
/I Put st ring array back to column
vs. Add("test");
col. PutStringArray(VS);
7.3.3.5.3et & Set Date and Time Data from Column

If the column's format is Date or Time, the data you get from this column will be Julian date/time data, but not

the display-date-time-format string.

107

http://www.originlab.com/doc/OriginC/ref/Dataset

Origin C Programming Guide

/I Get active worksheet
Worksheet wks = Project. ActiveLayer() ;
Columncoll (wks, 0); // The first column

Columncol2 (wks, 1); // The second column

/I Check if the first column's format is Date or T ime, or not
if (coll. GetFormat() === OKCOLTYPE_DATH| coll. GetFormat() == OKCOLTYPE_TIME
{

/I Get data from 1st column, v1 holds Julian data

vector &l = coll. GetDataObject() ;

vector &2 = col2. GetDataObject() ; // Getdata from 2 nd column
v2 = vl; /I Set 1st column's Julian data to 2nd column

col2. SetFormat(OKCOLTYPE_DATE // Set 2nd column to be Date column
/I Set display format to be MM/dd/yyyy HH:mm:ss

col2. SetSubFormat(LDF_SHORT_AND_HHMMSS FRRCOLON

7.3.3.6 Get the columns of different worksheets \ workbooks

To calculate the sum of a specific column of all worksheets in all workbooks, you can loop all the worksheets in

the current folder, and operate on the wanted column(s).

/I Retrieve the seco nd column of each worksheet in each workbook of current folder,
calculate its sum and output to a new worksheet.

void Calculate_Column_Sum ()
{
StringArray ColNames;
vector <double > ColMeans;
int K= 1;

Dataset ds;

108

Workbooks Worksheets and Worksheet Columns

double colSum;

Fold er fld = Project. ActiveFolder() ; Il Get the active/current folder
foreach (PageBase pb in fld. Pages)
{

/I Loop all Pages in folder

WorksheetPage wksPgSource = pb; /I Convert the Page to WorksheetPage
/'l fconvert failed, that is to say the Page is not WorksheetPage

if (!wksPgSource)

{

continue ; // Next Page

/I Loop all worksheet in workbook
foreach (Layer lay in wksPgSource. Layers)
{
Worksheet wks = lay;
/I Get column info
ds. Attach(wks, K);
DataRange dr;
dr. Add("X",wks, 0K, -1,K);
ColNames. Add(dr. GetDescription()) ;
/I Calculate column sum
ds. Sum(colSum) ;

ColMeans. Add(colSum) ;

109

Origin C Programming Guide

/I Prepare the resulting worksheet
Worksheet wksResult;

wksResult. Create("Origin") ;
DataRange dr;

dr. Add(wksResult, 0, "X");

dr. Add(wksResult, 1, "Y");

dr. SetData(&ColMeans, &ColNames);

7.4 \Worksheets

7.4.1 Worksheets

Origin C provides the Worksheet class for working with the worksheets in a WorksheetPage. While a workbook

contains a collection of worksheets, a worksheet contains a collection of Columns. The Worksheet class is

derived from the Layer class.

This section covers the following topics:

Worksheet Basic Operation

Worksheet Data Manipulation

Converting Worksheet to Matrix

= = =4 =4

Virtual Matrix

7.4.2 Worksheet Basic Operation

The basic worksheet operations include adding worksheet to workbook, activating a worksheet, getting and

setting worksheet properties, deleting worksheet, etc. Some practical examples are provided below.

7.4.2.1 Add New Worksheet

Add a worksheet to a workbook using the AddLayer method.

110

http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Layer
http://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
http://www.originlab.com/doc/OriginC/guide/Virtual-Matrix
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Workbooks Worksheets and Worksheet Columns

/I Access the workbook named "Book1"

WorksheetPage wksPage ("Bookl");

/I Add a new sheet to the workbook

int index = wksPage. AddLayer("New S heet");

/I Access the new worksheet

Worksheet wksNew = wksPage. Layers(index);

7.4.2.2 Activate a Worksheet
Workbook is an Origin object that contains worksheets. To make a worksheet in workbook to be activated, the

function set_active layer can be used.

/I Access a worksheet by full name

Worksheet wks ("[Bookl]Sheetl");

/I Set this worksheet to be active
set_active_layer (wks);

7.4.2.3 Delete Worksheet

Use the Destroy method to delete a worksheet.

Worksheet wks = Project. ActiveLayer() ;
if (wks) //Ifthe active layer is a worksheet

wks. Destro y() ; // Delete the worksheet

7.4.2.4 Access Worksheets in Workbook

There are two ways to access a worksheet by its name. You can pass the layer's full name to the constructor or
to the Attach method. The layer's full name contains the page name in square brackets followed by the layer

name.

111

http://www.originlab.com/doc/OriginC/guide/Workbooks
http://www.originlab.com/doc/OriginC/ref/set_active_layer
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

Origin C Programming Guide

/I Assume wksPage is a valid WorksheetPage holding the sheet we want to access.

string strFullName = okutil_make_book_sheet_string (wksPage. GetName() , "Sheetl");
/' If book and sheet name are known, the string can be constructed manually.
string strFullName = okutil_make_book_sheet_string ("Book5" , "Sheetl");

With the full layer name we can now access the worksheet.

/I Construct a new Worksheet instance and attach it to the named sheet.

Worksheet wks1 (strFullName) ;

/I Attach an existing Worksheet instance to the named sheet.
wks2. Attach(strFullName);

A workbook contains a collection of worksheets. You can loop through all the worksheets in a specified workbook

using the foreach statement.

WorksheetPage wksPage ("Bookl");
foreach (Layer wks in wksPage. Layers)
out_str (wks. GetName()) ;

You can also access a specified worksheet by its name or index.

/lassume there are at least two worksheets on th e page Book1,
/land they are named Sheetl and Sheet2 separately.

WorksheetPage wksPage ("Bookl");

Worksheet wksFirst = wksPage. Layers(0); //byindex

Worksheet wksSecond = wksPage. Layers("Sheet2"); //by name

7.4.25 Reorder Worksheets

The Reorder method allows you to change the position of a worksheet in a workbook.

112

http://www.originlab.com/doc/OriginC/ref/Worksheet-Reorder

Workbooks Worksheets and Worksheet Columns

/I This example assumes the active workbook contains two sheets

/I Get the active page from the active layer

WorksheetPage wksPage;
Worksheet wks = Project. ActiveLayer() ;
if (wks)

wksPage = wks. GetPage() ;

/I Move the 2nd worksheet to the 1st position
if (wksPage. Reorder(1, 0))

out_str ("Reorder sheets successfully");

7.4.2.6 Copy Worksheet

The AddLayer method is used to copy a layer from one page to another, and can be used with GraphPage,
WorksheetPage or MatrixPage.

The following example shows how to drag all worksheets from the active folder to merge into the active

workbook.

WorksheetPage wksPageDest = Project. Pages() ;

if (!'wksPageDest) //no active window or active window is not a worksheet

return ;
bool bKeepSourceLayer = false ; //delet e source layer after copying
Folder fld = Project. ActiveFolder() ;
foreach (PageBase pb in fld. Pages)

{

WorksheetPage wbSource (pb);

113

http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

if (!wbSource)

continue ; //not a workbook

if (wbSource. GetName() == wksPageDest. GetName())

cont inue ; //skip our destination book

/I copy worksheet to destination book and delete it from source book

foreach (Layer lay in wbSource. Layers)

{

Worksheet wks = lay;

wksPageDest. AddLayer(wks, 0, bKeepSourceLayer);

}

wbSource. Destroy() ; // destroy the empty workbook

7.4.2.7 Format a Worksheet

A worksheet can be formatted programmatically using a theme tree. The example below demonstrates obtaining

and saving an existing theme tree:

/I get format tree from worksheet

Worksheet wks = Project. ActiveLayer() ;

Tree tr;
tr = wks. GetFormat(FPB_ALL, FOB_ALL, TRUE TRUB;
out_tree (tr); // Outputtreeto Sc ript window

Or, you may construct a theme tree as in the following three steps. First, create a worksheet and insert some

data:

114

Workbooks Worksheets and Worksheet Columns

/I Create worksheet
Worksheet wks;
wks. Create("Origin");

wks. SetCell(0, 0, "abc"); //Puttextto (0, 0) cell

/I Establish data range to apply formatting:
DataRange dr;

int r1 =0,c1 =0,r12 =4,¢c2 =1,

dr. Add("Rangel" ,wks,rl, c1, r2, c2);

Second, construct the tree using the range information and provide values for desired properties:

Tree tr;

/I Setup the range that the format want to apply

tr. Root. RangeStyles . RangeStylel . Left .nVal = cl + 1;
tr. Root. RangeStyles . RangeStylel . Top.nVal = rl + 1;
tr. Root. RangeStyles . RangeStylel . Right .nVal = ¢2 + 1;

tr. Root. RangeStyles . RangeStylel . Bottom .nVal = r2 + 1;

/I Fill color

tr. Root. RangeStyles . RangeStylel . Style . Fill . FillColor .nVal = SYSCOLOR_LTCYAN;

/I Alignment of text in cell, 2 for center

tr. Root. RangeStyles . RangeStylel . Style . Alignment . Horizontal .nVal = 2;

/I The font siz e of text

tr. Root. RangeStyles . RangeStylel . Style . Font. Size .nVal = 11;

115

Origin C Programming Guide

/I The color of text
tr. Root. RangeStyles . RangeStylel . Style . Color . nVal = SYSCOLOR_BLUE;

Third, apply the formatting to the data range:

/I Apply the format to the specified data range
if (0 == dr. UpdateThemelDs(tr. Root)) //Returns O for no error

{

bool bRet = dr. ApplyFormat(tr, true , true);

7.4.2.8 Merge Cells
We can use Origin C code to merge Worksheet cells with the specified range. The selected range can be data

area or column label area. If you want to merge label cells, just change bLabels to true in the following code.

Worksheet wks;

wks. Create("Origin");

/IDefine a Grid and attach it to the worksheet

Grid gg;

gg. Attach(wks) ;

/lto me rge the first two rows in two columns

ORANGE rng;
rg. r1 = 0;
rmg. ¢l = O;
rg. r2 = 1;
rng. c2 = 1;

116

Workbooks Worksheets and Worksheet Columns

bool bLabels = false ;
bool bRet = gg. MergeCells(rng, bLabels);
if (bRet)
printf("Successfully merged cells in %s! \'n",wks. GetName()) ;
else
printf("Failed to merge cells in %s! \'n",wks. GetName() ;
7.4.29 Read Only Cells

If you don't want the contents in a cell of worksheet to be changed, you can set the cells to be read-only by using

theme tree.

The example below shows how to set the data cells in worksheet to be read-only, and then change the second

data cell in column 1 to be editable.

