
NAG Library Function Document

nag_mip_sqp (h02dac)

1 Purpose

nag_mip_sqp (h02dac) solves general nonlinear programming problems with integer constraints on
some of the variables.

2 Specification

#include <nag.h>
#include <nagh.h>

void nag_mip_sqp (Integer n, Integer nclin, Integer ncnln, const double a[],
Integer pda, const double d[], double ax[], const double bl[],
const double bu[], const Integer varcon[], double x[],

void (*confun)(Integer *mode, Integer ncnln, Integer n,
const Integer varcon[], const double x[], double c[],
double cjac[], Integer nstate, Nag_Comm *comm),

double c[], double cjac[],

void (*objfun)(Integer *mode, Integer n, const Integer varcon[],
const double x[], double *objmip, double objgrd[], Integer nstate,
Nag_Comm *comm),

double objgrd[], Integer maxit, double acc, double *objmip,
const Integer iopts[], const double opts[], Nag_Comm *comm,
NagError *fail)

Before calling nag_mip_sqp (h02dac), nag_mip_opt_set (h02zkc) must be called with optstr set to
‘Initialize = h02dac’. Optional parameters may also be specified by calling nag_mip_opt_set
(h02zkc) before the call to nag_mip_sqp (h02dac).

3 Description

nag_mip_sqp (h02dac) solves mixed integer nonlinear programming problems using a modified
sequential quadratic programming method. The problem is assumed to be stated in the following
general form:

minimize
x2 Rnc ;Znif g

f xð Þ
subject to cj xð Þ ¼ 0; j ¼ 1; 2; . . . ;me

cj xð Þ � 0; j ¼ me þ 1;me þ 2; . . . ;m
l � xi � u; i ¼ 1; 2; . . . ; n

with nc continuous variables and ni binary and integer variables in a total of n variables; me equality
constraints in a total of m constraint functions.

Partial derivatives of f xð Þ and c xð Þ are not required for the ni integer variables. Gradients with respect
to integer variables are approximated by difference formulae.

No assumptions are made regarding f xð Þ except that it is twice continuously differentiable with respect
to continuous elements of x. It is not assumed that integer variables are relaxable. In other words,
problem functions are evaluated only at integer points.

The method seeks to minimize the exact penalty function:

P� xð Þ ¼ f xð Þ þ � g xð Þk k1
where � is adapted by the algorithm and g xð Þ is given by:

h – Operations Research h02dac

Mark 26 h02dac.1

g xð Þ ¼ cj xð Þ; j ¼ 1; 2; . . . ;me

¼ min cj xð Þ; 0� �
; j ¼ me þ 1;me þ 2; . . . ;m:

Successive quadratic approximations are applied under the assumption that integer variables have a
smooth influence on the model functions, that is function values do not change drastically when
incrementing or decrementing an integer value. In practice this requires integer variables to be ordinal
not categorical. The algorithm is stabilised by a trust region method including Yuan's second order
corrections, see Yuan and Sun (2006). The Hessian of the Lagrangian function is approximated by
BFGS (see Section 11.4 in nag_opt_nlp (e04ucc)) updates subject to the continuous and integer
variables.

The mixed-integer quadratic programming subproblems of the SQP-trust region method are solved by a
branch and cut method with continuous subproblem solutions obtained by the primal-dual method of
Goldfarb and Idnani, see Powell (1983). Different strategies are available for selecting a branching
variable:

Maximal fractional branching. Select an integer variable from the relaxed subproblem solution
with largest distance from next integer value

Minimal fractional branching. Select an integer variable from the relaxed subproblem solution
with smallest distance from next integer value

and a node from where branching, that is the generation of two new subproblems, begins:

Best of two. The optimal objective function values of the two child nodes are compared and the
node with a lower value is chosen

Best of all. Select an integer variable from the relaxed subproblem solution with the smallest
distance from the next integer value

Depth first. Select a child node whenever possible.

This implementation is based on the algorithm MISQP as described in Exler et al. (2013).

Linear constraints may optionally be supplied by a matrix A and vector d rather than the constraint
functions c xð Þ such that

Ax ¼ d or Ax � d:

Partial derivatives with respect to x of these constraint functions are not requested by nag_mip_sqp
(h02dac).

