
NAG Library Function Document

nag_ip_bb (h02bbc)

1 Purpose

nag_ip_bb (h02bbc) solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer linear and quadratic
programming problems using a branch and bound method. The function may also be used to find either
the first integer solution or the optimum integer solution. It is not intended for large sparse problems.

2 Specification

#include <nag.h>
#include <nagh.h>

void nag_ip_bb (Integer n, Integer m, const double a[], Integer tda,
const double bl[], const double bu[], const Nag_Boolean intvar[],
const double cvec[], const double h[], Integer tdh,

void (*qphess)(Integer n, Integer jthcol, const double h[], Integer tdh,
const double x[], double hx[], Nag_Comm *comm),

double x[], double *objf, Nag_H02_Opt *options, Nag_Comm *comm,
NagError *fail)

3 Description

nag_ip_bb (h02bbc) is capable of solving certain types of integer programming (IP) problems using a
branch and bound (BB) method, see Taha (1987). In order to describe these types of integer programs
and to briefly state the BB method, we define the following problem.

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u; ð1Þ

where A is an m by n matrix and f xð Þ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f xð Þ are listed in Table 1 below. For the
moment, however, we assume that f xð Þ ¼ cTx so that (1) is a linear programming (LP) problem.

If, in (1), it is required that some (or all) of the variables take integer values, then the integer program
is of type mixed (or all) general IP problem. If, additionally, the integer variables are restricted to take
only 0-1 values (i.e., lj ¼ 0 and uj ¼ 1) then the integer program is of type mixed (or all) zero-one IP
problem. nag_ip_bb (h02bbc) does not treat the all integer or zero-one cases specially; therefore, since
the mixed integer general IP case is the most general, we shall refer to (1), together with whatever
integrality restrictions are applied, as a mixed integer linear programming (MILP) problem, with the
assumption that the special cases are included in this.

The BB method applies directly to these integer programs. The general idea of BB is to solve the
problem without the integrality restrictions as an LP problem (first or root node). If in the optimal
solution an integer variable xk takes a non-integer value x�k, two LP sub-problems or nodes are created
by branching, imposing xk � x�

k

� �
and xk � x�

k

� �þ 1 respectively, where x�
k

� �
denotes the integer part

of x�
k. This method of branching continues until the first integer solution (bound) is obtained. The

hanging nodes are then solved and investigated in order to prove the optimality of the solution. The
algorithm is described in more detail in Section 12.

The same method may also be applied when the objective function f xð Þ takes other forms. An
important assumption for the method to be theoretically valid is that each sub-problem is solved to
global optimality. This is the case when, for example, f xð Þ is a quadratic function which has a positive
(semi-)definite Hessian. For such f xð Þ the sub-problems of the BB search are quadratic programming
(QP) problems, which can, in principle, be solved to global optimality. With a quadratic objective
function, the problem becomes a mixed integer quadratic programming (MIQP) problem.
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nag_ip_bb (h02bbc) is able to solve problems in which f xð Þ is a linear or quadratic function, defined in
a variety of ways as described in Table 1 below. The sub-problems are solved using the algorithm of
nag_opt_qp (e04nfc).

Problem Type f xð Þ Matrix H
MILP cTx Not applicable
MIQP1 1

2x
THx symmetric

MIQP2 cTxþ 1
2x

THx symmetric
MIQP3 1

2x
THTHx m by n upper trapezoidal

MIQP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

Table 1

3.1 Suitability of BB Method for MIQP Problems

The BB method is applicable to an IP problem whenever the global optimum may reliably be found for
each sub-problem, and this is theoretically true for an MILP problem. However, this may not be true for
an MIQP problem in which the Hessian is not positive (semi-)definite; in such a case the sub-problems
may have solutions which are locally but not globally optimal and, in general, it is not possible to
ensure that a QP sub-problem solver will always find the global optimum when local optima are
present. For problems of type MIQP3 and MIQP4, it is a consequence of the way the Hessian is defined
that it must be positive (semi-)definite, but no such guarantee holds for problems of type MIQP1 or
MIQP2.

nag_ip_bb (h02bbc) does not check if the Hessian is positive (semi-)definite. This provides for the
possibility that you have special knowledge about the problem, for example that an indefinite Hessian is
positive (semi-)definite on the feasible region defined by the problem constraints (in which case the
problem has no local optima). Alternatively, you may wish to use nag_ip_bb (h02bbc) as a heuristic,
with the understanding that if a solution is obtained, it may not be the true global optimum of the MIQP
problem, or that no solution might be found even though one does exist. If you wish to check whether
the Hessian of a problem of type MIQP1 or MIQP2 is positive (semi-)definite, and therefore whether
any solution obtained can be relied upon, one way this may be achieved is to analyse its eigenvalues
(for example using nag_dsyev (f08fac)): the Hessian is positive semidefinite if and only if all of its
eigenvalues are � 0.

3.2 Maximization Problems

nag_ip_bb (h02bbc) attempts to solve a minimization problem of the form (1) (together with the
integrality requirements). In principle, a maximization problem can be solved by minimizing �f xð Þ, i.
e., reversing the sign of the objective function. This is always valid in the case of an MILP problem, as
long as the resulting problem is not unbounded, and simply involves reversing the signs of the
coefficients of c (the elements of the input argument array cvec, see Section 4). In the case of an MIQP
problem some care must be taken since reversing the sign of a positive (semi-)definite Hessian will
make it negative (semi-)definite and vice-versa. Recall that the theoretical validity of the BB method,
applied to an MIQP problem, effectively requires that the Hessian be positive (semi-)definite on the
feasible region defined by the problem constraints.

Assuming these considerations to be taken into account, a maximization problem of type MIQP1 can be
solved by reversing the signs of the elements of H; type MIQP2 problems require the signs of the
coefficients of c to be reversed also. Problem types MIQP3 and MIQP4 have a positive (semi-)definite
Hessian by definition, so it would not normally make sense to solve these as maximization problems.
Hence, nag_ip_bb (h02bbc) does not allow you to reverse the sign of the quadratic objective term for
these problem types.
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5 Arguments

1: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

2: m – Integer Input

On entry: m, the number of general linear constraints.

Constraint: m � 0.

3: a½m� tda� – const double Input

Note: the i; jð Þth element of the matrix A is stored in a½ i� 1ð Þ � tdaþ j� 1�.
On entry: the ith row of a must contain the coefficients of the ith general linear constraint, for
i ¼ 1; 2; . . . ;m.

If m ¼ 0, the array a is not referenced and may be NULL.

4: tda – Integer Input

On entry: the stride separating matrix column elements in the array a.

Constraint: if m > 0, tda � n

5: bl½nþm� – const double Input
6: bu½nþm� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next m elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set bl½j� 1� � �options:inf bound, and to specify a
nonexistent upper bound (i.e., uj ¼ þ1), set bu½j� 1� � options:inf bound, where
options:inf bound is one of the optional parameters (default value 1020, see Section 11.2). To
specify the jth constraint as an equality, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where
�j j < options:inf bound.

Constraint: bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþm� 1.

7: intvar½n� – const Nag_Boolean Input

On entry: indicates which are the integer variables in the problem. For example, if xj is an
integer variable then intvar½j� 1� must be set to 1, and 0 otherwise. The degenerate case, in
which all elements of intvar are zero, is allowed. In this case, nag_ip_bb (h02bbc) solves a
single LP or QP problem (depending on the problem type as specified by the optional parameter
options:prob, see Section 11.2).

Constraint: intvar½j� ¼ 0 or 1, for j ¼ 0; 1; . . . ; n� 1.
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8: cvec½n� – const double Input

On entry: the coefficients cj of the explicit linear term of the objective function when the
problem is of type MILP, MIQP2 or MIQP4. The default problem type is MILP; other problem
types can be specified using the optional parameter options:prob, see Section 11.2.

If the problem is of type MIQP1 or MIQP3, cvec is not referenced and may be NULL.

9: h½n� tdh� – const double Input

On entry: h may be used to store the quadratic term H of the MIQP objective function if desired.
The elements of h are accessed only by the function qphess; thus, h is not accessed if the
problem is of the type MILP (the default) and may be NULL.

The number of rows of h is denoted by nH and its default value is equal to n. (The optional
parameter options:hrows may be used to specify a value of nH < n; see Section 11.2).

If the problem is of type MIQP1 or MIQP2, the first nH rows and columns of h must contain the
leading nH by nH rows and columns of the symmetric Hessian matrix. Only the diagonal and
upper triangular elements of the leading nH rows and columns of h are referenced. The
remaining elements need not be assigned.