/I Create a worksheet by using default template (Origin)
/I so to make sure that Long Name, Units, and Commnets rows are shown

Worksheet wks;

wks. Create("Origin");

Tree tr;

tr = wks. GetFormat(FPB_ALL, FOB_ALL, true , true);

/I Start to get the specific tree node from the theme tree
/I to set the read - only format for the data cells

string strName = "ogData" ; // Use to get the node with

TreeNode trGrid, trNameStyles;

trGrid = tr. Root. Grid ; // Get Grid node
if (!trGrid. IsValid())
return

/I Get theme tree of worksheet

the desired format

117

Origin C Programming Guide

/I Read - only format is under some child node of this node
trNameStyles = trGrid. NameStyles ;
if (!trNameStyles. IsValid())

return

TreeNode trNameStyle;
bool bRet = false ;
/I Loop all children nodes to find out the desired tree node
foreach (trNameStyle in trNameStyles. Children)

{

/I Find the node with "ogData"

if (0 == trNameStyle. Name strVal . Compare(strNa me)
{
bRet = true ;
break ;
}
}
if (!bRet)
return

trNameStyle. Style . ReadOnly . nVal = 1; // Setall data cells to be read

/I Start to get/create the specific tree node from the theme tree

Il'to cancel the read - only format for the specified data cell

TreeNode trRangeStyles;

trRangeStyles = trGrid. RangeStyles ; // Get RangeStyles node from Grid node
TreeNode trRangeStyle;

118

- only

Workbooks Worksheets and Worksheet Columns

if (!trRangeStyles. IsValid()) /I If RangeStyles node does not exist yet
{
/I Create RangeStyles node

trRangeStyles = trGrid. AddNode("RangeStyles") ;
/I And create a sub node named RangeStylel

trRangeStyle = trRangeStyles. = AddNode("RangeStylel");

}

else /I If RangeStyles node already exist

{

/' Find how many children nodes

int tagNum = trRangeStyles. Children . Count() ;

/I And create a sub node name RangeStyle#, # = tagNum+1

trRangeStyle = trRangeStyles. AddNode("RangeStyle" +(tagNum+1)) ;
}
/I Define the range for setting, he re range is just one cell

/I Left cell of the range, start from 1
trRangeStyle. Left .nval = 1;

/I Top cell of the range, start from 5, including label rows
/I there are 4 label rows, then 5 means the first data cell

trRangeStyle. Top.nVal = 5;
/I Just on e cell, so right of the range is the same with left

trRangeStyle. Right . nVal = 1;
/I Just one cell, so bottom of the range is the same with top

trRangeStyle. Bottom . nVal = 5;

trRangeStyle. Style . ReadOnly . nVal = 0; // Setread - only to O to cancel it

Il Apply the setting format to worksheet

if (0 == wks. UpdateThemelDs(tr. Root))

{

119

Origin C Programming Guide

bool bb = wks. ApplyFormat(tr, true , true);

if (bb)

printf("Cell 1 in column 1 is editable. \n");

Itis also able to set the Read-Only format for the cells in label rows. We can just make some simple changes on
the code above. For example, we are going to make the Comments row to be read-only except the one in

column 2, then the corresponding changes are like below.

[* Comment out the line below in the above code

string strName = "ogData";

*/

/I This line is for the Data, just change it for Comments, as following

string strName = "ogComment" ;

/* Comment out the following 4 lines in the above code
trRangeStyle.Left.nVal = 1,

trRangeSty le.Top.nVal =5;

trRangeStyle.Right.nVal = 1;
trRangeStyle.Bottom.nVal = 5;

*

/I These 4 lines are used to set for the second data

/I cell (assume 3 label rows displayed in worksheet)

/I Now we need to set for the Comments cell,

/I assume the Comments r ow is the third row,

/[and is for column 2, but not column 1 anymore, then

120

Workbooks Worksheets and Worksheet Columns

trRangeStyle. Left . nval =

trRangeStyle. Right . nval = 2; //Column 2

/I Comments row (the third row displayed in worksheet)
trRangeStyle. Top.nVal =

trRangeStyle. Bottom . nvVal = 3;

7.4.3 Worksheet Data Manipulation

In this section we present examples of how to manipulate worksheet data by Origin C.

7.4.3.1 Get Worksheet Selection

Worksheet::GetSelectedRange can be used to get one or multiple selected data ranges from a worksheet. The

following code shows how to get data from one column by worksheet selection. This function returns range type,

like one column, one row, whole worksheet, etc.

Worksheet wks = Project.ActiveLayer();
int rl,cl ,r2,c2;

int nRet = wks. GetSelectedRange(rl, cl,r2,c2);

if (WKS_SEL_ONE_COK nRet) // exactly one column selected
{

/I construct a data range object by selection

DataRange dr;

dr. Add("X" , wks, rl, cl,r2,c2);

/I get data from the selected column

vector vData;

dr. GetData(&vData, 0);

7.4.3.2 Set Display Range in Worksheet

If you want to set a display range in a Worksheet, you can use Worksheet::SetBounds, and it is the same as

using the Set As Begin/End menu.

121

http://www.originlab.com/doc/OriginC/ref/Worksheet-GetSelectedRange
http://www.originlab.com/doc/OriginC/ref/Worksheet-SetBounds

Origin C Programming Guide

The following code shows how to set a beginning and end for all columns in the current worksheet window.

Worksheet wks = Project.ActiveLayer();
/I the beginning and end of rows

int begin = 9,end = 19;

/I set beginning and end for all columns

int ¢l =0,c2 =-1; // -1meansend
wks. SetBounds(begin, c1, end, c2);
7.4.3.3 Put Large Dataset to Works heet

In order to keep an Origin C function running efficiently when working with a large data set (e.g. 1000 columns) in

a worksheet, use the steps below.

9 Prepare the columns and rows before putting data into the worksheet.

I Use Worksheet::SetSize, don't use Worksheet::AddCol to set the size.

9 Set the size on an empty worksheet, meaning no columns and rows, since otherwise Origin will need to
check the short names of the existing columns to avoid duplicate names when adding new columns, and
this could cost you lots of time. You can use while(wks.DeleteCol(0)); to remove all columns to make an

empty Worksheet.

I Put data into worksheet columns by buffer, DataObject::GetlnternalDataBuffer.

1 Keep Code Builder closed when running functions to improve the speed of execution.

See the following example codes:

/I prepare worksheet size
Worksheet wks;

wks. Create("Origin");

while (wks. DeleteCol(0));

int rows = 100, cols = 1000;

122

http://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize
http://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
http://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataBuffer

Workbooks Worksheets and Worksheet Columns

wks. SetSize(rows, cols);

/l put data set into worksheet columns one by one
foreach (Column col in wks. Columns)
{
col. SetFormat(OKCOLTYPE_NUMERIC
col. SetinternalData(FSI_SHORT) ;

col. SetUpperBound(rows - 1) ; //index of last row, 0 offset

int nElementSize;
uint nNum;
LPVOID pData = col. GetlnternalDataBuffer(&nElementSize, &nNun) ;

short * psBuff = (short *)pData;

/I OC loop is still slow, but you might pass this pointer to your DLL
/l for much faster manipulation, here we just show that the pointer works
for (int i = O;ii < rows; ii ++, psBuff ++)
{
*psBuff = (ii +1) * (col. Getindex() +1);

}

col. ReleaseBuffer() ; 1/ do NOT forget to call this

7.4.3.4 Access Embedded Graph in a Worksheet
Create a new graph and a new worksheet, and then embed the graph within one of the worksheet's cells:

GraphPage gp;

gp. Create("Origin");

123

Origin C Programming Guide

Worksheet wks;

wks. Create() ;

int nOptions = EMBEDGRAPH_KEEP_ASPECT_RAT|JOEMBEDGRAPH_HIDE_LEGENDS;

/I Put the graph in worksheet cell (0, 0)

wks. EmbedGraph(0, O, gp, nOptions);

Access a graph that is embedded within a worksheet; by name or by index:

/I Get embedded graph from active worksheet

Worksheet wks = Project. ActiveLayer() ;
GraphPage gp;
gp = wks. EmbeddedPages(0) ; // Get embedded graph page by index

ap wks. EmbeddedPages("Gr aphl"); /I Get embedded graph page by name

7.4.3.5 Sort Worksheet Data

Perform a row-wise sort of column data with the Sort method. For sorting a single column, use the

vectorbase::Sort method:

/I Sort column

/I Before running, please keep active worksheet with two columns fill with data.

/I For example, import \ Samples \ Mathematics \ Sine Curve.dat to worksheet.
Worksheet wks = Project. ActiveLayer()

Column colY (wks, 1); //'Y column

124

http://www.originlab.com/doc/OriginC/ref/vectorbase-Sort

Workbooks Worksheets and Worksheet Columns

/I After sort, the original relation for (x, y) will be broken.
vectorbase & vec = colY. GetDataObject() ;
vec. Sort() ;

To sort all columns in a worksheet, use the Worksheet::Sort method:

/I Sort worksheet

/I Before running, please keep active worksheet with two columns fill with data.

/I For example, import \ Samples \ Mathematics \ Sine Curve.dat to wor ksheet.
Worksheet wks = Project. ActiveLayer() ;

int nCol = 1; // Ascending sort all worksheet data on the second column

BOOL blsAscending = true ;

BOOL bMissingValuesSmall = TRUE // Treat missing value as smallest

int r1 =0,c1 =0,r2 =-1,c2 = -1; // -1meansend forr2andc2

/I After sort, each (X, y) still keep the original relation

wks. Sort(nCol, blsAscending, bMissingValuesSmall, r1, c1, r2, c2);

7.4.3.6 Mask Worksheet Data

The following code shows how to set a mask on the rows of data that are less than or equal to O for the specified

column.
int nCol = 1;
Worksheet wks = Project. ActiveLayer() ;

Column col (wks, nCol);

vector vData = col. GetDataObject() ;

/I to find all less than and equal 0 and return row index

125

http://www.originlab.com/doc/OriginC/ref/Worksheet-Sort

Origin C Programming Guide

vector <uint > vnRowlIndex;

vData. Find(MATREPL_TEST LESSTHAN MATREPL_TEST EQUAL0, vnRowindex);

/I construct a range including multiple subranges added by row and column index
DataRange dr;

for (int nn = 0;nn < vnRowlndex. GetSize() ;nn ++)

{

int rl, ci,r2,c2;

rl = r2 = vnRowlndex [nn];

cl = c2 = nCol,

dr. Add("X" , wks, r1, cl,r2, c2)
}

/I set mask on data range

dr. SetMask() ;

7.4.3.7 SetSize

The Worksheet::SetSize method is used to set the number of rows and columns in a worksheet.

/I Set the number of rows and columns, and data will be kept.

/I If want to add a lots of columns and rows at once time, better use SetSize
int nNumRows = 100;

int nNumCols = 20;

wks. SetSize(nNumRows, nNumCaols) ;

/I'If want to change the number of rows but keep the number of columns,

/I can use - 1 replace. For example:

wks. SetSize(nNumRows, -1);

/I The same usage also used to change column number and keep row number.

126

http://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize

Workbooks Worksheets and Worksheet Columns

7.4.3.8 Reduce Worksheet Data

Origin C provides some functions for reducing XY data in worksheet, such as ocmath_reducexy fixing_increbin

for reducing XY data by X increment, ocmath_reducexy n_groups for reducing XY data by number of groups,

ocmath_reducexy n_points for reducing XY data by every N points, etc. The following is an example to show

how to reduce XY data by every N points.

Worksheet wks = Project.ActiveLayer(); /I Get active worksheet
if (!wks)
{
return ;
Column colX (wks, 0); //Firstcolumninw orksheet

Column colY (wks, 1); // Second column in worksheet

if (colX && colY)

{
vectorbase &vblinterY = colY. GetDataObject() ; // GetY column data
vector vY = vbinterY;
vector vReduced (VY. GetSize()) ;
int nPoints = 3;
/l Reduce every 3 points, and result is the mean of every 3 points
int nNewSize = ocmath_reducexy_n_points (vY, vReduced, vY. GetSize() ,
nPoints, REDUCE_XY_STATS_MEAN) ;
int iReduced = wks. AddCol("Reduced"); //Addanewc olumn for result
Column colReduced (wks, iReduced);
vectorbase &bReduced = colReduced. GetDataObject() ;
vbReduced = vReduced;
}

7.4.3.9 Extract Data from Worksheet with LT Condition

Select worksheet data using the Worksheet::SelectRows method. Rows can be selected across many columns.

127

http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_fixing_increbin
http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_groups
http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_points
http://www.originlab.com/doc/OriginC/ref/Worksheet-SelectRows

Origin C Programming Guide

/I Select data from a worksheet based on a condition;
// put the indices of the selected rows into a vector of type 'uint'.

Worksheet wks = Project. ActiveLayer() ;

/I Check the worksheet data based on the condition expression and

/l output the row index into 'vnRowlndices'.

/I Define Labtalk range objects, a'=column 1, 'b' = column 2.
string strLTRunBeforeloop = "range a=1; range b=2" ;
string strCondition = "abs(a) >= 1 && abs(b) >=1" ;

vector <uint > vnRowlindices; /I This is output

int rl =0,r2 = -1; /I Therow range, - 1 means the last row for
/I Optional maximum number of rows to select, - 1 indicates no limit
int nMax = -1;

int num = wks. SelectRows(strCondition, vnRowIndices, r1, r2, nMax,

strLTRunBeforeloop) ;

r2

There are two ways to highlight the selection. The first is to highlight the selected indices.