4 References

Exler O, Lehmann T and Schittkowski K (2013) A comparative study of SQP-type algorithms for
nonlinear and nonconvex mixed-integer optimization Mathematical Programming Computation 4 383–
412

Mann A (1986) GAMS/MINOS: Three examples Department of Operations Research Technical Report
Stanford University

Powell M J D (1983) On the quadratic programming algorithm of Goldfarb and Idnani Report DAMTP
1983/Na 19 University of Cambridge, Cambridge

Yuan Y-x and Sun W (2006) Optimization Theory and Methods Springer–Verlag

5 Arguments

1: n – Integer Input

On entry: n, the total number of variables, nc þ ni.

Constraint: n > 0.

h02dac NAG Library Manual

h02dac.2 Mark 26

2: nclin – Integer Input

On entry: nl, the number of general linear constraints defined by A and d.

Constraint: nclin � 0.

3: ncnln – Integer Input

On entry: nN , the number of constraints supplied by c xð Þ.
Constraint: ncnln � 0.

4: a½dim� – const double Input

Note: the dimension, dim, of the array a must be at least n when nclin > 0.

The i; jð Þth element of the matrix A is stored in a½ j� 1ð Þ � pdaþ i� 1�.
On entry: the ith row of a must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ; nl. Any equality constraints must be specified first.

If nclin ¼ 0, the array a is not referenced and may be NULL.

5: pda – Integer Input

On entry: the stride separating matrix row elements in the array a.

Constraint: pda � nclin.

6: d½nclin� – const double Input

On entry: di, the constant for the ith linear constraint.

If nclin ¼ 0, the array d is not referenced and may be NULL.

7: ax½nclin� – double Output

On exit: the final values of the linear constraints Ax.

If nclin ¼ 0, ax is not referenced and may be NULL.

8: bl½n� – const double Input
9: bu½n� – const double Input

On entry: bl must contain the lower bounds, li, and bu the upper bounds, ui, for the variables;
bounds on integer variables are rounded, bounds on binary variables need not be supplied.

Constraint: bl½i � 1� � bu½i � 1�, for i ¼ 1; 2; . . . ; n.

10: varcon½nþ nclinþ ncnln� – const Integer Input

On entry: varcon indicates the nature of each variable and constraint in the problem. The first n
elements of the array must describe the nature of the variables, the next nL elements the nature of
the general linear constraints (if any) and the next nN elements the general constraints (if any).

varcon½j� 1� ¼ 0
A continuous variable.

varcon½j� 1� ¼ 1
A binary variable.

varcon½j� 1� ¼ 2
An integer variable.

varcon½j� 1� ¼ 3
An equality constraint.

varcon½j� 1� ¼ 4
An inequality constraint.

h – Operations Research h02dac

Mark 26 h02dac.3

Constraints:

varcon½j � 1� ¼ 0, 1 or 2, for j ¼ 1; 2; . . . ;n;
varcon½j � 1� ¼ 3 or 4, for j ¼ nþ 1; . . . ; nþ nclinþ ncnln;
At least one variable must be either binary or integer;
Any equality constraints must precede any inequality constraints.

11: x½n� – double Input/Output

On entry: an initial estimate of the solution, which need not be feasible. Values corresponding to
integer variables are rounded; if an initial value less than half is supplied for a binary variable the
value zero is used, otherwise the value one is used.

On exit: the final estimate of the solution.

12: confun – function, supplied by the user External Function

confun must calculate the constraint functions supplied by c xð Þ and their Jacobian at x. If all
constraints are supplied by A and d (i.e., ncnln ¼ 0), confun will never be called by
nag_mip_sqp (h02dac) and the NAG defined null void function pointer, NULLFN, may be
supplied in the call instead. If ncnln > 0, the first call to confun will occur after the first call to
objfun.

The specification of confun is:

void confun (Integer *mode, Integer ncnln, Integer n,
const Integer varcon[], const double x[], double c[],
double cjac[], Integer nstate, Nag_Comm *comm)

1: mode – Integer * Input/Output

On entry: indicates which values must be assigned during each call of objfun. Only the
following values need be assigned:

mode ¼ 0
Elements of c containing continuous variables.

mode ¼ 1
Elements of cjac containing continuous variables.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case nag_mip_sqp (h02dac) will terminate with fail set to
mode.