For problems of type MIQP3 and MIQP4, the first nH rows of h must contain an nH by n upper
trapezoidal factor of the Hessian matrix. The factor need not be of full rank, i.e., some of the
diagonals may be zero. However, as a general rule, the larger the dimension of the leading
nonsingular sub-matrix of H, the fewer iterations will be required. Elements outside the upper
trapezoidal part of the first nH rows of H are assumed to be zero and need not be assigned.

In some cases, you need not use h to store H explicitly (see the specification of function qphess).

10: tdh – Integer Input

On entry: the stride separating matrix column elements in the array h.

Constraint: tdh � n or at least the value of the optional parameter options:hrows if it is set. This
constraint is enforced only for problems of type MIQP in which the qphess argument is null.

11: qphess – function, supplied by the user External Function

In general, you need not provide a version of qphess, because a ‘default’ function is included in
the NAG C Library. If the default function is required then the NAG defined null function
pointer, NULLFN, should be supplied in the call to nag_ip_bb (h02bbc). The algorithm of
nag_ip_bb (h02bbc) requires only the product of H and a vector x; and in some cases you may
obtain increased efficiency by providing a version of qphess that avoids the need to define the
elements of the matrix H explicitly.

qphess is not referenced for problems of type MILP (the default), in which case qphess should
be replaced by NULLFN.

The specification of qphess is:

void qphess (Integer n, Integer jthcol, const double h[], Integer tdh,
const double x[], double hx[], Nag_Comm *comm)

1: n – Integer Input

On entry: n, the number of variables.

2: jthcol – Integer Input

On entry: jthcol specifies whether or not the vector x is a column of the identity matrix.

jthcol ¼ j > 0
The vector x is the jth column of the identity matrix, and hence Hx is the jth
column of H, which can sometimes be computed very efficiently and qphess
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may be coded to take advantage of this. However special code is not necessary
because x is always stored explicitly in the array x.

jthcol ¼ 0
x has no special form.

3: h½n� tdh� – const double Input

On entry: the matrix H of the QP objective function. The matrix element Hij is
contained in h½ i� 1ð Þ � tdhþ j� 1� for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n. In some
situations, it may be desirable to compute Hx without accessing h – for example, if H
is sparse or has special structure. (This is illustrated in the function qphess in
Section 10.) The arguments h and tdh may then refer to any convenient array.

4: tdh – Integer Input

On entry: the stride separating matrix column elements in the array h.

5: x½n� – const double Input

On entry: the vector x.

6: hx½n� – double Output

On exit: the product Hx.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to qphess.

flag – Integer Input/Output

On entry: qphess is called with comm!flag set to a non-negative number.

On exit: if qphess resets comm!flag to some negative number then nag_ip_bb
(h02bbc) will terminate immediately with the error indicator NE_USER_STOP. If
fail is supplied to nag_ip_bb (h02bbc), fail:errnum will be set to your setting of
comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to qphess and Nag_FALSE
for all subsequent calls.

nf – Integer Input

On entry: the number of calls made to qphess including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char
* otherwise.

Before calling nag_ip_bb (h02bbc) these pointers may be allocated memory and
initialized with various quantities for use by qphess when called from nag_ip_bb
(h02bbc).

Note: qphess should be tested separately before being used in conjunction with nag_ip_bb
(h02bbc). The input arrays h and x must not be changed by qphess.

12: x½n� – double Input/Output

On entry: an initial estimate of the solution of the first sub-problem (the problem as described in
Section 3).
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If optional parameter options:branch dir ¼ Nag Branch InitX (which is not the default value),
then the initial values in x of the integer variables influence the branching procedure in the BB
algorithm. Typically, an estimate of the values of the integer variables in the IP solution would be
provided in this case. See Section 11.2 for details.

On exit: with fail:code ¼ NE NOERROR, x contains a solution which will be an estimate of
either the optimum integer solution or the first integer solution, depending on the value of
opt ional parameter options:first soln. I f fail:code ¼ NW MIP MAX NODES INT SOL,
NW_MIP_MAX_DEPTH_INT_SOL, NW_MIP_MAX_ITER_INT_SOL, or
NE_MIP_HESS_TOO_BIG_INT_SOL then x contains a solution which may not be the optimal
IP solution because nag_ip_bb (h02bbc) was unable to investigate all of the nodes. See Section 6
for more details.

13: objf – double * Output

On e x i t : w i t h fail:code ¼ NE NOERROR, NW_MIP_MAX_NODES_ INT_SOL ,
NW_MIP_MAX_DEPTH_INT_SOL, NW_MIP_MAX_ITER_INT_SOL, or
NE_MIP_HESS_TOO_BIG_INT_SOL, objf contains the value of the objective function for the
IP solution.

14: options – Nag_H02_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_H02_Opt whose members are optional
parameters for nag_ip_bb (h02bbc). These structure members offer the means of adjusting some
of the argument values of the algorithm and on output will supply further details of the results. A
description of the members of options is given below in Section 11.

The options structure also allows names to be assigned to the variables and constraints of the
problem, which are then used in solution output. In particular, if the problem is defined by an
MPSX file, the function nag_ip_mps_read (h02buc) may be used to read the file, and to store the
variable and constraint names in options for use by nag_ip_bb (h02bbc).

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_ip_init (h02xxc) and supplied as an argument to nag_ip_bb (h02bbc).
However, if the optional parameters are not required the NAG defined null pointer, H02_DE-

FAULT, can be used in the function call.

15: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for communication to the user-supplied function,
qphess, and the optional user-defined printing function. See the description of qphess and
Section 11.3.1 for details. If you do not need to make use of this communication feature the null
pointer NAGCOMM_NULL may be used in the call to nag_ip_bb (h02bbc); comm will then be
declared internally for use in calls to user-supplied functions.

16: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled
with the structure member options:print level (see Section 11.2).

The default, options:print level ¼ Nag Soln Iter, provides a single line of output at the end of each
node and the final IP result. If nag_ip_bb (h02bbc) fails to find an IP solution, the final solution printed
will be the original LP or QP (root node) solution. This section describes the default printout produced
by nag_ip_bb (h02bbc).
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The following line of summary output is produced at the end of every node. It gives the outcome of
forcing an integer variable with a non-integer value to take a value within its specified lower and upper
bounds.

Node No is the current node number of the BB tree being investigated.
Parent Node is the parent node number of the current node.
Obj Value is the final objective function value. If a node does not have a feasible solution

then Infeasible is printed instead of the objective function value. If a node
whose optimum solution exceeds the best integer solution so far is encountered
(i.e., it does not pay to explore the sub-problem any further), then its objective
function value is printed together with a CO (Cut Off).

Varbl Chosen is the index of the integer variable chosen for branching.
Value Before is the non-integer value of the integer variable chosen.
Lower Bound is the lower bound value that the integer variable is allowed to take.
Upper Bound is the upper bound value that the integer variable is allowed to take.
Value After is the value of the integer variable after the current optimization.
Depth is the depth of the BB tree at the current node.

The final printout includes a listing of the status of each variable and constraint.

Varbl gives the name of variable j, for j ¼ 1; 2; . . . ; n. If an options structure is
supplied to nag_ip_bb (h02bbc), and the options:crnames member is assigned
to an array of variable and constraint names (see Section 11.2 for details), the
name supplied in options:crnames½j� 1� is assigned to the jth variable.
Otherwise, a default name is assigned to the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the feasibility tolerance, State will be ++ or --
respectively.

Value is the value of the variable at the final iteration.
Lower Bound is the lower bound lj specified for the variable. (None indicates that

lj � �options:inf bound, where options:inf bound is the optional parameter.)
The bound is that imposed at the node which provided the IP solution. (If no
IP solution was found, the bound is that supplied in bl.)

Upper Bound is the upper bound uj specified for the variable. (None indicates that
uj � options:inf bound.) The bound is that imposed at the node which
provided the IP solution. (If no IP solution was found, the bound is that
supplied in bu.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint.
This will be zero if State is FR or TF. If x is optimal, the multiplier should be
non-negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds lj
and uj.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, options:crnames½j� 1� replaced by
options:crnames½nþ j� 1�, lj and uj replaced by lnþi and unþi respectively, and with the following
change in the heading:

Constr gives the name of the constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.
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6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tda ¼ valueh i while n ¼ valueh i. These arguments must satisfy tda � n.

On entry, tdh ¼ valueh i while n ¼ valueh i. These arguments must satisfy tdh � n.

On entry, tdh ¼ valueh i while options:hrows ¼ valueh i. These arguments must satisfy
tdh � options:hrows.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument options:branch dir had an illegal value.

On entry, argument options:nodsel had an illegal value.

On entry, argument options:print level had an illegal value.

On entry, argument options:prob had an illegal value.