/l Method 1 of show selection: highlight rows by vnRowIndices
Grid gg;
if (gg. Attach(wks))
{
/I convert uint type vector to int type vector
vecto r<int > vnRows;

vnRows = vnRowlindices;

128

Workbooks Worksheets and Worksheet Columns

gg. SetSelection(vnRows) ;

The second method of highlighting a data selection is to prescribe a fill color for the selected rows.

/' Method 2 of show selection: fill color on the selected rows by vnRowlIndices

DataRange dr;

/I Construct data ranges by the row indices in vnRowIndices.

for (int index =0;index <vnRowlIndices. GetSize() ;index ++)

{
/I The following 0(1st col) and - 1(1 ast col) for all columns
/I for range name variable, not specified, default name will be used
dr. Add("™ , wks, vnRowIndices [index], O, vnRowlindices [index], -1);
}
Tree tr;
tr. Root. CommonStyle . Fill . FillColor . nVal = SYSCOLOR_BLUE;/fill color = blue

tr. Root. CommonStyle . Color . nVal = SYSCOLOR_WHITE;// font color = white

if (0 == dr. UpdateThemelDs(tr. Root)) // Return O for no error

{
bool bRet = dr. ApplyFormat(tr, true , true);
}
7.4.3.10 Compare Data in Two Worksheets

129

Origin C Programming Guide

It may be useful to compare the number of rows or columns between two worksheets, or compare the data

themselves. Get a row or column count from a worksheet with the Datasheet::GetNumRows and

Datasheet::GetNumCols methods.

if (wksl. GetNumRows() != wks2. GetNumRows()

|| wksl. GetNumCols() != wks2. GetNumCols())

{
out_str ("The two worksheets are not the same size");
return ;

}

Another way to perform a similar operation is to copy the data from each worksheet into a vector, and compare

the size of the vectors.

/I get all data from worksheet 1 columns one by one
vector vecl;

foreach (Column col in wks1. Columns)

vector & vecCol = col. GetDataObject() ;

vecl. Append(vecCol);

/I get all data from worksheet 2 columns one by one
vector vec2;

foreach (col in wks2. Columns)

vector & vecCol = col. GetDataObject() ;

vec2. Append(vecCol);

130

http://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumRows
http://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumCols

Workbooks Worksheets and Worksheet Columns

}

if (vecl. GetSize() I = vec2. GetSize())

{
out_str ("The size of the two data sets is not equal”);
return ;

}

To compare data elements themselves, use the ocmath compare data function on the vectors in the example

above.

bool blsSame = false ;

double dTolerance = 1le-10;

ocmath_compare_data (vecl. GetSize() ,vecl, vec2, &blsSame, dTolerance);
if (blsSame)

{

out_str ("Data in the two worksheets are the same");

7.4.4 Converting Worksheet to Matrix

You may need to re-organize your data by converting from worksheet to matrix, or vice versa, for certain analysis
or graphing needs. This page provides information and examples of converting worksheet to matrix, and please

refer to Converting Matrix to Worksheet for the "vice versa" case.

7.4.4.1 \Worksheet Gridding

1. Run the following command in the Command Window to compile the nag_utils.c file and add it into the

current Workspace

Run. LoadOC(Originlab \ nag_utils. ¢, 16);

2. Include header files in the Origin C file.

131

http://www.originlab.com/doc/OriginC/ref/ocmath_compare_data
http://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet

Origin C Programming Guide

3.

4,

5.

132

#include <wks2mat. h>

#include <Nag_utils. h>

Get XYZ data from the active worksheet XYZ columns.

/I Construct XYZ data range from XYZ columns
XYZRange rng;

rng. Add(wks, 0, "X");

rng. Add(wks, 1, "Y");

rng . Add(wks, 2, "Z");

/I Get XYZ data from data range objects to vectors
vector vX, vY, vZ;

rng. GetData(vZ,vY,vX);

Examine source data type, for example: regular, sparse.

UINT nVar;

double xmin, xstep, xmax, ymin, ystep, ymax;

int nSize = vX. GetSize() ;

int nMethod = ocmath_xyz_examine_data (nSize, vX, vY, vZ, 1.0e -8,1.0e

&nVar, &xmin, &xstep, &xmax, &ymin, &ystep, &ymax);

Calculate the number of rows and columns for the result matrix window.

int nRows = 10,nCols = 10;

-8,

Workbooks Worksheets and Worksheet Columns

if (0 == nMethod || 1 == nMehod) // Regular or sparse
{

double dGap = 1.5;

if (!'is_equal (ystep, 0))

nRows = abs(ymax - ymin)/ystep + dGap;

if (!'is_equal (xstep, 0))

nCols = abs(xmax - xmin)/xstep + dGap;

6. Prepare the result matrix window.

/I Prepare matrix window to put gridding result

MatrixPage mp;

mp. Create("origin®); // Create matrix window

MatrixLayer ml = mp.Layers(0); // Get the first matrix sheet

MatrixObjectmo (ml, 0); // Get the first matrix object

mo. SetXY(xmin, ymin, xmax, ymax); [/l Set the from/to for X and Y

mo. SetSize(nRows, nCols); // Setthe number of rows and columns

7. Do XYZ gridding with the different method types.

matrix & mat = mo.GetDataObject() ; // Getdata object from matrix object

int iRet;

switch (nMethod)

133

Origin C Programming Guide

134

{

case O:

case 1:

case 2.

default

/I Regular

iRet = ocmath_convert_regular_xyz_to_matrix (nSize, vX, VY, vZ,
mat, xmin, xstep, nCols, ymin, ystep, nRows);

printf(" --- %d: regular conversion -- \n",iRet);

break ;

/I Sparse

iRet = ocmath_convert_sparse_xyz_to_matrix (nSize, vX, vY, vZ,
mat, xmin, xstep, nCols, ymin, ystep, nRows);

printfi("--- %d: sparse conversion -- \n",iRet);

break ;

/I Random(Renka C line)

vector vxGrid (nRows*nCols), vyGrid (nRows*nCols) ;

iRet = ocmath_mat_to_regular_xyz (NULL, nRows, nCols, xmin,

Xmax, ymin, ymax, vxGrid, vyGrid)

if (iIRet >= 0)

{
iRet = xyz_gridding_nag (vX, vY, vZ, vxGrid, vyGrid, mat
}
printf("--- %d: random conversion -- \n",iRet);
break ;
/I Error.
printfi(" --- Error: Other method type - \n");

Workbooks Worksheets and Worksheet Columns

7.4.4.2 \Worksheet to Matrix

Data contained in a worksheet can be converted to a matrix using a set of functions.

To converts matrix-like worksheet data directly into a matrix, data in source worksheet can contain the X or Y
coordinate values in the first column, first row. However, because the coordinates in a matrix should be uniform
spaced, you should have uniformly spaced X/Y values in the source worksheet. The CopyFramWks method can

be used directly, or just attach XYZ data range to matrix.

The following example show how to perform direct worksheet to matrix conversion:

/I Method 1: using CopyFromWks
Worksheet wks = Project. ActiveLayer() ;
if (!wks)
{
return ;
}
MatrixPage matPg;
matPg. Create("Origin");
MatrixLayer matLy = matPg. Layers(0);

Matrix mat (matLy) ;

matrix <double > matl;
if (!matl. CopyFromWks(wks, 1, -1, 1, -1))

{
out_str ("Error: CopyFromWks failed!");

return

mat = matl,

135

http://www.originlab.com/doc/OriginC/ref/matrixbase-CopyFromWks

Origin C Programming Guide

/l Method 2: attach to MatrixObject

Worksheet wks = Project. ActiveLayer() ;
if (!wks)

{

return

int nCols = wks. GetNumCols() ;

int nRows = wks. GetNumRows() ;

DataRange dr;

dr. Add("X" , wks, 0, 1, 0,nCols - 1); [/l Firstrow excep the first cell
dr. Add("Y" , wks, 1, 0,nRows - 1, 0); //Firstcolumn ex cept the first cell
dr. Add("Z" , wks, 1, 1,nRows - 1,nCols - 1);

MatrixPage matPg;

matPg. Create("Origin");

MatrixLayer matLy = matPg. Layers(0);
MatrixObject mo = matLy. MatrixObjects(0);
MatrixObject moTmp;

moTmp.Attach(dr);

matrixbase &matTmp = moTmp.GetDataObject() ;
matrixbase &mat = mo. GetDataObject() ;

mat = matTmp;

moTmp.Detach() ;

When your worksheet data is organized in XYZ column form, you should use Gridding to convert such data into a
matrix. Many gridding methods are available, which will interpolate your source data and generate a uniformly

spaced array of values with the X and Y dimensions specified by you.

The following example converts XYZ worksheet data by Renka-Cline gridding method.

136

/I Convert worksheet data into a 20 x 20 matrix by Renka
Worksheet wks = Project. ActiveLayer() ;
if (!wks)
{
return ;
}
Dataset dsX (wks, 0);
Dataset dsY (wks, 1);
DatasetdszZ (wks, 2);

int nPoints = dsX. GetSize() ;

vector vX = dsX;
vector vY = dsY;
vector vZ = dsZ;

ocmath_RenkaCline_Struc t comm;

Workbooks Worksheets and Worksheet Columns

- Cline gridding method

ocmath_renka_cline_interpolation (nPoints, vX, vY, vZ, &comn)j ;

/Iset X and Y of the gridding
double dXMin, dXMax, dYMin, dYMax;
vX. GetMinMax(dXMin, dXMax) ;

vY. GetMinMax(dYMin, dYMax) ;

/Iperform random matrix conversion using Kriging algorithm

int nRows 20;

int nCols 20;

matrix mZ (nRows, nCols);

137

Origin C Programming Guide

vector vEvalX (nRows * nCols) ;
vector vEvalY (nRows * nCols) ;

ocmath_mat_to_regular_xyz (NULL, nRows, nCols, dXMin, dXMax, dYMin, dYMax, vEvalX,
vEvalY, NULL true);

ocmath_renka_cline_eval (&omm, nRows * nCols, vEvalX, vEvalY, mZ);

ocmath_renka_cline_struct_free (&comnj ;

/[create Matrix storing the result
MatrixLayer mResultLayer;

mResultLayer. Create() ;

Matrix matResult (mResultLayer);
matResult = mz;
MatrixObject mo = mResultLayer. MatrixObjects(0);

mo. SetXY(dXMin, dYMin, dXMax, dYMax) ; /lset X and Y range of Matrix

7.4.5 Virtual Matrix

You can construct a virtual matrix from a worksheet window. Pick separate data ranges from the worksheet for
X, Y, Z data of the virtual matrix. If you do not specify X and Y data, it will automatically use default data. The
following code shows how to construct a virtual matrix from an active worksheet window, and then plot this virtual

matrix on a graph.

/I before running, make sure there is active worksheet window with data.

/I For example, new a worksheet window, import XYZ Random Gaussian.dat from

/Il Origin folder Samples \ Matrix Conversion and Gridding subfolder to worksheet.
Worksheet wks = Project. ActiveLayer() ;
int rl,r2;

int cl =0,c2 = 2

wks. GetBounds(rl, cl,r2, c2);

138

Workbooks Worksheets and Worksheet Columns

/I construct a data range object only with Z data, X and Y data will be auto
/l assigned.
DataRange dr;

dr. Add("Z" , wks, 1, cl,r2, c2);

MatrixObject mo;

mo.Attach(dr);

int nRows = mo.GetNumRows() ;

int nCols = mo.GetNumCols() ;

/I get the default x, y range
double xmin, xmax, ymin, ymax;

mo. GetXY(xmin, ymin, xmax, ymax);

GraphPage gp;
gp. Create("CONTOURY;

GraphLayer gl = gp. Layers(0);

gl. AddPlot(mo, IDM_PLOT_CONTOUR

gl. Rescale() ;

mo. Detach() ;

If you want to assign X and Y data then the data should be monotone. The following example shows how to

construct a virtual matrix with an XYZ data range.