2: ncnln – Integer Input

On entry: the dimension of the array c and the first dimension of the array cjac. The
number of constraints supplied by c xð Þ, nN .

3: n – Integer Input

On entry: the second dimension of the array cjac. n, the total number of variables,
nc þ ni.

4: varcon½nþ nclinþ ncnln� – const Integer Input

Note: the dimension, dim, of the array varcon is nþ nclinþ ncnln.

On entry: the array varcon as supplied to nag_mip_sqp (h02dac).

5: x½n� – const double Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

h02dac NAG Library Manual

h02dac.4 Mark 26

6: c½ncnln� – double Output

On exit: must contain ncnln constraint values, with the value of the jth constraint cj xð Þ
in c½j� 1�.

7: cjac½ncnln� n� – double Input/Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored

in cjac½ j� 1ð Þ � ncnlnþ i� 1�.
On entry: continuous elements of cjac are set to the value of NaN.

On exit: the ith row of cjac must contain elements of
@ci
@xj

for each continuous variable

xj.

8: nstate – Integer Input

On entry: if nstate ¼ 1, nag_mip_sqp (h02dac) is calling confun for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to confun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_mip_sqp (h02dac) you may
allocate memory and initialize these pointers with various quantities for use by
confun when called from nag_mip_sqp (h02dac) (see Section 2.3.1.1 in How to
Use the NAG Library and its Documentation).

13: c½ncnln� – double Output

On exit: if ncnln > 0, c½j � 1� contains the value of the jth constraint function cj xð Þ at the final
iterate, for j ¼ 1; 2; . . . ; ncnln.

If ncnln ¼ 0, the array c is not referenced and may be NULL.

14: cjac½ncnln� n� – double Output

Note: the derivative of the ith constraint with respect to the jth variable,
@ci
@xj

, is stored in

cjac½ j� 1ð Þ � ncnlnþ i� 1�.
On exit: if ncnln > 0, cjac contains the Jacobian matrix of the constraint functions at the final
iterate, i.e., cjac½ j � 1ð Þ � ncnlnþ i � 1� contains the partial derivative of the ith constraint
function with respect to the jth variable, for i ¼ 1; 2; . . . ;ncnln and j ¼ 1; 2; . . . ;n. (See the
discussion of argument cjac under confun.)

If ncnln ¼ 0, the array cjac is not referenced and may be NULL.

15: objfun – function, supplied by the user External Function

objfun must calculate the objective function f xð Þ and its gradient for a specified n-element
vector x.

h – Operations Research h02dac

Mark 26 h02dac.5

The specification of objfun is:

void objfun (Integer *mode, Integer n, const Integer varcon[],
const double x[], double *objmip, double objgrd[],
Integer nstate, Nag_Comm *comm)

1: mode – Integer * Input/Output

On entry: indicates which values must be assigned during each call of objfun. Only the
following values need be assigned:

mode ¼ 0
The objective function value, objmip.

mode ¼ 1
The continuous elements of objgrd.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem, and in this case nag_mip_sqp (h02dac) will terminate with fail set to
mode.

2: n – Integer Input

On entry: n, the total number of variables, nc þ ni.

3: varcon½nþ nclinþ ncnln� – const Integer Input

Note: the dimension, dim, of the array varcon is nþ nclinþ ncnln.

On entry: the array varcon as supplied to nag_mip_sqp (h02dac).

4: x½n� – const double Input

On entry: the vector of variables at which the objective function and/or all continuous
elements of its gradient are to be evaluated.

5: objmip – double * Output

On exit: must be set to the objective function value, f , if mode ¼ 0; otherwise objmip
is not referenced.

6: objgrd½n� – double Input/Output

On entry: continuous elements of objgrd are set to the value of NaN.

On exit: must contain the gradient vector of the objective function if mode ¼ 1, with
objgrd½j� 1� containing the partial derivative of f with respect to continuous variable
xj; otherwise objgrd is not referenced.

7: nstate – Integer Input

On entry: if nstate ¼ 1, nag_mip_sqp (h02dac) is calling objfun for the first time. This
argument setting allows you to save computation time if certain data must be read or
calculated only once.