On entry, argument options:varsel had an illegal value.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_CVEC_NULL

options:prob ¼ valueh i but argument cvec ¼ NULL.

NE_H_NULL

options:prob ¼ valueh i, qphess is NULL but argument h is also NULL. If the default function
for qphess is to be used for this problem then an array must be supplied in argument h.

NE_INT_ARG_LT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_INT_RANGE_1

Value valueh i given to options:hrows is not valid. Correct range is n � options:hrows � 0.

Value valueh i given to options:max depth is not valid. Correct range is options:max depth � 2.

Value valueh i given to options:max df is not valid. Correct range is n � options:max df � 1.

Value valueh i given to options:max iter is not valid. Correct range is options:max iter � 0.
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Va l u e valueh i g i v e n t o options:max nodes i s n o t v a l i d . C o r r e c t r a n g e i s
options:max nodes ¼ ALL NODES or options:max nodes � 1.

NE_INVALID_REAL_RANGE_F

Value valueh i given to options:feas tol is not valid. Correct range is options:feas tol > 0:0.

Value valueh i given to options:inf bound is not valid. Correct range is options:inf bound > 0:0.

Value valueh i given to options:soln tol is not valid. Correct range is options:soln tol � 0:0.

NE_INVALID_REAL_RANGE_FF

Value valueh i given to options:int tol is not valid. Correct range is 0:0 < options:int tol < 1:0.

Va l u e valueh i g i v e n t o options:rank tol i s n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:rank tol < 1:0.

NE_MIP_HESS_TOO_BIG_INT_SOL

Reduced Hessian exceeds assigned dimension during BB tree search. options:max df ¼ valueh i.
An IP solution was found.
This error can only occur with MIQP problems. Whilst attempting to solve a node during the BB
tree search, the QP algorithm needed to expand the reduced Hessian when it was already at its
maximum dimension, as specified by the optional parameter options:max df. No further nodes
were examined. An IP solution was found but it may not be optimal.
The value of the argument options:max df is too small. Rerun nag_ip_bb (h02bbc) with a larger
value. The IP objective obtained should be assigned to options:int obj bound to aid the BB tree
search in the repeated run.

NE_MIP_HESS_TOO_BIG_NO_INT_SOL

Reduced Hessian exceeds assigned dimension during BB tree search. options:max df ¼ valueh i.
No IP solution was found.
This error can only occur with MIQP problems. Whilst attempting to solve a node during the BB
tree search, the QP algorithm needed to expand the reduced Hessian when it was already at its
maximum dimension, as specified by the optional parameter options:max df. No further nodes
were examined. No IP solution was found amongst the nodes examined.
The value of the argument options:max df is too small. Rerun nag_ip_bb (h02bbc) with a larger
value.

NE_MIP_ROOT_HESS_TOO_BIG

Reduced Hessian exceeds assigned dimension at root node. options:max df ¼ valueh i.
This error can only occur with MIQP problems. Whilst attempting to solve the root node, the QP
algorithm needed to expand the reduced Hessian when it was already at its maximum dimension,
as specified by the optional parameter options:max df.
The value of the argument options:max df is too small. Rerun nag_ip_bb (h02bbc) with a larger
value.

NE_MIP_ROOT_INFEAS

The root node of the BB tree is infeasible.
A feasible point could not be found for the original LP or QP problem, i.e., it was not possible to
satisfy all the constraints to within the feasibility tolerance (determined by optional parameter
options:feas tol). If the data for the constraints are accurate only to the absolute precision �, you
should ensure that the value of the feasibility tolerance is greater than �. For example, if all
elements of A are of order unity and are accurate only to three decimal places, the feasibility
tolerance should be at least 10�3 (see Section 9).

NE_MIP_ROOT_MAX_ITER

The maximum number of iterations (determined by optional parameter options:max iter) was
reached before normal termination occurred for the original LP or QP problem (see Section 9).
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The maximum number of iterations, valueh i, was performed before normal termination occurred
for the root node of the BB tree.

NE_MIP_ROOT_UNBOUNDED

The root node of the BB tree appears to be unbounded.
See Section 12 for advice.

NE_NAME_TOO_LONG

The character string pointed to by options:crnames½ valueh i� is too long. It should be no longer
than 8 characters.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_PRIORITY_NULL

options:varsel ¼ Nag Use Priority but options:priority is NULL.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if you set comm!flag to a negative value in qphess. If fail is supplied the
value of fail:errnum will be the same as your setting of comm!flag.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_MIP_MAX_DEPTH_INT_SOL

An IP solution was found but the search has been terminated because the maximum allowed tree
depth (as determined by optional parameter options:max depth) has been reached.
Increase options:max depth and rerun nag_ip_bb (h02bbc). The IP objective obtained should be
assigned to options:int obj bound to aid the BB tree search in the repeated run.

NW_MIP_MAX_DEPTH_NO_INT_SOL

The maximum allowed tree depth (as determined by optional parameter options:max depth) has
been reached before any integer solution has been found.
Increase options:max depth and rerun nag_ip_bb (h02bbc).

NW_MIP_MAX_ITER_INT_SOL

The IP solution found may not be the optimum. The search had to be terminated in at least one
branch of the BB tree because the iteration limit was reached.
It was not possible to solve at least one node of the BB tree, which means that the tree search
could not be completed. An IP solution was found but a better one may be present in the
unsearched portion of the tree. See Section 9 for more information.

NW_MIP_MAX_ITER_NO_INT_SOL

No IP solution was found but the search had to be terminated in at least one branch of the BB
tree because the iteration limit was reached.
It was not possible to solve at least one node of the BB tree, which means that the tree search
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could not be completed. No IP solution was found but one may be present in the unsearched
portion of the tree. See Section 9 for more information.

NW_MIP_MAX_NODES_INT_SOL

The IP solution found is the best for the number of nodes (as determined by optional parameter
options:max nodes) investigated in the BB tree.
Increase options:max nodes and rerun nag_ip_bb (h02bbc). The IP objective obtained should be
assigned to options:int obj bound to aid the BB tree search in the repeated run.

NW_MIP_MAX_NODES_NO_INT_SOL

No integer solution was found for the number of nodes (as determined by options:max nodes)
investigated in the BB tree.
Increase options:max nodes and rerun nag_ip_bb (h02bbc).

NW_MIP_NO_INT_SOL

No feasible IP solution was found, i.e., it was not possible to satisfy all the integer variables to
within optional parameter options:int tol.
It may be appropriate to increase options:int tol and rerun nag_ip_bb (h02bbc).

NW_OVERFLOW_WARN

Serious ill-conditioning in the working set after adding constraint valueh i. Overflow may occur in
subsequent iterations.
If overflow occurs preceded by this warning then serious ill-conditioning has probably occurred
in the working set when adding a constraint during the solution of a node in the BB tree. It may
be possible to avoid the difficulty by increasing the magnitude of the optional parameter
options:feas tol and rerunning the program. If the problem recurs even after this change, see
Section 9.

7 Accuracy

nag_ip_bb (h02bbc) implements a numerically stable active set strategy and returns solutions that are as
accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

nag_ip_bb (h02bbc) is not threaded in any implementation.

9 Further Comments

The root node may not have an optimum solution, i.e., nag_ip_bb (h02bbc) terminates with
fail:code ¼ NE MIP ROOT UNBOUNDED, NE_MIP_ROOT_INFEAS, NE_MIP_ROOT_MAX_ITER,
NE_MIP_ROOT_HESS_TOO_BIG or overflow may occur. In this case, you are recommended to relax
the integer restrictions of the problem and try to find the optimum LP or QP solution by using
nag_opt_lp (e04mfc) (for LP) or nag_opt_qp (e04nfc) (for QP) instead.

In the BB method, it is possible for a node to terminate without finding a solution. For example, this
may occur due to the number of iterations exceeding the maximum allowed. Therefore the BB tree
search for that particular branch cannot be continued and if an IP solution is found, the final solution
reported is not necessarily the optimum IP solution (fail:code ¼ NW MIP MAX ITER INT SOL).
Similarly, if no IP solution is found, it is not necessarily the case that no IP solution exists
(fail:code ¼ NW MIP MAX ITER NO INT SOL).
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10 Example

One of the applications of integer programming is to the so-called diet problem. Given the nutritional
content of a selection of foods, the cost of each food, the amount available of each food and the
consumer's minimum daily energy requirements, the problem is to find the cheapest combination. This
gives rise to the following problem:

minimize

cTx subject to Ax � b; 0 � x � u;

where

c ¼ 3 24 13 9 20 19
� �T

; x ¼ x1; x2; x3; x4; x5; x6ð ÞT is integer;

A ¼
110 205 160 160 420 260

4 32 13 8 4 14
2 12 54 285 22 80

0
@

1
A; b ¼

2000
55

800

0
@

1
A and

u ¼ 4 3 2 8 2 2
� �T

:

The rows of A correspond to energy, protein and calcium and the columns of A correspond to oatmeal,
chicken, eggs, milk, pie and bacon respectively.