139

Origin C Programming Guide

/I Assume the active layer is a worksheet with 5 col umns of data.

Worksheet wks = Project. ActiveLayer() ;

/I Get min and max row indices for columns O to 4.
int rl,r2,cl = 0,c2 = 4

wks. GetBounds(r1, c1, r2, c2);

/I Create a data range object with XYZ data.

DataRange dr;

dr. Add("X",wks, 0, 1, 0,c2); //Firstrow except the first cell
dr. Add("Y" , wks, 1, 0,r2, 0) ; /I First column except the first cell

dr. Add("Z" ,wks, 1, 1,12,c2);

MatrixObject mo;

mo.Attach(dr);

140

8 Graphs

8.1 Graphs

The GraphPage class is for working with a graph window. There is a GraphPage object for each graph window.

A GraphPage object contains a collection of layers. Each of these layers is a GraphLayer object.

Accessing an Existing Graph

There are multiple ways to access an existing graph. The methods used are the same as those used for

workbooks and matrix books.

You can access a graph by passing its name to the class constructor.

GraphPage grPg ("Graphl");
if (grPg) //ifthereis a graph named "Graphl"
grPg. SetName("MyGraphl"); // rename the graph

The Project class contains a collection of all the graphs in the project. The following example shows how to loop

through the collection and output the name of each graph.

foreach (GraphPage grPg in Project. GraphPages)
out_str (grPg. GetName()) ; // output graph name

You can access a graph by passing its zero-based index to the Item method of the Collection class.

GraphPage gr Pg;
grPg = Project. GraphPages . Item(2);
if (grPg) /lifthereis a 3rd graph
out_str (grPg. GetName()) ; // output graph name

Deleting a Graph

All Origin C's internal classes are derived from the OriginObject class. This class has a Destroy method that is
used to destroy the object. Calling this method on a graph will destroy the graph, all the layers in the graph, and

all the graph objects on each layer.

141

Origin C Programming Guide

GraphPage grPg;
grPg = Project. GraphPages . ltem(0); // get first graph in project
if (grPg) /lifthereis agraph

grPg. Destroy() ; //delete the graph

This section covers the following topics:

Creating and Customizing Graph

Adding Data Plots

Customizing Data Plots

Managing Layers

= =4 =4 =4 =2

Creating and Accessing Graphical Objects

8.2 Creating and Customizing Gr aph

8.2.1 Creating Graph Window

The Create method is used for creating new graphs.

GraphPage gp;

gp. Create("3D"); /Il create a graph using the 3D template
8.2.2 Getting Graph Page Format

GraphPage gp("Graphl") ;

Tree tr;

tr = gp. GetFormat(FPB_ALL, FOB_ALL, true , true);

out_tree (tr);

8.2.3 Setting Graph Page Format

142

http://www.originlab.com/doc/OriginC/guide/Creating-and-Customizing-Graph
http://www.originlab.com/doc/OriginC/guide/Adding-Data-Plots
http://www.originlab.com/doc/OriginC/guide/Customizing-Data-Plots
http://www.originlab.com/doc/OriginC/guide/Managing-Layers
http://www.originlab.com/doc/OriginC/guide/Creating-and-Accessing-Graphical-Objects

Graphs

The following example code shows how to set page background color as a gradient in two colors.

Tree tr;
tr. Root. Background . BaseColor .nVal = SYSCOLOR_RED;
tr. Root . Background . GradientControl .nVal = 1;

tr. Root . Background . GradientColor .nVal = SYSCOLOR_BLUE;

GraphPage gp ("Graphl");
if (0 == gp. UpdateThemelDs(tr. Root))
gp. ApplyFormat(tr, true , true);
8.2.4 Getting Graph Layer Format
GraphLayer gl = Project. ActiveLayer() ;
Tree tr;
tr = gl. GetFormat(FPB_ALL, FOB_ALL, true , true);

out_tree (tr);

8.2.5 Setting Graph Layer Format

The following example code shows how to set the background of a graph layer object to Black Line format.

GraphLayer gl = Project. ActiveLayer() ;
Tree tr;

tr. Root. Background . Border . Color . nVal = SYSCOLOR_BLACK;

tr. Root . Background . Border . Width . nVval 1;

tr. Root. Background . Fill . Color . nVal = SYSCOLOR_WHITE;

if (0 == gl. UpdateThemelDs(tr. Root))

gl. ApplyFormat(tr, true , true);

8.2.6 Show Additional Lines

143

Origin C Programming Guide

This example shows how to show additional lines, the Y=0/X=0 line, and the opposite line.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

axesX. Additional . ZeroLine .nVal = 1; //ShowY =0 line

axesX. Additional . OppositeLine .nVal = 1; // Show X Axes opposite line

8.2.7 Show Grid Lines

This example shows how to set gridlines to show, and how to color them.

Color values can be an index into Origin's internal color palette or an RGB value. See Color in the Data Types

and Variables section for more information about working with color values.

GraphLayer gl = Project. ActiveLayer() ;
Axis axisY = gl. YAXis ;
Tree tr;

/I Show major grid
TreeNode trProperty = tr. Root. Grids . HorizontalMajorGrids . AddNode("Show") ;

trProperty. nval = 1;

tr. Root. Grids . HorizontalMajo rGrids . Color . nVal RGB20OCOLCRGE 100, 100, 220)) ;

tr. Root. Grids . HorizontalMajorGrids . Style .nval = 1; //Solid

tr. Root. Grids . HorizontalMajorGrids . Width . dval = 1;

/I Show minor grid

trProperty = tr. Root. Grids . HorizontalMinorGrids . AddNode("Show") ;
trProper ty. nval = 1;

tr. Root . Grids . HorizontalMinorGrids . Color .nVal = SYSCOLOR_GREEN/ Green

144

http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables

Graphs

tr. Root. Grids . HorizontalMinorGrids . Style .nVal = 2; // Dot

tr. Root. Grids . HorizontalMinorGrids . Width . dval 0.3;

if (0 == axisY. UpdateThemelDs(tr. Root))

bool bRet = axisY. ApplyFormat(tr, true , true);

8.2.8 Setting Axis Scale

This example shows how to set scale parameters, increment, type and so on.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

axesX. Scale . From. dval = 0;

axesX. Scale . To.dval = 1;

axesX. Scale . IncrementBy .nVal = 0; //O=increment by value; 1=number of major ticks
axesX. Scale . Value . dval = 0.2 ; //Increment value

axesX. Scale . Type.nVal = 0;// Linear

axesX. Scale . Rescale .nVal = 0; //Rescaket ype

axesX. Scale . RescaleMargin .dVal = 8; //precent8

This example shows how to set scale major ticks number for Y axis.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesY = gl. YAxis ;

axesY. Scale . IncrementBy .nVal = 1; //0:increment by value; 1: number o f major
ticks

axesY. Scale . MajorTicksCount .nVal = 5;

145

Origin C Programming Guide

8.2.9 Getting Axis Format

GraphLayer gl = Project. ActiveLayer() ;

Axis axisX = gl. XAXxis ;

/I Get all axis format settings to tree

Tree tr;

tr = axisX. GetFormat(FPB_ALL, FOB_ALL, true , true);
out_tree (tr);

8.2.10 Setting Axis Label

An axis label is an ordinary text object and is accessed in Origin C using the GraphObject class. On a default
graph the X axis is named XB and the Y axis is named YL. The following code shows how to access the X and Y

axis labels and assumes a default graph is the active page.

GraphLayer gl = Project. ActiveLayer() ; /I Get active graph layer
GraphObject grXL = gl. GraphObjects("XB"); //G et X axis label
GraphObject grYL = gl. GraphObjects("YL"); // GetY axis label

Now that we have access to the axis labels we can change their values. The following code sets the X axis label
directly and sets the Y axis label indirectly by linking it to a LabTalk string variable. Linking to a LabTalk variable

requires the label's Programming Control option "Link to variables" to be turned on. This option is on by default.

orXL. Text

"My New X Asis Label" :

LT _set_str ("abc$" , "My String Variable");
grYL. Text = "%(abc$)" ;

To make sure the label changes appear, it may be necessary to refresh the graph page. With our GraphLayer

object we can refresh the page with the following code.

gl. GetPage() . Refresh() ;

146

Graphs

8.2.11 Show Top Axis

This example shows how to show X top axes.

/I Show axes and ticks
Tree tr;
TreeNode trProperty = tr. Root. Ticks . TopTicks . AddNode("Show");

trProperty. nval = 1;

/I Show tick labels
trProperty = tr. Root . Labels . TopLabels . AddNode("Show") ;

trProperty. nval = 1;

GraphLayer gl = Project. ActiveLayer() ;
Axis axesX = gl. XAxis ;

if (0 == axesX. UpdateThemelDs(tr. Root))

{
bool bRet = axesX. ApplyFormat(tr, true , true);
}
8.2.12 Customizing Axis Ticks

This example shows how to set the format in the Axis dialog -> Title & Format tab.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

Tree tr;

/I Set ticks color as Auto, depend on the color of data plot

tr. Root. Ticks . BottomTicks . Color . nVal = INDEX_COLOR_AUTOMATIC;

147

Origin C Programming Guide

tr. Root. Ticks . BottomTicks . Width .dval = 3;
tr. Root. Ticks . BottomTicks . Major . nVal = 0; //0:Inand Out
tr. Root. Ticks . BottomTicks . Minor . nVal = 2; //2:0ut

tr. Root. Ticks . BottomTicks . Style .nVal = 0; // Solid

if (0 == axesX. UpdateThemelDs(tr. Root))

bool bRet = axesX. ApplyFormat(tr, true , true);

8.2.13 Customizing Tick Labels

This example shows how to set tick labels with custom positions. It performs the same action as going in the Axis

dialog Custom Tick Labels tab.

GraphLayer gl = Project. ActiveLayer() ;
Axis axesX = gl. XAxis ;
Tree tr;

/I Show axes begin and end as scale value
tr. Root. Labels . BottomLabels . Custom. Begin . Type.nVal = 2;

tr. Root. Labels . BottomLabels . Custom. End. Type.nVal = 2;

/I Set special point as Manual type with the special value and text.

tr. Root. Labels . BottomLabels . Custom. Special . Type.nVal = 3;

tr. Root. Labels . BottomLabels . Custom. Special . Label . strVal = "Mid" ;
tr. Root . Labels . BottomLabels . Custom. Special . Value .dVal = 12;

if (0 == axesX. UpdateThemelDs(tr. Root))

{

bool bRet = axesX. ApplyFormat(tr, true , true);

148

Graphs

8.3 Adding Data Plots

Plots or Data plots are representations of your data within a graph layer. Each graph layer may contain one or

more plots.

8.3.1 2D Plot (XY, YErr, Bar/Column)

8.3.1.1 Plot XY Scatter

The following code shows how to construct an XYYErr data range from the active worksheet, and then plot the

data range in a newly created graph.

Worksheet wks = Project. ActiveLayer() ;

/I The range name must be X, Y, Z or ED(for YErr) to make sense.
DataRange dr;

dr. Add(wks, 0, "X"); //1stcolumn for X data

dr. Add(wks, 1, "Y"); //2nd column forY data

dr. Add(wks, 2, "ED"); // Optional, 3th column for Y Error data

/I Create a graph window
GraphPage gp;
gp. Create("Origin");

GraphLayer gl = gp. Layers() ; // Getactive layer

/I Plot XY data range as scatter
/I IDM_PLOT_SCATTER is plot type id, see other types plot id in oPlotIDs.h file.

int nPlotindex = gl. AddPlot(dr, IDM_PLOT_SCATTER);
/I Returns plot index (offset is 0), else return -1fo rerror

if (nPlotindex >= 0)

149

Origin C Programming Guide

gl. Rescale() ; // Rescale axes to show all data points

8.3.1.2 Attach YErr Plot

Attach YErr data to an existing XY data plot.