8: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

h02dac NAG Library Manual

h02dac.6 Mark 26

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_mip_sqp (h02dac) you may
allocate memory and initialize these pointers with various quantities for use by
objfun when called from nag_mip_sqp (h02dac) (see Section 2.3.1.1 in How to
Use the NAG Library and its Documentation).

16: objgrd½n� – double Output

On exit: the objective function gradient at the solution.

17: maxit – Integer Input

On entry: the maximum number of iterations within which to find a solution. If maxit is less than
or equal to zero, the suggested value below is used.

Suggested value: maxit ¼ 500.

18: acc – double Input

On entry: the requested accuracy for determining feasible points during iterations and for halting
the method when the predicted improvement in objective function is less than acc. If acc is less
than or equal to � (� being the machine precision as given by nag_machine_precision
(X02AJC)), the below suggested value is used.

Suggested value: acc ¼ 0:0001.

19: objmip – double * Output

On exit: with fail:code ¼ NE_NOERROR, objmip contains the value of the objective function
for the MINLP solution.

20: iopts½dim� – const Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
iopts in the previous call to nag_mip_opt_set (h02zkc).

21: opts½dim� – const double Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
opts in the previous call to nag_mip_opt_set (h02zkc).

On entry: the real option array as returned by nag_mip_opt_set (h02zkc).

22: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

23: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

h – Operations Research h02dac

Mark 26 h02dac.7

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_BOUND

On entry, bl½ valueh i� > bu½ valueh i�.
Constraint: bl½i � 1� � bu½i � 1�, for i ¼ 1; 2; . . . ; n.

NE_CONSTRAINT

On entry, linear equality constraints do not precede linear inequality constraints.

On entry, nonlinear equality constraints do not precede nonlinear inequality constraints.

NE_DERIV_ERRORS

One or more constraint gradients appear to be incorrect.

One or more objective gradients appear to be incorrect.

NE_INFEASIBLE

Termination at an infeasible iterate; if the problem is feasible, try a different starting value.

NE_INFINITE

Penalty parameter tends to infinity in an underlying mixed-integer quadratic program; the
problem may be infeasible. If � is relatively low value, try a higher one, for example 1020.
Optional parameter Penalty ¼ valueh i.

NE_INITIALIZATION

On entry, the optional parameter arrays iopts and opts have either not been initialized or been
corrupted.

NE_INT

On entry, n ¼ valueh i.
Constraint: n > 0.

On entry, nclin ¼ valueh i.
Constraint: nclin � 0.

On entry, ncnln ¼ valueh i.
Constraint: ncnln � 0.

NE_INT_3

On entry, pda ¼ valueh i and nclin ¼ valueh i.
Constraint: pda � nclin.

NE_INT_ARRAY_CONS

On entry, varcon½ valueh i� ¼ valueh i.
Constraint: varcon½i � 1� ¼ 0, 1 or 2, for i ¼ 1; 2; . . . ; n.

h02dac NAG Library Manual

h02dac.8 Mark 26

On entry, varcon½ valueh i� ¼ valueh i.
Constraint: varcon½i � 1� ¼ 3 or 4, for i ¼ nþ 1; . . . ; nþ nclinþ ncnln.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_NUM_DIFFICULTIES

The optimization failed due to numerical difficulties. Set optional parameter Print Level ¼ 3 for
more information.

NE_TOO_MANY

More than the maximum number of feasible steps without improvement in the objective function.
If the maximum number of feasible steps is small, say less than 5, try increasing it. Optional
parameter Feasible Steps ¼ valueh i.

NE_USER_NAN

The supplied confun returned a NaN value.

The supplied objfun returned a NaN value.

NE_USER_STOP

The optimization halted because you set mode negative in objfun or mode negative in confun,
to valueh i.

NE_ZERO_COEFF

Termination with zero integer trust region for integer variables; try a different starting value.
Optional parameter Integer Trust Radius ¼ valueh i.

NE_ZERO_VARS

On entry, there are no binary or integer variables.

NW_TOO_MANY_ITER

On entry, maxit ¼ valueh i. Exceeded the maximum number of iterations.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_mip_sqp (h02dac) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

h – Operations Research h02dac

Mark 26 h02dac.9

9 Further Comments

None.