The following program solves the above problem to obtain the optimal integer solution and then
examines the effect of decreasing the energy required to 1970 units. The example involves a number of
calls to nag_ip_bb (h02bbc) illustrating the use of some of the optional parameters.

The data is read and the options structure initialized. All options are left at their default values except:
the options:crnames member is assigned to the local char * array, crnames, the elements of which
point to strings containing the variable and constraint names; and options:print level ¼ Nag Soln.

nag_ip_bb (h02bbc) is called to obtain the optimal IP solution of the problem, and then the lower bound
on the minimum energy constraint (i.e., the first general constraint) is reduced. Since the problem is
now less constrained than the original IP problem, the objective function value returned in objf from
the original problem provides an upper bound for the objective of the optimal IP solution of the
modified problem. Optional parameter options:int obj bound is initialized to this value with a small
number added to ensure that it is a strict upper bound on the optimal objective of the modified problem.
Also, the optional parameter options:nodsel ¼ Nag Deep Search to modify the way nag_ip_bb
(h02bbc) selects nodes during the tree search. The results from this show that the value assigned to
options:int obj bound allow a number of nodes to be cut off (indicated by CO in the printout) before
the first IP solution is found.

Next, the effect of supplying branching directions is illustrated. The optional parameter
options:branch dir ¼ Nag Branch InitX to instruct nag_ip_bb (h02bbc) to branch according to the
values of the integer variables provided in the initial x argument. In this case x contains the optimal IP
solution from the last call of nag_ip_bb (h02bbc). The results show that these values allow nag_ip_bb
(h02bbc) to find and confirm the optimal IP solution quickly.

The final two calls to nag_ip_bb (h02bbc) show its use in solving an MIQP problem. First, nag_ip_bb
(h02bbc) is called with the intvar argument set to an array intvar2 which specifies all variables to be
non-integer. This solves the root LP problem of the adjusted diet problem (as solved in the previous
three calls to nag_ip_bb (h02bbc)). Let x� be the solution to this LP problem. Then, retaining the same
constraints, the linear objective is replaced by the quadratic objective

Xn
i¼1

xi � x�
i

� �2 �Xn
i¼1

x�
i

� �2 ¼ xTx� 2 x�ð ÞTx

which measures, to within a constant, the sum of squares deviation of x from x�. That is, the problem is
to find the IP solution which most closely approximates (in the least squares sense) the LP solution.
Before solving this problem, the memory assigned to the pointers in the options structure is freed by
nag_ip_free (h02xzc) and the structure is reinitialized by nag_ip_free (h02xzc). Then optional parameter
options:prob ¼ Nag MIQP2 and options:crnames is assigned as before; otherwise, default options are
used. The quadratic term of the objective is supplied via the function qphess which does not require
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explicit storage for the matrix H. nag_ip_bb (h02bbc) is called to solve the MIQP problem, and finally
nag_ip_free (h02xzc) is called to free the memory in options.

10.1 Program Text

/* nag_ip_bb (h02bbc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagh02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL qphess(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define A(I, J) a[(I) *tda + J]

int main(void)
{

static double ruser[1] = { -1.0 };
Integer exit_status = 0;
Integer i, j, m, n, nbnd, tda;
char **crnames = 0, *names = 0;
double *a = 0, *bl = 0, *bu = 0, *cvec = 0, objf, red_bnd, *x = 0;
Nag_Boolean *intvar = 0, *intvar2 = 0;
char nag_enum_arg[40];
Nag_Comm comm;
Nag_H02_Opt options;
NagError fail;

INIT_FAIL(fail);

printf("nag_ip_bb (h02bbc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading */

#else
scanf(" %*[^\n]"); /* Skip heading */

#endif

/* Read the problem dimensions */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "", &m, &n);
#else
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scanf("%" NAG_IFMT "%" NAG_IFMT "", &m, &n);
#endif

nbnd = n + m;
if (n >= 1 && m >= 0) {

if (!(a = NAG_ALLOC(m * n, double)) ||
!(cvec = NAG_ALLOC(n, double)) ||
!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(intvar = NAG_ALLOC(n, Nag_Boolean)) ||
!(intvar2 = NAG_ALLOC(n, Nag_Boolean)) ||
!(crnames = NAG_ALLOC(nbnd, char *)) ||
!(names = NAG_ALLOC(nbnd * 9, char)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;

}
else {

printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;

}
/* Read names */

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
nbnd = n + m;
for (i = 0; i < nbnd; ++i) {

#ifdef _WIN32
scanf_s("%8s", &names[9 * i], 9);

#else
scanf("%8s", &names[9 * i]);

#endif
crnames[i] = &names[9 * i];

}
/* Read objective coefficients */

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < n; ++i)

#ifdef _WIN32
scanf_s("%lf", &cvec[i]);

#else
scanf("%lf", &cvec[i]);

#endif

/* Read the matrix coefficients */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < m; ++i)
for (j = 0; j < n; ++j)

#ifdef _WIN32
scanf_s("%lf", &A(i, j));

#else
scanf("%lf", &A(i, j));

#endif

/* Read the bounds */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else
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scanf(" %*[^\n]");
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bl[i]);
#else

scanf("%lf", &bl[i]);
#endif
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bu[i]);
#else

scanf("%lf", &bu[i]);
#endif

/* Read which variables are integer */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < n; ++i) {
#ifdef _WIN32

scanf_s("%39s", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf("%39s", nag_enum_arg);
#endif

/* intvar = Nag_TRUE if integer variable, Nag_FALSE if not */
intvar[i] = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);

}

/* Read the initial estimate of x */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &x[i]);
#else

scanf("%lf", &x[i]);
#endif

/* nag_ip_init (h02xxc).
* Initialize option structure to null values
*/

nag_ip_init(&options); /* Initialize options structure */
options.crnames = crnames;
options.list = Nag_FALSE;
options.print_level = Nag_NoPrint;
/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,

NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Now solve a related problem obtained by reducing lower
bound on a constraint */

/* Read amount to reduce lower bound on constraint 1 by */
#ifdef _WIN32
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scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%lf", &red_bnd);
#else

scanf("%lf", &red_bnd);
#endif

bl[n] -= red_bnd;

printf("\nSolve modified problem - use different tree search.\n");
printf("---------------------------------------------------\n");

options.list = Nag_FALSE;
if (red_bnd > 0.0) {

/* We have a valid bound for the objective since this problem
is less constrained than first one */

options.int_obj_bound = objf + 1.0e-3;
}
options.nodsel = Nag_Deep_Search;
options.list = Nag_FALSE;
options.print_level = Nag_NoPrint;

printf("***Set options.list = Nag_FALSE\n");
printf("***Set options.int_obj_bound = %16.7e\n", options.int_obj_bound);
printf("***Set options.nodsel = Nag_Deep_Search\n");
printf("***Set options.print_level = Nag_NoPrint\n");

/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,

NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
printf("\n***IP objective value = %16.7e\n", objf);

printf("\n\nIllustrate effect of supplying branching directions.\n");
printf("----------------------------------------------------\n\n");

options.branch_dir = Nag_Branch_InitX;
printf("***Set options.branch_dir = Nag_Branch_InitX\n");

/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,

NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
printf("\n***IP objective value = %16.7e\n", objf);
/* nag_ip_free (h02xzc).
* Free NAG allocated memory from option structures
*/

nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Finally, illustrate solution of an MIQP problem
- we find the IP solution which is closest in
least squares sense to the root node LP solution
of BB tree */
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printf("\n\nObtain solution of root LP problem.\n");
printf("-----------------------------------\n\n");

/* Set all variables non-integer to obtain LP solution */
for (i = 0; i < n; ++i)

intvar2[i] = Nag_FALSE;

options.list = Nag_FALSE;
options.print_level = Nag_NoPrint;

/* nag_ip_bb (h02bbc), see above. */
nag_ip_bb(n, m, a, tda, bl, bu, intvar2, cvec, (double *) 0, 0,

NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
printf("***LP objective value = %16.7e\n", objf);

/* Set linear part of solution */
for (i = 0; i < n; ++i)

cvec[i] = -2.0 * x[i];