GraphLayer gl = Project. ActiveLayer()

DataPlot dp = gl. DataPlots(-1); /I Get active data plot

/I Get Y Error column
WorksheetPage wksPage ("Bookl");
Worksheet wks = wksPage. Layers() ;

Column colErrBar (wks, 2);

/I Plot Y Error column to the active data plot
Curve crv (dp);
int nErrPlotindex = gl. AddErrBar(crv, colErrBar)

out_int ("nErrPlotindex =" , NErrPlotindex);

8.3.1.3 Bar/Column Plot

/I before running make sure the active window is worksheet
Worksheet wks = Project. ActiveLayer() ;

DataRa nge dr;

dr. Add(wks, 1, "Y"); // Construct data range with one column

GraphPage gp;
gp. Create("BAR"); /I Create graph with the specified template

GraphLayer gl = gp. Layers(-1); // Getactive graph layer

150

int index = gl. AddPlot(dr, IDM_PLOT_BAR);

if (index >= 0)

{
out_str ("Plotbhar");
gl. Rescale()

}

8.3.2 3D Plot

Plot a 3D surface from a matrix on a graph window.

/I Prepare matrix data

MatrixLayer ml;

string strFile = GetAppPath (true) + "Samples \\ Matrix Conversion and Gridding
2D Gaussian.ogm"

ml. Open(strFile) ;

MatrixObject mo = ml. MatrixObjects(0);

/I Create graph page with template
GraphPage gp;
gp. Create("CMAP");

GraphLayer gl = gp. Layers(0);

I Plot 3D surface

int nPlotindex = gl. AddPlot(mo, IDM_PLOT_SURFACE_COLORMAP
if (0 == nPlotindex)

{

gl. Rescale()

\\

Graphs

151

Origin C Programming Guide

printf("3D Surface plotted successfully \n");

8.3.3 Contour Plot

8.3.3.1 Plot XYZ Contour

/I Before running, make sure there are XYZ columns with data in the active

/I worksheet window. Or you can import \ Samples \ Matrix Conversion and Gridding
/I XYZ Random Gaussian.dat into worksheet.

Worksheet wks = Project. ActiveLayer() ;

DataRange dr;

dr. Add(wks, 0, "X");

dr. Add(wks, 1, "Y");

dr. Add(wks, 2, "Z");

/I Create graph with template
GraphPage gp;
gp. Create("TriContour");

GraphLayer gl = gp. Layers() ;

/I Plot XYZ contour with type id
int nPlot = gl. AddPlot(dr, IDM_PLOT_TRI_CONTOUR);
if (nPlot >= 0)
{
gl. Rescale()

printf("XYZ contour plotted successfully \n");

8.3.3.2 Plot Color Fill Contour

152

Graphs

MatrixLayer ml = Project. ActivelLayer()

MatrixObject mo = ml. MatrixObjects(0);

/I Create graph window with template
GraphPage gp;
gp. Create("cont our");

GraphLayer gl = gp. Layers() ;

int nPlot = gl. AddPlot(mo, IDM_PLOT_CONTOUR;
if (nPlot >=0)
{

gl. Rescale() ;

8.3.4 Image Plot

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects(0);

/I Create graph window with template
GraphPage gp;
gp. Create("image");

GraphLayer gl = gp. Layers() ;

int nPlot = gl. AddPlot(mo, IDM_PLOT_MATRIX_IMAGE) ;
if (nPlot >= 0)

{

153

Origin C Programming Guide

gl. Rescale() ;

8.3.5 Multi -Axes

The following example code shows how to show/hide and set format on the four axes - left, bottom, right, and top

in one graph layer.

#include <.. \ Originlab \ graph_utils. h> // needed for AXIS_*

GraphLayer gl = Project. ActiveLayer() ;

/I Show all axes and la bels. 0 or 1, 1 for show.

vector <int > vnAxes (4),vnLabels (4), vnTitles (4);
vhAxes [AXIS_BOTTONI = 1;

vhAxes [AXIS_LEFT] = 1;

vhAxes [AXIS_TOP] = 1,

vnAxes [AXIS_RIGHT] = 1;

vnLabels = vnAxes;

/I Show axis titles of left and bottom axes. 0 or 1, 1 for sh ow.
vnTitles [AXIS_BOTTONI = 1,

vnTitles [AXIS_LEFT] = 1,

vnTitles [AXIS_TOP] = 0;

vnTitles [AXIS_RIGHT] = 0;

/I Set the major tick and minor tick of all axes as IN format
/I See other TICK_* items in graph_utils.h.
vector <int > vnMajorTicks (4), vnMinorTick s(4);

vnMajorTicks [AXIS_BOTTONI = TICK_IN;

154

Graphs

vnMajorTicks [AXIS _LEFT] = TICK_IN;
vnMajorTicks [AXIS_TOP] = TICK_IN;

vnMajorTicks [AXIS_RIGHT] = TICK_IN;

vnMinorTicks = vnMajorTicks;
gl_smart_show_object (gl, vnAxes, vnLabels, vnTitles, vnMajorTick s, vnMinorTicks);
8.3.6 Multi -Panels (Multi -Layer, with Shared X - AXis)

The following example shows how to construct multiple graph layers in one graph page, all layers sharing the x

axis in one layer, then plot XY data sets one by one from a worksheet to each graph layer.

Before compiling the following codes, you need to run this command to build the graph_utils.c file to your current

workspace.

run. LoadOC(Originlab \ graph_utils. c, 16);

Compile the following Origin C code. Before running, make sure there is a workbook named Book1, and it has

one X column and at least two Y columns.

#include <.. \ Originlab \ graph_utils. h> // needed for page_add_layer function
/I Construct data range from Book1

WorksheetPage wksPage ("Book 1");

Worksheet wks = wksPage. Layers(0); // getthe first worksheet in Bookl
DataRange dr;

dr. Add(wks, 0, "X"); //1stcolumn as X data

dr. Add(wks, 1, "Y', -1); //2nd column to last one for Y data

/I Get the number of Y

DWORD dwRules = DRR_GET_DEPENDENT DRR_NO_FACTORS;

int nNumYs = dr. GetNumData(dwRules) ;

155

Origin C Programming Guide

/I Add more layers with right Axis and link to the 1st layer
GraphPage gp;
gp. Create("Origin");

while (gp. Layers . Count() < nNumYs)

page_add_layer (gp, false , false , false , true ,

ADD_LAYER_INIT_SIZE_POS_MOVE_OFFSET,false , 0, LINK_STRAIGHT);

/I Loop and add plot from each XY data range to graph layer

foreach (GraphLayer gl in gp. Layers)

{
int nLayerindex = gl. Getindex() ;
/I Get the sub XY range f rom dr

DataRange drOne;

dr. GetSubRange(drOne, dwRules, nLayerindex)

/I Plot one XY range to graph layer
int nPlot = gl. AddPlot(drOne, IDM_PLOT_LINE);
if (nPlot >= 0)
{
DataPlot dp = gl. DataPlots(nPlot);

dp. SetColor(nLayerindex); // Setdata plot as different color

/I Set the ticks and ticklabels of right Y axis auto color

156

Graphs

gl. YAxis . AxisObjects(AXISOBJPOS_AXIS_SECOND. RightT icks . Color . nVval

gl. YAxis . AxisObjects(AXISOBJPOS_LABEL_SECOND RightLabels . Color . nvVal =
INDEX_COLOR_AUTOMATIC;

gl. Rescale()

8.4 Customizing Data Plots

8.4.1 Adding Data Marker

Origin C supports the following methods for customizing data markers.

9 DataPlot::AddDataMarkers to add a data marker on the data plot to select a sub range

9 DataPlot::SetDataMarkers to change the position of the present data marker

9 DataPlot::GetDataMarkers to get all existing data plots

1 DataPlot::RemoveDataMarker to remove the specified data marker.

The following code shows how to add two data markers to the active graph window.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots() ;

/I the indices of the data markers

vector <int > vnBegin = {0, 9};

vector <int > vnEnd = {4, 14};

/[to add two data markers

157

http://www.originlab.com/doc/OriginC/ref/DataPlot-AddDataMarkers
http://www.originlab.com/doc/OriginC/ref/DataPlot-SetDataMarkers
http://www.originlab.com/doc/OriginC/ref/DataPlot-GetDataMarkers
http://www.originlab.com/doc/OriginC/ref/DataPlot-RemoveDataMarker

Origin C Programming Guide

int nRet = dp. AddDataMarkers(vnBegin, vnEnd) ;
if (0 == nRet)
{

out_str ("Add data marker successfully.");

}

The code below shows how to change the position of the present data marker.

GraphLayer gl = Project. ActivelLayer() ;

DataPlot dp = gl. DataPlots() ;

/I the indices of the data markers
vector <int > vnBegin = {11, 2};
vector <int > vnEnd = {19, 5};

vector <int > vnindices = {1, 0};

/ to add two data markers
int nRet = dp. SetDataMarkers(vnBegin, vnEnd, vnind ices);
if (0 == nRet)
{
out_str ("Set data marker successfully.");

gl. GetPage() . Refresh() ;

8.4.2 Setting Color

The following code shows how to set the color of the data plot.

GraphLayer gl = Project. ActiveLayer()

158

Graphs

DataPlot dp = gl. DataPlots(0);

bool bRepaint = true ;

dp. SetColor(SYSCOLOR_GREEN, bRepaint) ;

8.4.3 Getting Format Tree

OriginObject::GetFormat and OriginObject::ApplyFormat are used to get and set Origin object formats. The
following getting, setting and copying format mechanisms can be used for all Origin objects whose classes derive
from the OriginObject base class (see Reference: Class Hierarchy). For example, the Origin objects can be
objects of the DataPlot class, Worksheet class, WorksheetPage class, MatrixLayer class, MatrixPage class,

GraphLayer class, or GraphPage class.

The DataPlot class derives from the DataObjectBase class, and the DataObjectBase class derives from the

OriginObject class, so we can call DataPlot::GetFormat to get the format tree structure.

There are two ways to see the format tree structure via the following code.

i Set a break point on the GetFormat line in the following code, activate one data plot, run the code, press
F10 (Step Over) to execute the GetFormat line, and see the details of the format tree in the Code Builder

Local Variables Window tr variable. (press Alt+4 to open/hide the Local Variables window).

9 Use the last line, out_tree(tr);, to print out the format tree.

GraphLayer gl = Project. ActiveLayer() ;
DataPlot dp = gl. DataPlots(-1); // Getthe active data plot
/I Different plot types(for ex ample, Line, Box Chart...) have

/I different structure in the format tree.

Tree tr,

/I Get the format tree to see details of the tree structure.

tr = dp. GetFormat(FPB_ALL, FOB_ALL, true , true);

159

http://www.originlab.com/doc/OriginC/guide/Class-Hierarchy

Origin C Programming Guide

out_tree (tr); // print out the format tree.

8.4.4 Setting Format on Line Plot

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(-1); // Getthe active data plot

/I Set format on a line plot

/I Note: See the previous section to get the structur e of format tree
Tree tr;
tr. Root. Line . Connect . nVal = 2; // 2 for 2 point segment

tr. Root. Line . Color . nVal RGB20OCOLQMRGE 100, 100, 220)) ;

tr. Root. Line . Width . dVval 15;

if (0 == dp. UpdateThemelDs(tr. Root))

{

bool bRet = dp. ApplyFormat(tr, true , tr ue);

8.4.5 Copying Format from One Data Plot to Another

8.4.5.1 Copying Format via Theme File

Getting and saving a format tree from a data plot into a theme file, then loading the theme file to a tree and

applying the format tree to another data plot.

/I Save plot settings from Graphl to a theme file

GraphPage gpSource ("Graphl");

GraphLayer glSource = gpSource. Layers(0);
DataPlot dpSource = glSource. DataPlots(0);
Tree tr;

160

Graphs

tr = dpSource. GetFormat(FPB_ALL, FOB_ALL, true , true);
string strTheme = GetAppPath (false) + "plotsettings.XML" ;

tr. Save(strTheme);

/I Load plot settings from a theme file to a tree, and apply format from
/I tree to data plot object.