10 Example

Select a portfolio of at most p assets from n available with expected return �, is fully invested and that
minimizes

xT�x
subject to rTx ¼ �

Xn
i¼1

xi ¼ 1

xi � yiXn
i¼1

yi � p

xi � 0
yi ¼ 0 or 1

where

x is a vector of proportions of selected assets

y is an indicator variable that describes if an asset is in or out

r is a vector of mean returns

� is the covariance matrix of returns.

This example is taken from Mann (1986) with

r ¼ 8 9 12 7
� �

� ¼
4 3 �1 0
3 6 1 0
�1 1 10 0
0 0 0 0

0
B@

1
CA

p ¼ 3
� ¼ 10:

Linear constraints are supplied through both A and d, and confun.

10.1 Program Text

/* nag_mip_sqp (h02dac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagh02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL confun(Integer *mode, Integer ncnln, Integer n,
const Integer varcon[], const double x[],
double c[], double cjac[], Integer nstate,
Nag_Comm *comm);

static void NAG_CALL objfun(Integer *mode, Integer n,
const Integer varcon[], const double x[],

h02dac NAG Library Manual

h02dac.10 Mark 26

double *objmip, double objgrd[], Integer nstate,
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define CJAC(I, J) cjac[(J-1)*ncnln+I-1]
#define A(I, J) a[(J-1)*pda+I-1]

int main(void)
{

/* Integer scalar and array declarations */
const Integer liopts = 200, lopts = 100, lcvalue = 40;
Integer i, j, pda, maxit, n, nclin, ncnln, exit_status = 0;
Integer iopts[200], p, *varcon = 0, ivalue;

/* NAG structures and types */
Nag_VariableType optype;
NagError fail;
Nag_Comm comm;

/* Double scalar and array declarations */
double acc, accqp, objmip;
double *a = 0, *ax = 0, *bl = 0, *bu = 0, *c = 0, *cjac = 0;
double *d = 0, *objgrd = 0, *x = 0, opts[200], rho;
static double ruser[2] = { -1.0, -1.0 };

/* Character declarations */
char cvalue[40];

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_mip_sqp (h02dac) Example Program Results\n\n");

n = 8;
nclin = 5;
ncnln = 2;

pda = nclin;

if (!(a = NAG_ALLOC(n * pda, double)) ||
!(d = NAG_ALLOC(nclin, double)) ||
!(ax = NAG_ALLOC(nclin, double)) ||
!(bl = NAG_ALLOC(n, double)) ||
!(bu = NAG_ALLOC(n, double)) ||
!(varcon = NAG_ALLOC(n + nclin + ncnln, Integer)) ||
!(x = NAG_ALLOC(n, double)) ||
!(c = NAG_ALLOC(ncnln, double)) ||
!(cjac = NAG_ALLOC(ncnln * n, double)) ||
!(objgrd = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; i < 4; i++) {
/* Set variable types: continuous then binary */
varcon[i] = 0;
varcon[4 + i] = 1;

/* Set continuous variable bounds */
bl[i] = 0.0;
bu[i] = 1.0e3;

}

/* Bounds of binary variables need not be provided */
for (i = 4; i < 8; i++) {

bl[i] = 0.0;
bu[i] = 1.0;

h – Operations Research h02dac

Mark 26 h02dac.11

}

/* Set linear constraint, equality first */
varcon[n] = 3;
varcon[n + 1] = varcon[n + 2] = varcon[n + 3] = varcon[n + 4] = 4;

/* Set Ax=d then Ax>=d */
for (i = 1; i <= nclin; i++) {

for (j = 1; j <= n; j++) {
A(i, j) = 0.0;

}
}
A(1, 1) = A(1, 2) = A(1, 3) = A(1, 4) = 1.0;
A(2, 1) = -1.0;
A(2, 5) = 1.0;
A(3, 2) = -1.0;
A(3, 6) = 1.0;
A(4, 3) = -1.0;
A(4, 7) = 1.0;
A(5, 4) = -1.0;
A(5, 8) = 1.0;
d[0] = 1.0;
d[1] = d[2] = d[3] = d[4] = 0.0;