/* Re-initialize options structure */
/* nag_ip_free (h02xzc), see above. */
fflush(stdout);
nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* nag_ip_init (h02xxc), see above. */
nag_ip_init(&options);
options.crnames = crnames;

options.list = Nag_FALSE;
options.print_level = Nag_NoPrint;
options.prob = Nag_MIQP2;

printf("\n\nFinally, solve a related MIQP problem.\n");
printf("--------------------------------------\n");

/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,

qphess, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("***MIQP2 objective value = %16.7e\n", objf);

/* nag_ip_free (h02xzc), see above. */
nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(a);
NAG_FREE(cvec);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(x);
NAG_FREE(intvar);
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NAG_FREE(intvar2);
NAG_FREE(crnames);
NAG_FREE(names);

return exit_status;
}

static void NAG_CALL qphess(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm)

{
Integer i;
if (comm->user[0] == -1.0) {

printf("(User-supplied callback qphess, first invocation.)\n");
fflush(stdout);
comm->user[0] = 0.0;

}
/* In this qphess function the Hessian is defined implicitly */
if (jthcol == 0) {

for (i = 0; i < n; ++i)
hx[i] = 2.0 * x[i];

}
else {

for (i = 0; i < n; ++i)
hx[i] = (i == jthcol - 1 ? 2.0 : 0.0);

}
} /* qphess */

10.2 Program Data

nag_ip_bb (h02bbc) Example Program Data
Values of m, n

3 6

Variable and constraint names
OATMEAL CHICKEN EGGS MILK PIE BACON
ENERGY PROTEIN CALCIUM

Objective coefficients, cvec
3.0 24.0 13.0 9.0 20.0 19.0

Constraint matrix a
110.0 205.0 160.0 160.0 420.0 260.0

4.0 32.0 13.0 8.0 4.0 14.0
2.0 12.0 54.0 285.0 22.0 80.0

Lower bounds
0.0 0.0 0.0 0.0 0.0 0.0 2000.0 55.0 800.0

Upper bounds
4.0 3.0 2.0 8.0 2.0 2.0 1.0e+20 1.0e+20 1.0e+20

Integer variables (Nag_TRUE if integer, Nag_FALSE if not)
Nag_TRUE Nag_TRUE Nag_TRUE Nag_TRUE Nag_TRUE Nag_TRUE

Initial estimate of x
0.0 0.0 0.0 0.0 0.0 0.0

Reduction in first constraint lower bound for re-run
30.0

10.3 Program Results

nag_ip_bb (h02bbc) Example Program Results

Solve modified problem - use different tree search.
---------------------------------------------------
***Set options.list = Nag_FALSE
***Set options.int_obj_bound = 9.7001000e+01
***Set options.nodsel = Nag_Deep_Search
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***Set options.print_level = Nag_NoPrint

***IP objective value = 9.4000000e+01

Illustrate effect of supplying branching directions.
----------------------------------------------------

***Set options.branch_dir = Nag_Branch_InitX

***IP objective value = 9.4000000e+01

Obtain solution of root LP problem.
-----------------------------------

***LP objective value = 9.0812500e+01

Finally, solve a related MIQP problem.
--------------------------------------
(User-supplied callback qphess, first invocation.)
***MIQP2 objective value = -3.8125000e+01

11 Optional Parameters

A number of optional input and output arguments to nag_ip_bb (h02bbc) are available through the
structure argument options, type Nag_H02_Opt. An argument may be selected by assigning an
appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, H02_DEFAULT, in place of options when calling nag_ip_bb (h02bbc) the default
settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_ip_init (h02xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_ip_read (h02xyc) in which case
initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must
be done directly in the calling program; they cannot be assigned using nag_ip_read (h02xyc).

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_ip_bb
(h02bbc) together with their default values where relevant. The number � is a generic notation for
machine precision (see nag_machine_precision (X02AJC)).

Nag_MIP_ProbType prob Nag MILP

Boolean list Nag_TRUE

Nag_PrintType print_level Nag_Soln_Iter

char outfile[80] stdout

void (*print_fun)() NULL

Integer max_iter max 50; 5 nþmð Þð Þ
Integer max_nodes ALL_NODES

Boolean first_soln Nag_FALSE

Integer max_depth max 10; 3n=2ð Þ
double int_tol 10�5
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double int_obj_bound 1020

double soln_tol
ffiffi
�

p

Nag_Node_Selection nodsel Nag_MinObj_Search

Nag_Var_Selection varsel Nag_First_Int

Nag_Branch_Direction branch_dir Nag_Branch_Left

double *priority NULL

double feas_tol
ffiffi
�

p

double inf_bound 1020

double rank_tol 100�

Integer hrows 0 or n

Integer max_df n

char **crnames NULL

double *lower size nþm

double *upper size nþm

double *lambda size nþm

Integer *state size nþm

11.2 Description of the Optional Parameters

prob – Nag_MIP_ProbType Default ¼ Nag MILP

On entry: specifies the type of objective function to be minimized during the optimality phase. The
following are the five possible values of options:prob and the size of the arrays h and cvec that are
required to define the objective function:

Nag MILP h not referenced, cvec½n�;
Nag MIQP1 h½ nð Þ � tdhþ tdh� symmetric, cvec not referenced;

Nag MIQP2 h½ nð Þ � tdhþ tdh� symmetric, cvec½n�;
Nag MIQP3 h½ nð Þ � tdhþ tdh� upper trapezoidal, cvec not referenced;

Nag MIQP4 h½ nð Þ � tdhþ tdh� upper trapezoidal, cvec½n�.
Constraint: options:prob ¼ Nag MILP, Nag MIQP1, Nag MIQP2, Nag MIQP3 or Nag MIQP4.

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_ip_bb (h02bbc) will be
printed.

print level – Nag_PrintType Default ¼ Nag Soln Iter

On entry: the level of results printout produced by nag_ip_bb (h02bbc). The following values are
available:

Nag NoPrint No output.

Nag Soln The final IP solution.

Nag Soln Root The root node and final IP solution.

Nag Iter One line of output for each node investigated.

Nag Soln Iter The final IP solution and one line of output for each node.

Nag Soln Root Iter The root node and final IP solution and one line of output for each node.
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Details of each level of results printout are described in Section 11.3.

Constraint: options:print level ¼ Nag NoPrint, Nag Soln, Nag Soln Root, Nag Iter, Nag Soln Iter or
Nag Soln Root Iter.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 11.3.1 below for further details.

max iter – Integer Default ¼ max 50; 5 nþmð Þð Þ
On entry: the limit on the number of iterations for each node.

Constraint: options:max iter � 0.

max nodes – Integer Default ¼ ALL NODES

On entry: the maximum number of nodes that are to be searched in order to find a solution (optimum
integer solution). If options:max nodes is not set, or is set equal to the symbol ALL_NODES, and the
optional parameter options:first soln ¼ Nag FALSE (the default), then the BB tree search is continued
until all the nodes have been investigated.

Constraints:

options:max nodes > 0 or;
options:max nodes ¼ ALL NODES.

first soln – Nag_Boolean Default ¼ Nag FALSE

On entry: specifies whether to terminate the BB tree search after the first integer solution (if any) is
obtained. If options:first soln ¼ Nag TRUE then the BB tree search is terminated at node k say, which
contains the first integer solution. For optional parameter options:max nodes 6¼ ALL_NODES this applies
only if k � options:max nodes.

max depth – Integer Default ¼ max 10; 3n=2ð Þ
On entry: the maximum depth of the BB tree used for branch and bound.

Constraint: options:max depth � 2.

int tol – double Default ¼ 10�5

On entry: the integer feasibility tolerance; i.e., an integer variable is considered to take an integer value
if its violation does not exceed options:int tol. For example, if the integer variable xj is of order unity
then xj is considered to be integer if 1� options:int tolð Þ � xj � 1þ options:int tolð Þ.
Constraint: options:int tol > 0:0.

int obj bound – double Default ¼ 1020

On entry: specifies an initial bound on the optimum integer solution. You should supply a value for this
argument only if a valid strict upper bound for the IP problem is available. Supplying too small a value
will result in nag_ip_bb (h02bbc) not finding an IP solution. If a valid value is provided then this may
help to reduce the number of nodes searched in the BB tree (see Section 12.3).

The default value, 1020, is equivalent to no such bound being available.
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soln tol – double Default ¼ ffiffi
�

p

On entry: specifies a tolerance on the optimal IP solution, i.e., an IP solution returned by nag_ip_bb
(h02bbc) as optimal may have an objective function value which is as much as options:soln tol greater
than that associated with the true optimal IP solution. By setting options:soln tol to a nonzero value,
the size of the BB search tree may be reduced at the expense of obtaining a (possibly) inferior solution
(see Section 12.3).

This argument only takes effect after the first IP solution has been found. It therefore has no effect if
optional parameter options:first soln ¼ Nag TRUE and need not be taken into account when setting
optional parameter options:int obj bound.