GraphPage gpDest ("Graph2");

GraphLaye r glDest = gpDest. Layers(0);
DataPlot dpDest = glDest. DataPlots(0);
Tree tr2;

tr2. Load(strTheme);

dpDest. ApplyFormat(tr2, true , true);

8.4.5.2 Copying Format via Tree

Getting plot settings from one data plot to a tree, then apply settings from this tree to another data plot object.

GraphPage gpSource ("Graphl");
GraphLayer glSource = gpSource. Layers(0);

DataPlot dpSource = glSource. DataPlots(0);

GraphPage gpDest ("Graph2");
GraphLayer glDest = gpDest. Layers(0);

DataPlot dpDest = glDest. DataPlots(0);

Il Get fo rmat from source data plot
Tree tr;

tr = dpSource. GetFormat(FPB_ALL, FOB_ALL, true , true);

161

Origin C Programming Guide

/I Apply format to another data plot

dpDest. ApplyFormat(tr, true , true);

8.4.6 Setting Format on Scatter Plot

GraphLayer gl = Project. ActiveLayer()

DataPlot dp = gl. DataPlots(-1); // Getthe active data plot

/I Set symbol format

Tree tr;

tr. Root. Symbol . Size . nvVal = 12; // Size of symbol
tr. Root. Symbol . Shape. nval = 1; // Circle

tr. Root. Symbol . Interior . nVal = 1; //Interiortype

tr. Root . Symbol . EdgeColor . nVal SYSCOLOR_RED;

tr. Root . Symbol . FillColor .nVal = SYSCOLOR_BLUE;

/I Show vertical droplines

tr. Root. DropLines . Vertical . nVal

I
L=

tr. Root. DropLines . VerticalColor . nVval

tr. Root. DropLines . Vertic alStyle .nVal = 1;

tr. Root . DropLines . VerticalWidth .nvVal = 15;

if (0 == dp. UpdateThemelDs(tr. Root))

bool bRet = dp. ApplyFormat(tr, true , true);

8.4.7 Setting Format on Grouped Line + Symbol Plots

162

SYSCOLOR_LTGRAY;

Graphs

Use Origin C to set the format for grouped plots. The same action can be completed by going into the Plot
Details dialog, under the Group tab. The formats included Line Color, Symbol Type, Symbol Interior, and Line

Style.

The following example shows how to set format on Line and Symbol plots. This group is assumed to contain 4

data plots.

GraphLayer gl = Project. ActiveLayer() ;

GroupPlot gplot = gl. Groups(0); // Getthe first group in layer

/I the Nester is an array of types of objects to do nested ¢ ycling in the group

/I four types of setting to do nested cycling in the group

vector <int > vNester (3);

vNester [0] 0; // cycling line color in the group

vNester [1] 3; I/ cycling symbol type in the group

vNester [2] 8; /Il cycling symbol interior in the group

gplot. Increment . Nester . nVals = vNester; Il set Nester of the grouped plot

/I Put format settings to vector for 4 plots

vector <int > vLineColor = {SYSCOLOR_BLUE, SYSCOLOR_OLIVE, SYSCOLOR_RED,
SYSCOLOR_CYAN

vector <int > vSymbol Shape = {1, 3, 5, 8};

vector <int > vSymbolinterior ={1, 2, 5, 0};

Tree tr;

tr. Root. Increment . LineColor .nVals = vLineColor; /I set line color to theme tree
tr. Root. Increment . Shape. nVals = vSymbolShape; /I set symbol shape to theme tree
/I set symbol inte rior to theme tree

tr. Root. Increment . Symbolinterior .nVals = vSymbolinterior;

163

Origin C Programming Guide

if (0 == gplot. UpdateThemelDs(tr. Root))

{

bool bb = gplot. ApplyFormat(tr, true , true); /I apply theme tree

8.4.8 Setting Colormap Settings

DataPlot class has two overloaded methods to set colormap.

9 DataPlot::SetColormap(const vector<double> & vz, BOOL bLogScale = FALSE) is just used to set Z

level and scale type (log type or not). The values in vz argument are Z values.

i DataPlot::SetColormap(TreeNode& trColormap) is used to set all colormap settings, for example, Z

values, colors, line format and text label format.

This example shows how to set up colormap Z levels on a Contour graph.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(0);

/I Get original colormap Z levels

vector VZs;

BOOL bLogScale = FALSE

BOOL bRet = dp. GetColormap(vZs, bLogScale);

int nLevels = vZs. GetSize() ;

/I Decrease Z levels vector and set back to DataPlot
double min, max;

vZs. GetMinMax(min, max);

double dChangeVal = fabs(max - min) * 0.2 ;

bool bIncrease = true ;

164

Graphs

if (!blncrease)

dChangeVal = 0 - dChangeVal;

min = min - dChangeVal;
max = max - dChangeVal;
double inc = (max - min) / nLevels;

vZs. Data(min, max,inc);

dp. SetColormap(VvZs);

The following example shows how to set up colormap Z levels with log10 scale type.

bool plot_matrix (LPCSTR IpsczMatPage, LPCSTR IpcszGraphTemplate = "contour"

, int nPlotiD = IDM_PLOT_CONTOUR

/I Get the active matrix object from the specific matrix page
MatrixPage matPage = Project. MatrixPages(IpsczMatPage);
if (!matPage)
{
out_str ("Invalid matrix page");
return false ;
}
/I get the active sheet in this matrix page
MatrixLayer ml = matPage. Layers(-1);
/I get the active matrix object in matrixsheet

MatrixObject mobj = ml. MatrixObjects(-1);

165

Origin C Programming Guide

/I Create hidden graph page w ith template and add plot

/I Create as hidden to avoid unneeded drawing

GraphPage gp;

gp. Create(IpcszGraphTemplate, CREATE_HIDDEN);

GraphLayer glay = gp. Layers()

int nPlot = glay. AddPlot(mobj, n PlotiD);

if (nPlot < 0)

{
out_str ("fail to add data plot to graph”
return false ;
}
glay. Rescale() ; //rescale xy axes

/I Construct Z levels vector
int nNewlLevels = 4;
double min = 0.1 ,max = 100000 ;

double step = (logl0(max) - logl0(min))

vector vLevels;
vLevels. SetSize(nNewLevels);
vLevels. Data(logl0(min), logl0(max), step

vLevels = 107vLevels;

/I Setup z levels in percent, not real z values.
/I First value must be 0 and last value must be < 100

! (nNewLevels

vLevels = 100*(vLevels - min)/(max - min);

166

)¢

Tree tr;
tr. ColorMap . Details . Levels .dVals = vlLevels;
tr. ColorMap . ScaleType .nVal = 1; //1 forlogl0
tr. ColorMap . Min. dVal = min;
tr. ColorMap . Max. dvVal = max;
DataPlot dp = glay. DataPlots(nPlot);
bool bRet = dp. SetCol ormap(tr);
if (!DbRet)
{
out_str ("fail to set colormap");
return false ;
}
gp. Label = "Plot created using template: " + (string
gp. TiteShow = WIN_TITLE_SHOW_BOTH;

gp. SetShow() ;

return

true ;

/I show it when all it ready

Graphs

) IpcszGraphTemplate;

Call the above plot_matrix function with coutour template and IDM_PLOT_CONTOUR plot id to plot contour

graph and then set colormap on it.

void plot_contour_ex

{

plot_matrix

(lpcszMatPage,

(LPCSIR IpcszMatPage)

"contour"

, IDM_PLOT_CONTOUR;

167

Origin C Programming Guide

Call the above plot_matrix function with image template and IDM_PLOT_MATRIX_IMAGE plot id to plot image

graph and then set colormap on it.

void plot_image_ex (LPCSTR IpcszMat Page)

{
plot_matrix (IpcszMatPage, "image" , IDM_PLOT_MATRIX_IMAGE) ;
}
The following example shows how to remove fill color, and set up line color, style, width and text labels on a
Contour graph.
Graph Layer gl = Project. ActiveLayer() ;
DataPlot dp = gl. DataPlots(0);
Tree tr;

dp. GetColormap(tr);

/I Remove fill color

tr. ColorFillControl .nVal = 0;

/I Set line color

vector <int > vnLineColors;

vnLineColors = tr. Details . LineColors .nVals ;
int nLevels = vnLineColors. GetSize() ;
vnLineColors. Data(1, nLevels, 1);

tr. Details . LineColors .nVals = vnLineColors;

168

Graphs

/I Set line style as Dash for all lines
vector <int > vnLineStyles (vnLineColors. GetSize()) ;
vnLineStyles = e

tr. Details . LineStyles .nVals = vnLineStyles;

/' Set line width for all lines
vector vdLineWidths (vnLineColors. GetSize()) ;
vdLineWidths = 3;

tr. Details . LineWidths . dVals = vdLineWidths;

/I Show/hide labels, show all except that the first two.

vector <int > vnLabels (vnLineColors. GetSize()) ;

vnLabels = 1;

vnLabels [0] = O;

vnLabels [1] = 0;

tr. Details . Labels .nVals = vnLabels;

/I Set back settings to graph
dp. SetColormap(tr);

This example shows how to set the format(i.e. color, size, bold, italic) of the text labels on a Contour graph.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(0);

/I Get all properties of the related objects of the colormap data plot
Tree tr;

tr = dp. GetFormat(FPB_ALL, FOB_ALL, true , true);

169

Origin C Programming Guide

/I Show all labels

vector <int > vnlLabels;

vnLabels = tr. Root. ColorMap . Details . Labels . nVals ;
vnLabels = 1;//0 to hide, 1 to show

tr. Root. ColorMap . Details . Labels . nVals = vnLabels;

/I Set the numeric format for labels

tr. Root. NumericFormats . Format . nVal = 0; // Decimal

tr. Root . NumericFormats . DigitsControl .nval = 0;

tr. Root . NumericFormats . SignificantDigits .nVal = 5; //[DecimalPlaces

tr. Root. NumericFormats . Prefix .strvVal = ;

tr. Root. NumericFormats . Suffix . strVal = "Label" ;

tr. Root. NumericFormats . MinArea . nVal = 5; // Labeling Criteria - Min Area(%)

/I Set text format for labels
tr. Root. Labels . Color . nVal = SYSCOLOR_BLUE;
/[FontFacelndex_to DWORD is used to convert font from GUI index to DWORD real value

tr. Root. Labels . Face. nVal = FontFacelndex_to_DWORD (2);// choose the 3rd font in GUI

tr. Root. Labels . Size . nVal 20;
tr. Root. Labels . WhiteOut . nVal = 1;

tr. Root. Labels . Bold . nval = 1;

tr. Root. Labels . ltalic .nVal = 1;
tr. Root. Labels . Underline .nVal = 1;
if (0 == dp. UpdateThe melDs(tr. Root))

dp. ApplyFormat(tr, true , true);

170

Graphs

8.5 Managing Layers

8.5.1 Creating a Panel Plot

8.5.1.1 Creating a 6 Panel Graph
The following example will create a new graph window with 6 layers, arranged as 2 columns and 3 rows. This

function can be run independent of what window is active.

GraphPage gp;

gp. Create("Origin");

while (gp. Layers . Count() < 6)

{

gp. AddLayer() ;

graph_arrange_layers (gp, 3, 2);

8.5.1.2 Creati_ng and Plotting into a 6 Panel Graph

The following example will import some data into a new workbook, create a new graph window with 6 layers,

arranged as 2 columns and 3 rows, and loop through each layer (panel), plotting the imported data.

/I Import data file to worksheet
ASCIMP ai;

Worksheet wks;

string strDataFile = GetOpenBox (FDLOG_ASCII, GetAppPath (true)) ;
if (AsclmpReadFileStruct (strDataFile, &) == 0)
{

wks. Create("Origin");

171

Origin C Programming Guide

wks. ImportASCII(strDataFile, ai);

/I Add XY data from worksheet to graph each layers
GraphPage gp ("Graphl"); //the graph has the 3x2 panel layers created above
int index = 0;
foreach (GraphLayer gl in gp. Laye rs)
{
DataRange dr;
dr. Add(wks, 0, "X");

dr. Add(wks, index +1, "Y");

it (gl. AddPlot(dr,IDM_PLOT LINE) >= 0)

gl. Rescale() ;

index ++;

8.5.2 Adding Layers to a Graph Window

The following example will add an independent right Y axis scale. A new layer is added, displaying only the right
Y axis. It is linked in dimension and the X axis is linked to the current active layer at the time the layer is added.