/* Set constraints supplied by CONFUN, equality first */
varcon[n + nclin] = 3;
varcon[n + nclin + 1] = 4;

/* Initialize communication arrays */
nag_mip_opt_set("Initialize = nag_mip_sqp", iopts, liopts, opts, lopts,

&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_mip_opt_set (h02zkc).\n%s\n", fail.message);
exit_status = -1;
goto END;

}

/* Optimisiation parameters */
maxit = 500;
acc = 1.0e-6;

/* Initial estimate (binary variables need not be given) */
x[0] = x[1] = x[2] = x[3] = 1.0;
x[4] = x[5] = x[6] = x[7] = 0.0;

/* Portfolio parameters */
p = 3;
rho = 10.0;
comm.iuser = &p;
ruser[0] = rho;
comm.user = ruser;

/* Call MINLP solver h02dac (nag_mip_sqp) */
nag_mip_sqp(n, nclin, ncnln, a, pda, d, ax, bl, bu, varcon, x, confun, c,

cjac, objfun, objgrd, maxit, acc, &objmip, iopts, opts, &comm,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_mip_sqp (h02dac).\n%s\n", fail.message);
exit_status = -1;
goto END;

}

/* Query the accuracy of the mixed integer QP solver */
nag_mip_opt_get("QP Accuracy", &ivalue, &accqp, cvalue, lcvalue, &optype,

iopts, opts, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_mip_opt_get (h02zlc).\n%s\n", fail.message);
exit_status = -1;
goto END;

}

h02dac NAG Library Manual

h02dac.12 Mark 26

/* Results */
printf("\nFinal estimate:");
for (i = 0; i < n; i++) {

printf("\nx[%4" NAG_IFMT "] = %12.4f", i + 1, x[i]);
}
printf("\n\nRequested accuracy of QP subproblems = %12.4g\n", accqp);
printf("\nOptimised value = %12.4g\n", objmip);

END:
NAG_FREE(a);
NAG_FREE(d);
NAG_FREE(ax);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(varcon);
NAG_FREE(x);
NAG_FREE(c);
NAG_FREE(cjac);
NAG_FREE(objgrd);

return (exit_status);
}

static void NAG_CALL confun(Integer *mode, Integer ncnln, Integer n,
const Integer varcon[], const double x[],
double c[], double cjac[], Integer nstate,
Nag_Comm *comm)

{
Integer p;
double rho;

/* This problem has two nonlinear constraints.
* As an example of using the mode mechanism,
* terminate if any other size is supplied.
*/

if (ncnln != 2) {
*mode = -1;
return;

}

if (nstate == 1)
printf("\n(confun was just called for the first time)\n");

if (*mode == 0) {
/* Constraints */
/* Mean return at least rho: */
rho = comm->user[0];
c[0] = 8.0 * x[0] + 9.0 * x[1] + 12.0 * x[2] + 7.0 * x[3] - rho;
/* Maximum of p assets in portfolio: */
p = *(comm->iuser);
c[1] = (double) p - x[4] - x[5] - x[6] - x[7];

}
else {

/* Jacobian */
/* c[0] */
CJAC(1, 1) = 8.0;
CJAC(1, 2) = 9.0;
CJAC(1, 3) = 12.0;
CJAC(1, 4) = 7.0;
/* c[1] does not include continuous variables which requires

that their derivatives are zero */
CJAC(2, 1) = CJAC(2, 2) = CJAC(2, 3) = CJAC(2, 4) = 0.0;

}
}

static void NAG_CALL objfun(Integer *mode, Integer n, const Integer varcon[],
const double x[], double *objmip, double objgrd[],
Integer nstate, Nag_Comm *comm)

{
/* This is an 8-dimensional problem.
* As an example of using the mode mechanism,

h – Operations Research h02dac

Mark 26 h02dac.13

* terminate if any other size is supplied.
*/

if (n != 8) {
*mode = -1;
return;

}

if (nstate == 1 || comm->user[1] == -1.0) {
printf("\n(objfun was just called for the first time)\n");
comm->user[1] = 0.0;

}

if (*mode == 0) {
/* Objective value */
*objmip =

x[0] * (4.0 * x[0] + 3.0 * x[1] - x[2]) + x[1] * (3.0 * x[0] +
6.0 * x[1] +
x[2]) +

x[2] * (x[1] - x[0] + 10.0 * x[2]);
}
else {

/* Objective gradients for continuous variables */
objgrd[0] = 8.0 * x[0] + 6.0 * x[1] - 2.0 * x[2];
objgrd[1] = 6.0 * x[0] + 12.0 * x[1] + 2.0 * x[2];
objgrd[2] = 2.0 * (x[1] - x[0]) + 20.0 * x[2];
objgrd[3] = 0.0;

}
}

10.2 Program Data

None.