Constraint: options:soln tol � 0:0.

nodsel – Nag_Node_Selection Default ¼ Nag MinObj Search

On entry: specifies how nodes are selected during the BB tree search (see Section 12.2). The selection
is made from those nodes which are still ‘active’, i.e., those which either have not yet been solved, or
which have been solved but not yet branched from. If the node selected has not been solved then it will
be solved next; otherwise, it is branched from and one of the resulting child nodes will be solved next.
In the latter case, the choice of which child node is solved first is determined by the value of optional
parameter options:branch dir (see below). The possible values of options:nodsel and their meanings
are described below.

Nag MinObj Search selects the node with smallest objective function value. A node which has
not yet been solved is assigned its parent's objective function value as the
basis for its selection.

Nag Deep Search selects the deepest node in the BB tree. When selecting a node for
branching and there is more than one candidate at the deepest level,
preference is given to the node which was solved earliest. This type of
node selection is affected by the value of options:branch dir (see below).

Nag Broad Search selects the shallowest node in the tree. This has the effect of searching
across the tree (rather than down as for Nag Deep Search).

Nag DeepMinObj Search as Nag Deep Search until the first integer solution is found and as
Nag MinObj Search thereafter.

Nag DeepBroad Search as Nag Deep Search until the first integer solution is found and as
Nag Broad Search thereafter.

C o n s t r a i n t : options:nodsel ¼ Nag MinObj Search, Nag Deep Search, Nag Broad Search,
Nag DeepMinObj Search or Nag DeepBroad Search.

varsel – Nag_Var_Selection Default ¼ Nag First Int

On entry: specifies how nag_ip_bb (h02bbc) selects the variable to branch on, when an unbranched
node has been chosen according to optional parameter options:nodsel. Let x� denote the solution
associated with the selected node. Integer variables are scanned in order of their index in x, and any
which are integral to within the optional tolerance argument options:int tol are ignored. The following
values of options:varsel are available.

Nag First Int select the first integer variable xi such that x�i is non-integer.

Nag Nearest Half select the integer variable xi such that x�
i � x�

i

� �		 		 is nearest to 0:5, where x�
i

� �
denotes the integer part of x�i . That is, xi is the integer variable such that x�

i is
farthest from having an integer value.

Nag Use Priority branch on the integer variable selected according to the set of priorities provided in
optional parameter options:priority (see below).

Constraint: options:varsel ¼ Nag First Int, Nag Nearest Half or Nag Use Priority.
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branch dir – Nag_Branch_Direction Default ¼ Nag Branch Left

On entry: specifies which node to solve first when two nodes are created by a branching operation. This
option is unlikely to have much effect when optional parameter options:nodsel ¼ Nag MinObj Search
or Nag Broad Search, since the overall order in which parts of the tree are examined will remain the
same. However, when options:nodsel ¼ Nag Deep Search, options:branch dir will influence the path
taken by nag_ip_bb (h02bbc) as the tree is descended. Similarly, this argument will affect the initial
deep search when options:nodsel ¼ Nag DeepMinObj Search or Nag DeepBroad Search. The follow-
ing values of options:branch dir are available.

Nag Branch Left solve the ‘left’ node first, i.e., that which was formed by reducing the upper bound
on the branching variable.

Nag Branch Right solve the ‘right’ node first, i.e., that which was formed by increasing the lower
bound on the branching variable.

Nag Branch InitX branch according to the initial values of the integer variables, as supplied in the
argument x to nag_ip_bb (h02bbc). Let x0 be the initial solution as supplied by
you, and let i be the index of the integer variable currently being branched on.
Then if z0i is the nearest integer to x0

i which satisfies the initial bounds on x,
nag_ip_bb (h02bbc) will first branch towards z0i and solve this sub-problem. This
value of options:branch dir would be appropriate, in conjunction with a deep
search (as defined by options:nodsel), if you can provide in x a good estimate of
an integer solution to the IP problem.

Constraint: options:branch dir ¼ Nag Branch Left, Nag Branch Right or Nag Branch InitX.

priority – double Default ¼ NULL

On entry: if options:varsel ¼ Nag Use Priority then for each integer variable xi, options:priority½i� 1�
must contain the priority the variable should be given when nag_ip_bb (h02bbc) selects a variable to
branch on (xi is an integer variable if intvar½i � 1� ¼ Nag TRUE, for i ¼ 1; 2; . . . ; n). For example, if
xk and xl are integer variables and options:priority½l� 1� > options:priority½k� 1�, then variable xl

will be selected in preference to xk. Variables with equal priorities are selected according to their
indices (i.e., xk is selected if k < l and options:priority½k� 1� ¼ options:priority½l� 1�).
With some problems of type MILP, setting options:priority to cvec might be effective, since the
objective coefficient of a variable could be regarded as a measure of the importance of the variable in
the problem.

If xi is not an integer variable (i.e., intvar½i� 1� ¼ Nag FALSE), options:priority½i� 1� is not
referenced. If optional parameter options:varsel 6¼ Nag Use Priority then options:priority is not
referenced.

feas tol – double Default ¼ ffiffi
�

p

On entry: the maximum acceptable absolute violation in each constraint at a ‘feasible’ point (feasibility
tolerance); i.e., a constraint is considered satisfied if its violation does not exceed options:feas tol.

Constraint: options:feas tol > 0:0.

inf bound – double Default ¼ 1020

On entry: options:inf bound defines the ‘infinite’ bound in the definition of the problem constraints.
Any upper bound greater than or equal to options:inf bound will be regarded as þ1 (and similarly
any lower bound less than or equal to �options:inf bound will be regarded as �1).

Constraint: options:inf bound > 0:0.

rank tol – double Default ¼ 100�

This argument is not used for problems of type MILP.

On entry: options:rank tol enables you to control the condition number of the triangular matrix factor
R which arises in solving a QP subproblem (see Section 12 in nag_opt_qp (e04nfc) for details). If �i
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denotes the function �i ¼ max R11j j; R22j j; . . . ; Riij jf g, the dimension of R is defined to be smallest
index i such that Riþ1;iþ1

		 		 � options:rank tol� �iþ1j j.
Constraint: 0:0 � options:rank tol < 1:0.

hrows – Integer Default ¼ 0 or n

On entry: specifies nH , the number of rows of the quadratic term H of the QP objective function. For
the default MILP problem type, options:hrows is not used and its value is set to zero. For MIQP
problem types, the default value of options:hrows is n, the number of variables. However, a value of
options:hrows less than n is appropriate for problems of type MIQP3 or MIQP4 when H is an upper
trapezoidal matrix with nH rows. Similarly, options:hrows may be used to define the dimension of a
leading block of nonzeros in the Hessian matrices for problems of type MIQP1 or MIQP2, in which
case the last n� nH rows and columns of H are assumed to be zero.

Constraint: 0 � options:hrows � n.

max df – Integer Default ¼ n

On entry: places a limit on the storage allocated for the triangular factor R of the reduced Hessian Hr

of QP sub-problems (see Section 12 in nag_opt_qp (e04nfc) for details). Ideally, options:max df should
be set slightly larger than the value of nr (the number of rows and columns of Hr) expected at the
solution. It need not be larger than mn þ 1, where mn is the number of variables that appear nonlinearly
in the quadratic objective function. For many problems it can be much smaller than mn.

For quadratic problems, a minimizer may lie on any number of constraints, so that nr may vary between
1 and n. The default value is therefore normally n but if the optional parameter options:hrows is
specified then the default value of options:max df is set to the value in options:hrows.

Constraint: 1 � options:max df � n.

crnames – char ** Default ¼ NULL

On entry: if options:crnames is not NULL then it must point to an array of nþm character strings,
with maximum string length 8, containing the names of the variables and constraints of the problem.
Thus, options:crnames½j� 1� contains the name of the jth variable, j ¼ 1; 2; . . . ;n, and
options:crnames½nþ i� 1� contains the names of the ith constraint, i ¼ 1; 2; . . . ;m. If supplied, the
names are used in the solution output (see Section 5.1 and Section 11.3).

If a problem is defined by an MPSX file, it may be read by calling nag_ip_mps_read (h02buc) prior to
calling nag_ip_bb (h02bbc). In this case, nag_ip_mps_read (h02buc) may optionally be used to allocate
memory to options:crnames and to read the variable and constraint names defined in the MPSX file
into options:crnames. In this case, the memory freeing function nag_ip_free (h02xzc) should be used to
free the memory pointed to by options:crnames on return from nag_ip_bb (h02bbc). You should not
use the standard C function free() for this purpose.

lower – double Default ¼ nþm

On entry: nþm values of memory will be automatically allocated by nag_ip_bb (h02bbc) and this is
the recommended method of use of options:lower. However you may supply memory from the calling
program.