The new added layer becomes the active layer.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h>// N eeded for page_add_layer function

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage()

172

Graphs

bool bBottom = false , blLeft = false ,bTop = false , bRight = true ;
int nLinkTo = gl. Getindex() ; // New added layer link to the active layer

true ;

bool bActivat eNewLayer

int nLayerindex = page_add_layer (gp, bBottom, bLeft, bTop, bRight,

ADD_LAYER_INIT_SIZE_POS_SAME_AS_PREVIOUS, bActivateNewLayer, nLinkTo 'R

8.5.3 Hiding Layers Except Active One

GraphPage gp ("Graphl");
it (gp)

{
GraphLayer glAc tive = gp. Layers(-1); // -1togetactive layer

foreach (GraphLayer gl in gp. Layers)

{

if (gl. Getindex() I = glActive. Getindex())

gl. Show(false);

8.5.4 Arranging the Layers

The following example will arrange the existing layers on the active graph into two rows by three columns. If the

active graph does not already have 6 layers, it will not add any new layers. It arranges only the layers that exist.

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage()

173

Origin C Programming Guide

int nRows = 3, nCols = 2;

graph_arrange_layers (gp, nNRows, nCols) ;

8.5.5 Moving a Layer

The following example will left align all layers in the active graph window, setting their position to be 15% from

the left-hand side of the page.

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

int nRows = gp. Layers . Count() ;

int nCols = 1;

stLayersGridFormat stFormat;

stFormat. nXGgp 0; /I the X direction gap of layers

stFormat. nYGap = 5; //theY direction gap of layers
stFormat. nLeftMg = 15; //left margin

stFormat. nRightMg = 10;

stFormat. nTopMg = 10;

stFormat. nBottomMg = 10;

page_arrange_layers (gp, nRows, nCols, &stFormat) ;

8.5.6 Resizing a Layer

The following example will resize the current layer to reduce the width and height to half of the original size.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_set_size function

174

Graphs

GraphLayer gl = Project. ActiveLayer()

/I get the original size of graph layer

double dWidth, dHeight;

layer_get_size (gl, dwidth, dHeight)

I resize layer

dwidth /= 2;
dHeight /= 2;
layer_set_size (gl, dWidth, dHeight);

8.5.7 Swap two Layers

The following example will swap the position on the page of layers indexed 1 and 2.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_swap_position fu nction

GraphPage gp ("Graphl");

GraphLayer gl1 = gp. Layers(0);

GraphLayer gl2 gp. Layers(1);

layer_swap_position (gll,gl2);

The following example will swap the position on the page of layers named Layerl and Layer2.

GraphPage gp ("Graphl");

GraphLayer gl1 = gp. Layers("Layerl");

GraphLayer gl2 gp. Layers(“"Layer2");

175

Origin C Programming Guide

layer_swap_position (gll,gl2);
8.5.8 Aligning Layers
The following example will bottom align layer 2 with layer 1 in the active graph window.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_aligns function
/I Get the active graph page
GraphLayergl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

GraphLayer gl1 = gp. Layers(0);

GraphLayer gl2 = gp. Layers(1);

/I Bottom align layer 2 with layer 1
layer_aligns (gl1, gl2, POS_BOTTOM);

8.5.9 Linking Layers

The following example will link all X axes in all layers in the active graph to the X axis of layer 1. The Units will be

set to a % of Linked Layer.

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run Labtalk

command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_set_link function
GraphLayer gl = Project. ActiveLayer()
GraphPage gp = gl. GetPage() ;

GraphLayer gl1 = gp. Layers(0); //Layer1

176

Getindex()

, LINK_STRAIGHT, LINK_NONE,

foreac h(GraphLayer glOne in gp. Layers)
{
int nUnit = M_LINK; // Setlayer unitas % of linked layer
if (glOne !=gll)
layer_set_link (glOne, gll.
&nUnit) ;
}
8.5.10 Setting Layer Unit
int nUnit = M_PIXEL;
GraphLayer gl = Project. ActiveLayer() ;

/I Get the current position
double dPos[TOTAL_PO$;

gl. GetPosition(dPos);

/I Convert position to the specified unit

gl. UnitsConvert(nUnit, dPos);

/I Set position with unit

gl. SetPosition(dPos, nUnit) ;

8.6 Creating and Accessing Graphical Objects

8.6.1 Creating Graphical Object

Add a Graphical Object, for example: text, or a rectangle or line.

Graphs

The following example shows how to add a rectangle to the active graph. For other Graph object types see

GROT_* (for example: GROT_TEXT, GROT_LINE, GROT_POLYGON) in the oc_const.h file.

177

Origin C Programming Guide

GraphLayer gl = Project. ActiveLayer() ;
string strName = "MyRect" ;
GraphObject goRect = gl. CreateGraphObiject(GROT_RECT, strName) ;

Add a text label on the current graph window:

GraphLayer gl = Project. ActiveLayer() ;
GraphObject go = gl. CreateGraphObject(GROT_TEXT, "MyText");
go. Text = "Thisis a test" ;

The example below shows how to add an arrow to a graph. The object type of an arrow is GROT_LINE, the

same type as a line. And for both lines and arrows, the number of data points required is 2.

GraphPage gp;
gp. Create() ;

GraphLayer gl = gp. Layers() ;

string strName "MyArrow" ; // the name of the graph object

GraphObject go = gl. CreateGraphObject(GROT_LINE, strName);
go. Attach = 2; // change attach mode to Layer and Scale

Tree tr;

tr. Root. Dimension . Units .nVal = 5; //Setunitas Scale

/I Set position by scale value
vector vx = {2, 6};
vector vy = {6, 2};

tr. Root. Data. X. dVals = vx;

178

Graphs

tr. Root. Data.Y.dVals = vy;

tr. Root. Arrow . Begin . Style .nVal = 0;

tr. Root. Arrow . End. Style .nVal = 1;

if (0 == go. UpdateThemelDs(tr. Root))

{
go. ApplyFormat(tr, true , true);
}
The example below shows how to add a curved arrow to a graph. For a curved arrow, the number of data points
required is 4.
GraphPage gp;

gp. Create() ;

GraphLayer gl = gp. Layers() ;

string strName = "MyArrow" ; // the name of the graph object
GraphObject go = gl. CreateGraphObject(GROT_LINE4, s trName) ;
go. Attach = 2; // change attach mode to Layer and Scale

Tree tr;

tr. Root. Dimension . Units .nVal = 5; //Setunitas Scale

/I Set position by scale value
vector vx = {2, 4, 6, 5};

vector vy = {7, 69, 68, 2};

179

Origin C Programming Guide

tr. Root. Data. X. dVals VX;

tr. Root. Data. Y. dVals

1
2

tr. Root. Arrow . Begin . Style .nVal = 0;

tr. Root. Arrow . End. Style . nVal = 1;

if (0 == go. UpdateThemelDs(tr. Root))

go. ApplyFormat(tr, true , true);

8.6.2 Setting Properties

Set Properties for a Graphical Object, for example, text font, color, line width.

/I Set color and font for graph object

GraphLayer gl = Project. ActiveLayer() ;
GraphObject goText = gl. GraphObjects("Text");
goText. Text = "Thisis a test” ;

goText. Attach = 2; // Attach to layer scale

Tree tr;

tr. Root. Color . nVal = SYSCOLOR_REDj/ the color of text

tr. Root. Font . Bold . nvVal = 1;

tr. Root. Font . Italic .nVal = 1;
tr. Root. Font . Underline .nval = 1;
tr. Root. Font . Size . nvVal = 30; //font size of text

if (0 == goText. UpdateThemelDs(tr. Root))

180

Graphs

bool bRet = goText. ApplyFormat(tr, true , true);

8.6.3 Setting Position and Size

GraphLayer gl = Project. ActiveLayer()
GraphObject go = gl. GraphObjects("Rect");

go. Attach = 2; // Attach to layer scale

/I Move text object to the layer left top

Tree tr;

tr. Root. Dimension . Units . nVal = UNITS_SCALE;

tr. Root. Dimension . Left .dval = gl. X From; //Left

tr. Root. Dimension . Top.dVal = gl. Y. To/2; // Top

tr. Root. Dimension . Width . dval = (gl. X. To - gl. X. From)/2; // Width

tr. Root. Dimension . Height .dval = (gl. Y.To - gl. Y.From)/2; //Height

if (0 == go. UpdateThemelDs(tr. Root))

bool bRet = go. ApplyFormat(tr, true , true);

8.6.4 Updating Attach Property
The attach property has 3 choices, Page, Layer Frame, and Layer Scale.
/I Attach graph object to the different object:
/I O for layer, when move layer, graph object will be moved together;
/I 1 for page, when move layer, not effect o n graph object;
/I 2 for layer scale, when change the scale, the position of graph object

/I will be changed according.

181

Origin C Programming Guide

go. Attach = 2;

8.6.5 Getting and Setting Disable Property

/l To check disable properties, for example, movable, selectable.
Tree tr;
tr = go. GetFormat(FPB_OTHER, FOB_ALL, true , true);

DWORD dwStats = tr. Root. States . nVal ;

/I To check vertical and horizontal movement.
/I More property bits, see GOC_* in oc_const.h file.

if ((dwStat' s & GOC_NO_VMOYE&& (dwStats & GOC_NO_HMOYVE)

{

out_str ("This graph object cannot be move");

8.6.6 Programming Control

//'1. Add a line

GraphLayer gl = Project. ActiveLayer() ;

GraphObject go = gl. CreateGraphObject(GROT_LINB ;
go. Attach = 2; // Set attach mode to layer scale

go. X = 5; // Setinit positionto X =5

/I 2. Set line properties

Tree tr;

tr. Root. Direction .nVal = 2; //1 forHorizontal, 2 for vertical
tr. Root. Span.nVal = 1; // Span to lay er

tr. Root. Color . nVal = SYSCOLOR_REDY/ Line color

182

Graphs

if (0 == go. UpdateThemelDs(tr. Root))

{

go. ApplyFormat(tr, true , true);

/I 3. Set event mode and LT script.

/I Move line will print out line position, x scale value.

Tree trEvent;

trEv ent. Root. Event . nVal = GRCT_MOVE/ More other bits, see GRCT_* in oc_const.h

trEvent. Root. Script .strval = "type - a $(this.X)" ;

if (0 == go. UpdateThemelDs(trEvent. Root))

{

go. ApplyFormat(trEvent, true , true);

8.6.7 Updating Legend

A legend is a graphical object named "Legend" on a graph window. After adding/removing data plots, we can use

the legend update function to refresh the legend according to the current data plots.

/I Simple usage here, just used to refresh legend.
/I Search this function in OriginC help to see the description of other arguments
/l for more usages.

legend_update (gl); // glisa GraphLayer object

8.6.8 Adding Table Object on Graph

183

http://www.originlab.com/doc/OriginC/ref/legend_update

Origin C Programming Guide

/I 1. Create the worksheet with Table template
Worksheet wks;
wks. Create("Table" , CREATE_HIDDEN);

WorksheetPage wksPage = wks. GetPage() ;

/12.S ettable size and fill in text
wks. SetSize(3, 2);
wks. SetCell(0, 0, "1");

wks. SetCell(0, 1, "Layerl1");

wks. SetCell(1, 0, "2");

wks. SetCell(1, 1, "Layer2");

wks. SetCell(2, 0, "3");

wks. SetCell(2, 1, "Layer3");

//3. Add table as link to graph

GraphLaye rgl = Project. ActiveLayer() ;

GraphObiject grTable = gl. CreateLinkTable(wksPage. GetName() , wks) ;

184

9 Working with Data

9.1 Working with Data

This section covers the following topics:

9 Numeric Data

9 String Data

I Date and Time Data

9.2 Numeric Data

This section gives examples of working with numeric data in Origin C. Numeric data can be stored in variables of

the following data types:

1. double
2. integer
3. vector
4. matrix

Numeric data and strings can be stored in the nodes of a tree, provided the nodes have one of the data types

above.