10.3 Program Results

nag_mip_sqp (h02dac) Example Program Results

(objfun was just called for the first time)

(confun was just called for the first time)

Final estimate:
x[1] = 0.3750
x[2] = 0.0000
x[3] = 0.5250
x[4] = 0.1000
x[5] = 1.0000
x[6] = 0.0000
x[7] = 1.0000
x[8] = 1.0000

Requested accuracy of QP subproblems = 1e-10

Optimised value = 2.925

11 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 11.1.

Branch Bound Steps

Branching Rule

Check Gradients

Continuous Trust Radius

h02dac NAG Library Manual

h02dac.14 Mark 26

Descent

Descent Factor

Feasible Steps

Improved Bounds

Integer Trust Radius

Maximum Restarts

Minor Print Level

Modify Hessian

Node Selection

Non Monotone

Objective Scale Bound

Penalty

Penalty Factor

Print Level

QP Accuracy

Scale Continuous Variables

Scale Objective Function

Warm Starts

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

All options accept the value DEFAULT in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

nag_mip_opt_set (h02zkc) can be called to supply options, one call being necessary for each optional
parameter. For example,

Call H02ZKF(’Check Gradients = Yes’, iopts, liopts, opts, lopts, ifail)

nag_mip_opt_set (h02zkc) should be consulted for a full description of the method of supplying
optional parameters.

For nag_mip_sqp (h02dac) the maximum length of the argument cvalue used by nag_mip_opt_get
(h02zlc) is 12.

Branch Bound Steps i Default ¼ 500

Maximum number of branch-and-bound steps for solving the mixed integer quadratic problems.

Constraint: Branch Bound Steps > 1.

Branching Rule a Default ¼ Maximum

Branching rule for branch and bound search.

Branching Rule ¼ Maximum
Maximum fractional branching.

Branching Rule ¼ Minimum
Minimum fractional branching.

h – Operations Research h02dac

Mark 26 h02dac.15

Check Gradients a Default ¼ No

Perform an internal check of supplied objective and constraint gradients. It is advisable to set
Check Gradients ¼ Yes during code development to avoid difficulties associated with incorrect user-
supplied gradients.

Continuous Trust Radius r Default ¼ 10:0

Initial continuous trust region radius, �c
0; the initial trial step d 2 Rnc for the SQP approximation must

satisfy dk k1 � �c
0.

Constraint: Continuous Trust Radius > 0:0.

Descent r Default ¼ 0:05

Initial descent parameter, �, larger values of � allow penalty optional parameter � to increase faster
which can lead to faster convergence.

Constraint: 0:0 < Descent < 1:0.

Descent Factor r Default ¼ 0:1

Factor for decreasing the internal descent parameter, �, between iterations.

Constraint: 0:0 < Descent Factor < 1:0.

Feasible Steps i Default ¼ 10

Maximum number of feasible steps without improvements, where feasibility is measured by
g xð Þk k1 � ffiffiffiffiffiffiffi

acc
p

.

Constraint: Feasible Steps > 1.

Improved Bounds a Default ¼ No

Calculate improved bounds in case of ‘Best of all’ node selection strategy.

Integer Trust Radius r Default ¼ 10:0

Initial integer trust region radius, �i
0; the initial trial step e 2 Rni for the SQP approximation must

satisfy ek k1 � �i
0.

Constraint: Integer Trust Radius � 1:0.

Maximum Restarts i Default ¼ 2

Maximum number of restarts that allow the mixed integer SQP algorithm to return to a better solution.
Setting a value higher than the default might lead to better results at the expense of function
evaluations.

Constraint: 0 < Maximum Restarts � 15.