On exit: the lower bounds imposed at the point returned in x. If no IP solution was found options:lower
contains the same bounds as supplied in bl. The first n elements contain the lower bounds on the
variables, and the next m elements contain the lower bounds for the general linear constraints (if any).

upper – double Default ¼ nþm

On entry: nþm values of memory will be automatically allocated by nag_ip_bb (h02bbc) and this is
the recommended method of use of options:upper. However you may supply memory from the calling
program.

On exit: the upper bounds imposed at the point returned in x. If no IP solution was found
options:upper contains the same bounds as supplied in bu. The first n elements contain the upper
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bounds on the variables, and the next m elements contain the upper bounds for the general linear
constraints (if any).

state – Integer Default ¼ nþm

On entry: nþm values of memory will be automatically allocated by nag_ip_bb (h02bbc) and this is
the recommended method of use of options:state. However you may supply memory from the calling
program.

On exit: the status of the constraints in the working set at the point returned in x. The significance of
each possible value of options:state½j� is as follows:

options:state½j� Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working

set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of

options:state can occur only when bl½j� ¼ bu½j�.
4 This corresponds to optimality being declared with x½j� being temporarily fixed at its

current value. This value of options:state can only occur if the optimal solution is not
unique.

lambda – double Default ¼ nþm

On entry: nþm values of memory will be automatically allocated by nag_ip_bb (h02bbc) and this is
the recommended method of use of options:lambda. However you may supply memory from the
calling program.

On exit: the values of the Lagrange multipliers for each constraint with respect to the current working
set at the point returned in x. The first n elements contain the multipliers (reduced costs) for the bound
constraints on the variables, and the next m elements contain the multipliers (shadow costs) for the
general linear constraints (if any). If options:state½j� ¼ 0, options:lambda½j� is zero. If x is optimal,
options:lambda½j� should be non-negative if options:state½j� ¼ 1, non-positive if options:state½j� ¼ 2
and zero if options:state½j� ¼ 4.

11.3 Description of Printed Output

The level of printed output can be controlled with the structure members options:list and
options:print level (see Section 11.2).

If options:list ¼ Nag TRUE then the argument values to nag_ip_bb (h02bbc) are listed, whereas the
printout of results is governed by the value of options:print level. The default of
options:print level ¼ Nag Soln Iter provides intermediate and final results.

If options:print level ¼ Nag Iter, Nag Soln Iter or Nag Soln Root Iter, the following line of summary
output is produced at the end of every node. It gives the outcome of forcing an integer variable with a
non-integer value to take a value within its specified lower and upper bounds.

Node No is the current node number of the BB tree being investigated.

Parent Node is the parent node number of the current node.

Obj Value is the final objective function value. If a node does not have a feasible solution then
Infeasible is printed instead of the objective function value. If a node whose
optimum solution exceeds the best integer solution so far is encountered (i.e., it does
not pay to explore the sub-problem any further), then its objective function value is
printed together with a CO (Cut Off).

Varbl Chosen is the index of the integer variable chosen for branching.

Value Before is the non-integer value of the integer variable chosen.
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Lower Bound is the lower bound value that the integer variable is allowed to take.

Upper Bound is the upper bound value that the integer variable is allowed to take.

Value After is the value of the integer variable after the current optimization.

Depth is the depth of the BB tree at the current node.

If options:print level ¼ Nag Soln Root or Nag Soln Root Iter, the root node solution is output before
the BB search is commenced. If options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Root or
Nag Soln Root Iter the final IP solution or, if none was found, the root node solution is output.

The following describes the printout for each variable and constraint for both root node and final IP
solution printout.

Varbl gives the name of variable j, for j ¼ 1; 2; . . . ; n. If an options structure is supplied
to nag_ip_bb (h02bbc), and the options:crnames member is assigned to an array of
variable and constraint names (see Section 11.2 for details), the name supplied in
options:crnames½j� 1� is assigned to the jth variable. Otherwise, a default name is
assigned to the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily
fixed at its current value). If Value lies outside the upper or lower bounds by more
than the feasibility tolerance, State will be ++ or -- respectively.

Value is the value of the variable at the final iteration.

Lower Bound is the lower bound lj specified for the variable. (None indicates that
lj � �options:inf bound, where options:inf bound is the optional parameter.)
For root node printout, lj ¼ bl½j� 1�; for IP solution printout, lj is the lower bound
imposed at the node which provided the IP solution.

Upper Bound is the upper bound uj specified for the variable. (None indicates that
uj � options:inf bound.) For root node printout, uj ¼ bu½j� 1�; for IP solution
printout, uj is the upper bound imposed at the node which provided the IP solution.

Lagr Mult is the value of the Lagrange multiplier for the associated bound constraint. This will
be zero if State is FR or TF. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds lj and uj.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, options:crnames½j� 1� replaced by
options:crnames½nþ j� 1�, lj and uj replaced by lnþi and unþi respectively, and with the following
change in the heading:

Constr gives the name of constraint i, i ¼ 1; 2; . . . ;m. If an options structure is supplied to
nag_ip_bb (h02bbc), and the options:crnames member is assigned to an array of
variable and constraint names (see Section 11.2 for details), the name supplied in
options:crnames½nþ i� 1� is assigned to the constraint. Otherwise, a default name
is assigned to the constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

If options:print level ¼ Nag NoPrint then printout will be suppressed; you can print the final solution
when nag_ip_bb (h02bbc) returns to the calling program.

11.3.1 Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by
use of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

This section may be skipped if you wish to use the default printing facilities.
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When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_ip_bb (h02bbc). Calls to the user-defined function are again controlled by
means of the options:print level member. Information is provided through st and comm, the two
structure arguments to options:print fun.

If comm!node prt ¼ Nag TRUE then the results from the most recently solved node are provided
through st. Note that options:print fun will be called with comm!node prt ¼ Nag TRUE only if
options:print level ¼ Nag Iter, Nag Soln Iter or Nag Soln Root Iter. The following members of st are
set:

node_num – Integer

The current node number of the BB tree being investigated.

parent_node – Integer

The parent node number of the current node.

node_status – Nag_NodeStatus

The status of the current node. The possible values of st!node status and their meanings are as
follows:

Nag NS NotBranched the node has been solved but the branch cannot yet be eliminated from
the search.

Nag NS Integer an integer solution was found at this node. There is no need to search
this branch further.

Nag NS Bounded the objective value exceeds the upper bound on the optimal IP solution.
There is no need to search this branch further.

Nag NS Infeasible the problem was infeasible at this node. There is no need to search this
branch further.

Nag NS Terminated the iteration limit was exceeded at this node. The search has to be
terminated prematurely for this branch.

objf – double

If st!node status ¼ NagNSNotBranched; NagNSInteger or NagNSBounded, then objf holds
the objective value.

branch_index – Integer

The index in x of the variable chosen for branching.

x_lo – double

The lower bound on the branching variable.

x_up – double

The upper bound on the branching variable.

x_before – double

The non-integer value of the branching variable before the node was solved.

x_after – double

The value of the branching variable after the node was solved.

depth – Integer

The depth of the BB tree at the current node.

If comm!rootnode sol prt ¼ Nag TRUE then the solution of the root node is provided through st.
Note that options:print fun will be called with comm!rootnode sol prt ¼ Nag TRUE only if
options:print level ¼ Nag Soln Root or Nag Soln Root Iter. The following members of st are set:
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endstate – Nag_EndState

The state of termination of the sub-problem solver at the root node. Some of these states result in
immediate termination of the algorithm. If this is the case, then no valid solution is available.
The other states allow the algorithm to proceed with the BB tree search. Possible values of
st!endstate and their correspondence, if any, to the exit value of fail from nag_ip_bb (h02bbc)
are:

Value of st!endstate Value of fail

Nag Optimal (BB search may proceed)
Nag Deadpoint (BB search may proceed)
Nag Weakmin (BB search may proceed)
Nag Unbounded NE_MIP_ROOT_UNBOUNDED
Nag Infeasible NE_MIP_ROOT_INFEAS
Nag Too Many Iter NE_MIP_ROOT_MAX_ITER
Nag Hess Too Big NE_MIP_ROOT_HESS_TOO_BIG

n – Integer

The number of variables.

m – Integer

The number of linear constraints.

objf – double

The value of the objective function.

x – double

The components x½j � 1� of the solution x, for j ¼ 1; 2; . . . ; st!n.

ax – double

If st!m > 0, st!ax½j � 1� contains the components of the linear constraint vector, for
j ¼ 1; 2; . . . ; st!m.

state – Integer

Contains the status of the st!n variables and st!m general linear constraints. See Section 11.2
for a description of the possible status values.

lambda – double

Contains the st!nþ st!m values of the Lagrange multipliers.

bl – double

Contains the st!nþ st!m lower bounds on the variables.

bu – double

Contains the st!nþ st!m upper bounds on the variables.