Note:Values such as 0.0, NANUM (missing value) and values between -1.0E-290 to 1.0E-290 will be evaluated

to be False in logic statement.

9.2.1 Missing Values

As important as numeric data is, it is also important to be able to represent missing data. Origin C defines the
NANUM macro for comparing and assigning values to missing data. Missing values are only supported with the

double data type.

double d = NANUM;

185

http://www.originlab.com/doc/OriginC/guide/Numeric-Data
http://www.originlab.com/doc/OriginC/guide/String-Data
http://www.originlab.com/doc/OriginC/guide/Date-and-Time-Data

Origin C Programming Guide

if (NANUM== d)
out_str ("The value is a missing value.");

Origin C also provides the is_missing value function for testing if a value is a missing value.

if (is_missing_value (d))

out_str ("The value is a missing value.");

9.2.2 Precision and Comparison

In the following example code, the prec and round functions are used to control the precision of double type

numeric data. The is_equal function is used to compare two pieces of double type numeric data.

double dval = PI; //Pldefined as 3.1415926535897932384626

/I convert the double value to have 6 significant digits
int nSignificantDigits = 6;

printf("%f\ n", prec (dVal, nSignificantDigits)

/I force the double value to only have two decimal digits
uint nDecimalPlaces = 2;
double dd = round (dVal, nDecimalPlace s);

printf("%f\n",dd);

/I compare two double values
if (is_equal (dd, 3.14))

{

out_str ("equal \n");

else

186

http://www.originlab.com/doc/OriginC/ref/is_missing_value

Working with Data

out_str ("notequal \n");

9.2.3 Convert Numeric to String

/[assign int type numeri c to string
string str = 10;

out_str (str);

int nn = 0;
str = nn;

out_str (str);

/I convert double type numeric to string
double dd = PI;
str = ftoa (dd, ™"); //Use "*" for Origin's global setting in Options dialog

out_str (str);

str = ftoa (dd, "8 "); // Use "*8"for 8 significant

out_str (str);

9.2.4 Vector

/I One - Dimensional array with basic data type, for example, double, int, string,
/I complex.

vector vx, vy,

int nMax = 10;

187

Origin C Programming Guide

vx. Data(1,nMax, 1); //assign value to vx from 1 to 10 with increment 1

vy. SetSize(nMax); // setsize(10) to vy

for (int nn = 0;nn < nMax; nn ++)
{
vy[nn] = rnd () ; // assign random data to each item in vy

printf("in dex = %d, x = %g, y = %g \n",nn +1,vx [nn],vy [nn]) ;

/I Access the data in a worksheet window
Worksheet wks = Project. ActiveLayer()

Column col (wks, 0);

vector & vec = col. GetDataObject() ;

vec = vec * 0.1; // Multiply 0.1 by each piece of data in v ec
vec = sin(vec); /I Find the sine of each piece of data in vec
9.2.5 Matrix

/I Two - Dimensional array with basic data type, for example, double, int, complex,
// but not string.

matrix mat (5, 6);

for (int i = 0;ii < 5jii ++4)
{
for (int jj = 0;jj < 6;jj ++)

{

188

mat[ii [ji] = ii

printf(~ "%g\t", mat [ii][ji]) ;

}

printf("\'n"); // newline

/I Ac cess the data in matrix window

+ i

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects(

matrix & mat = mo.GetDataObject()

mat = mat + 0.1 ; // Add 0.1 for the each data in matrix

9.2.6 TreeNode

0);

Working with Data

The Origin C TreeNode class provides several methods for constructing multi-level trees, traversing trees and

accessing the value/attributes of tree nodes.

Tree tr;

/I Access the value of a tree node

TreeNode trName = tr. AddNode("Name") ;

trName. strVal = "Jane" ;

tr. UserlD . nVal = 10;

vector <string > vsBooks = {"C++",

tr. Books. strvals = vsBooks;

out_tree (tr); // outputtree

9.2.7 Complex

"MFC"};

189

Origin C Programming Guide

complexcc (1.5, 2.2);

CC. m_re = cc. m_re +1,

cc. m_im = cc. m_im * 0.1 ;

out_complex ("cc=" ,cc); [/l outputcc=2.500000+0.220000i

/I Access complex dataset
Worksheet wks = Project. ActiveLayer() ;
Column col (wks, 1);
if (FSI_COMPLEX== col. GetInternalDataType())
{
vector <complex >& vcc = col. GetDataObject() ;

vec[0] = 05 + 3.6j;

/I Access complex matrix

MatrixLayer ml = Project. ActiveLayer() ;
MatrixObject mo = ml. MatrixObjects() ;

if (FSI_COMPLEX == mo.GetlnternalDataType())
{

matrix <complex >& mat = mo.GetDataObject()

mat[O] 0] = 1 + 2.5i

9.2.8 DataRange

190

Working with Data

The DataRange class is a versatile mechanism to get and put data in a Worksheet, Matrix or Graph window.

9.2.8.1 Data Range in Worksheet

For a Worksheet, a data range can be specified by column/row index as one column, one row, any sub block

range, one cell or entire Worksheet.

/I Construct a data range on the active worksheet, all columns and rows
/l from 1st row to 5th row.
Worksheet wks = Project. ActiveLayer() ;

int r1 =0,c1 =0,r12 =4,¢c2 = -1;

DataRange dr;
/I range name should be make sense, for example, "X", "Y",

/I "ED"(Y error), "Z". If the data range is not belong to dependent
/I or independent type, default can be "X".
dr. Add("X" ,wks,rl, c1,r2, c2);

Get data from data range to vector. DataRange::GetData supports multiple overloaded methods. For example:

vector vData;
int index = 0; //range index

dr. GetData(&vData, index);

9.2.8.2 Dat a Range in Matrixsheet

For a Matrix window, the data range can be a matrix object index.

MatrixLayer ml = Project. ActiveLayer() ;
DataRange dr;

int nMatrixObjectindex = 0;

dr. Add(ml, nMatrixObjectindex, "X");

Get data from data range to matrix.

191

http://www.originlab.com/doc/OriginC/ref/DataRange-GetData

Origin C Programming Guide

matrix mat;

dr. GetData(mat);

9.2.8.3 Data Range in Graph
For a Graph window, the data range can be one data plot, or a sub range of one data plot.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots() ; // Get active data plot

DataRange dr;

int il

0; /I from the first data point

int 2

-1; //to the last data point
dp. GetDataRange(dr, i1, i2);

Get XY data from data plot to vector by data range object.

vector vx, vy;
DWORDIwWRules = DRR_GET_DEPENDENT;

dr. GetData(dwRules, 0, NULL NULL &vy, &vx);

9.2.8.4 Data Range Control

OriginC supports a GetN dialog interactive control to choose a data range.

#include <GetNBox. h>

/I Open a dialog to choose a range from one graph data plot.
/I And construct a data range object by this selection.
GETN_TREEtr)

GETN_INTERACTIVH Rangel, “"Select Range" , "")

if (GetNBox(tr)) //returns true if click OK button

192

Working with Data

{

DataRange dr;

dr. Add("Rangel"” ,tr. Rangel. strval) ;

vector vData;

int index = 0; //range index

dr. GetData(&vData, index); // The datain vData is the selected data points
}

9.3 String Data

9.3.1 String Variables

string stri; /I Declare a string variable named strl
strl = "New York" ; // Assigns to strl a character sequence
string str2 = "Tokyo" ; [/ Declare a string variable and assignment

/I Declare a character array and initialize with a character sequence

char ch[] = "Thisis atest!" ;

/I Declare a character array, set size and initialize with a character sequ ence

char chArr [255] = "Big World." ;

9.3.2 Convert String to Numeric

string str = PI; /I Assigns a numeric value to string variable

193

Origin C Programming Guide

/I Convert string to numeric
double dd = atof(str, true);

out_double ("dd=" ,dd);

/I Convert string to complex
str = "1+2.51" ;
complexcc = atoc (str);
out_complex ("cc=" ,cc);
/I Convert string to int

str = "100" ;

int nn = atoi(str);
out_int /[nn =100

("nn=",nn);

9.3.3 Append Numeric/String to

/I Append numeric or string to another string

// dd=3.14159

/I cc = 1.000000+2.500000i

another String

/I In Origin C, support use '+' to add a numeric/string type const or variable

string str = "The areais"

str += "\n"; // Append a string con

int nLength = 10;

str += "Thelengthis ™" + nLength;

out_str (str);

9.3.4 Find Sub String

/I Find and get sub string

194

+ 30.7 ;

/I Append a double type const to string

st to string variable

/I Append a int type variable to string

Working with Data

string str = "[Book1]Sheetl!A:C"
int begin = str. Find(1"); //Findand returnth e index of '

begin ++; // Move to the next character of]

int end = str. Find(" ,begin); //Findand return the index of '

end-- ; // Move the previous character of !

/I Get the sub string with the begin index and substring length
int nLength = end - begin + 1,
string strSheetName = str. Mid(begin, nLength) ;

out_str (strSheetName) ; // Should output "Sheet1"

9.3.5 Replace Sub String
/I Find and replace one character
string str ("A+B+C+");
int nCount = str. Replace('+ ,'-');
out_int (™ ,nCount); //nCountwill be 3

out_str (str); /"A -B-CG"

/I Find and replace a character string
str = "l am a student. \' nl am a girl." :
nCount = str. Replace("lam" , "Youare");
out_int (™ ,nCount); //nCountwill be 2

out_str (str);

9.3.6 Path String Functions

9.3.6.1 FEile Path String

/I string::IsFile is used to check the file if exist

195

Origin C Programming Guide

string strFile = "D: \\ TestFolder \\abc.txt" ;

bool bb = strFile. IsFile() ;

printf("The file %s is %sexist. \'n", strFile, bb ? "o "NOT");
/I GetFilePath f unction is used to extract the path from a full path string
string strPath = GetFilePath (strFile);

out_str (strPath);

/I GetFileName function is used to extracts the file name part

/I from a string of full path

bool bRemoveExtension = true ;

string strF ileName = GetFileName (strFile, bRemoveExtension);

out_str (strFileName);

/I string::IsPath to check if the path is exist
bb = strPath. IsPath() ;
out_int (™ ,bb);

9.3.6.2 Origin System Path

string strSysPath = GetOriginPath (ORIGIN_PATH_SYSTEW,;

printf("Origin System Path: %s \'n", strSysPath) ;

string strUserPath = GetOriginPath (ORIGIN_PATH_USER;

printf("User File Path: %s \'n", strUserPath);

9.4 Date and Time Data

Origin C provides support for date and time data.

196

Working with Data

9.4.1 Get Current Date Time

/I Get current time
time_t aclock;

time(&aclock);

/I Converts a time value and correct s for the local time zone
TM tmLocal;
convert_time_to_local (&aclock , &mlLocal);

/I Convert time value from TM format to system time format
SYSTEMTIME sysTime;

tm_to_systemtime (&mLocal, &sysTime);

/I Get date string from system time
char Ip cstrTime [100];
if (systemtime_to_date_str (&sysTime, IpcstrTime, LDF_SHORT_AND_HHMM_SEPARCOLON))

printf("Current Date Time is %s \'n", IpcstrTime)

9.4.2 Convert Julian Date to String

SYSTEMTIME st;

GetSystemTim e(&st); // Gets current date time

double dJulianDate;

SystemTimeToJulianDate (&JulianDate, &st) ; [/ Convert to Julian date

/I Convert Julian date to string with the specified format

197

Origin C Programming Guide

string strDate = get_date_str (dJulianDate, LDF_SHORT_AND_HHMM_SEPARCOLON;

out_str (strDate);

9.4.3 Convert String to Julian Date

string strDate = "090425 17:59:59" ;

double dt = str_to_date (strDate, LDF_YYMMDD_AND_HHMMSS ;

198