Minor Print Level i Default ¼ 0

Print level of the subproblem solver. Active only if Print Level 6¼ 0.

Constraint: 0 < Minor Print Level < 4.

Modify Hessian a Default ¼ Yes

Modify the Hessian approximation in an attempt to get more accurate search directions. Calculation
time is increased when the number of integer variables is large.

h02dac NAG Library Manual

h02dac.16 Mark 26

Node Selection a Default ¼ Depth First

Node selection strategy for branch and bound.

Node Selection ¼ Best of all
Large tree search; this method is the slowest as it solves all subproblem QPs independently.

Node Selection ¼ Best of two
Uses warm starts and less memory.

Node Selection ¼ Depth first
Uses more warm starts. If warm starts are applied, they can speed up the solution of mixed
integer subproblems significantly when solving almost identical QPs.

Non Monotone i Default ¼ 10

Maximum number of successive iterations considered for the non-monotone trust region algorithm,
allowing the penalty function to increase.

Constraint: 0 < Non Monotone < 100.

Objective Scale Bound r Default ¼ 1:0

When Scale Objective Function > 0 internally scale absolute function values greater than 1:0 or
Objective Scale Bound.

Constraint: Objective Scale Bound > 0:0.

Penalty r Default ¼ 1000:0

Initial penalty optional parameter, �.

Constraint: Penalty � 0:0.

Penalty Factor r Default ¼ 10:0

Factor for increasing penalty optional parameter � when the trust regions cannot be enlarged at a trial
step.

Constraint: Penalty Factor > 1:0.

Print Level i Default ¼ 0

Specifies the desired output level of printing.

Print Level ¼ 0
No output.

Print Level ¼ 1
Final convergence analysis.

Print Level ¼ 2
One line of intermediate results per iteration.

Print Level ¼ 3
Detailed information printed per iteration.

QP Accuracy r Default ¼ 1:0e�10

Termination tolerance of the relaxed quadratic program subproblems.

Constraint: QP Accuracy > 0:0.

Scale Continuous Variables a Default ¼ Yes

Internally scale continuous variables values.

h – Operations Research h02dac

Mark 26 h02dac.17

Scale Objective Function i Default ¼ 1

Internally scale objective function values.

Scale Objective Function ¼ 0
No scaling.

Scale Objective Function ¼ 1
Scale absolute values greater than Objective Scale Bound.

Warm Starts i Default ¼ 100

Maximum number of warm starts within the mixed integer QP solver, see Node Selection.

Constraint: Warm Starts � 0.

h02dac NAG Library Manual

h02dac.18 (last) Mark 26

	h02dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Exler et al. (2013)
	Mann (1986)
	Powell (1983)
	Yuan and Sun (2006)

	5 Arguments
	n
	nclin
	ncnln
	a
	pda
	d
	ax
	bl
	bu
	varcon
	x
	confun
	mode
	ncnln
	n
	varcon
	x
	c
	cjac
	nstate
	comm
	user
	iuser
	p

	c
	cjac
	objfun
	mode
	n
	varcon
	x
	objmip
	objgrd
	nstate
	comm
	user
	iuser
	p

	objgrd
	maxit
	acc
	objmip
	iopts
	opts
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BOUND
	NE_CONSTRAINT
	NE_DERIV_ERRORS
	NE_INFEASIBLE
	NE_INFINITE
	NE_INITIALIZATION
	NE_INT
	NE_INT_3
	NE_INT_ARRAY_CONS
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_NUM_DIFFICULTIES
	NE_TOO_MANY
	NE_USER_NAN
	NE_USER_STOP
	NE_ZERO_COEFF
	NE_ZERO_VARS
	NW_TOO_MANY_ITER

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	Branch Bound Steps
	Branching Rule
	Check Gradients
	Continuous Trust Radius
	Descent
	Descent Factor
	Feasible Steps
	Improved Bounds
	Integer Trust Radius
	Maximum Restarts
	Minor Print Level
	Modify Hessian
	Node Selection
	Non Monotone
	Objective Scale Bound
	Penalty
	Penalty Factor
	Print Level
	QP Accuracy
	Scale Continuous Variables
	Scale Objective Function
	Warm Starts

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