If comm!sol prt ¼ Nag TRUE then the final IP solution is provided through st. Note that
options:print fun w i l l b e c a l l e d w i t h comm!sol prt ¼ Nag TRUE o n l y i f
options:print level ¼ Nag Soln, Nag Soln Root, Nag Soln Iter or Nag Soln Root Iter. If no IP solution
was found then the root node solution is available. The st!endstate member of st should be examined
to determine the status of the solution. The following members of st are set:

endstate – Nag_EndState

The state of termination of nag_ip_bb (h02bbc). Possible values of st!endstate and their
correspondence to the exit value of fail are shown below.

Value of st!endstate Value of fail

Nag MIP Best ISol or
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Nag MIP Stop First ISol NE_NOERROR
Nag MIP No ISol NW_MIP_NO_INT_SOL
Nag MIP Root Unbounded NE_MIP_ROOT_UNBOUNDED
Nag MIP Root Infeasible NE_MIP_ROOT_INFEAS
Nag MIP Root Max Itn NE_MIP_ROOT_MAX_ITER
Nag MIP Root Big Hess NE_MIP_ROOT_HESS_TOO_BIG
Nag MIP Max Itn ISol NW_MIP_MAX_ITER_INT_SOL
Nag MIP Max Itn No ISol NW_MIP_MAX_ITER_NO_INT_SOL
Nag MIP Big Hess ISol NE_MIP_HESS_TOO_BIG_INT_SOL
Nag MIP Big Hess No ISol NE_MIP_HESS_TOO_BIG_NO_INT_SOL
Nag MIP Max Nodes ISol NW_MIP_MAX_NODES_INT_SOL
Nag MIP Max Nodes No ISol NW_MIP_MAX_NODES_NO_INT_SOL
Nag MIP Max Depth ISol NW_MIP_MAX_DEPTH_INT_SOL
Nag MIP Max Depth No ISol NW_MIP_MAX_DEPTH_NO_INT_SOL

n – Integer

The number of variables.

m – Integer

The number of linear constraints.

nnodes – Integer

The number of nodes examined during the BB tree search.

objf – double

The value of the objective function.

x – double

The components x½j � 1� of the solution x, for j ¼ 1; 2; . . . ; st!n.

ax – double

If st!m > 0, st!ax½j � 1� contains the components of the linear constraint vector, for
j ¼ 1; 2; . . . ; st!m.

state – Integer

Contains the status of the st!n variables and st!m general linear constraints. See Section 11.2
for a description of the possible status values.

lambda – double

Contains the st!nþ st!m values of the Lagrange multipliers.

bl – double

Contains the st!nþ st!m lower bounds on the variables.

bu – double

Contains the st!nþ st!m upper bounds on the variables.

The relevant members of the structure comm are:

rootnode_sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the solution of the root node.

node_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the most recently solved
node.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final solution.
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user – double
iuser – Integer
p – Pointer

Pointers for communication of user information. If used they must be allocated memory either
before entry to nag_ip_bb (h02bbc) or during a call to qphess or options:print fun. The type
Pointer will be void * with a C compiler that defines void * and char * otherwise.

12 Further Description

This section provides further information about the BB algorithm used by nag_ip_bb (h02bbc).

Further descriptions of the BB algorithm may be found in Dakin (1965) and Mitra (1973).

12.1 Overview

As outlined in Section 3, the essence of the BB algorithm is to form a ‘tree’ of sub-problems which are
relatively easy to solve. The initial sub-problem, the root node of the tree, is a relaxation of the IP
problem, in that it is the IP problem with the integer restrictions removed. When that has been solved,
two child sub-problems or nodes are formed by selecting an integer variable xk which in the solution to
the relaxed problem takes a non-integer value x�k, and branching on that variable, i.e., imposing
xk � x�k

� �
for one node and xk � x�

k

� �þ 1 for the other, where x�
k

� �
denotes the integer part of x�

k. One
of these nodes is then solved. At this point, either a further branching operation is carried out from the
node just solved, creating two new unsolved nodes (one of which is solved next), or the remaining
unsolved child node is solved. Continuing in this way, the tree is developed – at each stage selecting an
unsolved node to solve, or a solved node to branch from. The selection of the node and, in the case of a
branching operation, the selection of the variable to branch on, is considered further in Section 12.2.

The mechanism for forming the nodes on branching simply involves adjusting the lower or upper bound
on the branching variable. Note that as the tree is descended, each child node inherits any bound
adjustments made to its parent node, and so a child node is always more constrained than its parent.

If the procedure described above is continued, eventually a child must be created for which all of its
integer variables are fixed at integer values, or which is infeasible. If the latter is true then the search
down that branch of the tree may be terminated since any children of that node must also be infeasible
(the child is always more constrained than the parent). If the former is true then we have an integer
feasible solution for the IP problem, which may or may not be the optimum integer solution. For some
applications of IP, it is sufficient to obtain any integer feasible solution and the search may terminate
here, but usually the search must be continued, either to find a better integer solution, or to confirm that
the optimal integer solution has been found. In nag_ip_bb (h02bbc) the optional parameter
options:first soln may be set to Nag_TRUE to request termination at the first integer solution (the
default value is Nag_FALSE; see Section 11.2).

Assuming that the optimal integer solution is required, the rest of the tree must be searched. The
efficiency of the method relies on not having to examine every node of the tree which could,
potentially, be formed by applying the procedure as described above. The method incorporates features
which have the effect of eliminating certain portions of the tree from the search. As already explained,
the search is terminated along a particular branch on encountering an infeasible node. Similarly, once an
integer solution has been found, this can be used to eliminate parts of the search tree as follows.
Suppose an integer feasible solution xþ has been found, with an associated objective function value
f xþð Þ. Now suppose during the search of the remainder of the tree, a node is encountered, whose
objective function value exceeds f xþð Þ. In this case there is no need to examine any further down that
branch of the tree since any children of that node will also have objective function values which exceed
f xþð Þ. The quantity f xþð Þ therefore acts as a bound on the optimal integer solution. This bound may be
refined as better integer solutions are found. Finally, if an integer solution is found before all integer
variables have been fixed by the branching process, simply because the unfixed integer variables happen
to have integer values at the solution of a particular node, there is again no need to search further along
that branch of the tree. Termination of the search at a node, whether through finding an integer solution
there, detecting infeasibility, or bounding it based on a known integer solution, is known as fathoming
the node.
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12.2 Selection of Node and Branching Variable

Since each branching operation generates two unsolved nodes (sub-problems), at a typical stage of the
algorithm there will be a number of nodes which are either unsolved or which have been solved but
have not yet been branched from. Therefore, when a node has been solved there is a choice to be made
as to which node should be solved next, and this will either be an existing, unsolved node, or one which
will be created by a branching operation.

If a node is selected to be branched from, there is a further choice to be made and that is the integer
variable to be branched on.

Within nag_ip_bb (h02bbc) these choices are controlled by the optional parameters options:nodsel,
which controls node selection, and options:varsel, which controls branching variable selection. The
default node selection behaviour is to choose the node with lowest objective value, if it has been
solved, or lowest parent objective value if it is unsolved. By default the branching variable chosen is
that with the smallest index in x, selected from those integer variables taking non-integer values at the
solution of the sub-problem being branched from. Details of the available options are given in
Section 11.2.

These choices can help to improve the efficiency of the BB algorithm since they particularly influence
how quickly the first integer feasible solution is obtained and its quality. A good integer solution
obtained early in the search can eliminate a large portion of the remaining tree, by means of the
bounding operation described in Section 12.1). Unfortunately, there is no single strategy for making
such choices which can be applied successfully to all IP problems – the best strategy is highly problem
dependent and is usually obtained by experimentation.

12.3 Further Reducing the Size of the BB Search Tree

In addition to considering variations in the node and variable selection strategies, you may also consider
setting some other arguments to help to reduce the number of nodes searched. Recall from Section 12.1)
that once the algorithm has found an IP solution, the objective function value associated with this is
used as a bound to eliminate parts of the tree. Similarly, if you know from the outset a strict upper
bound on the optimal solution, perhaps as a result of solving a related, more constrained problem, or
obtained through analytical means, this may be supplied to nag_ip_bb (h02bbc) as the optional
parameter options:int obj bound. This will be used by nag_ip_bb (h02bbc) in the same way as a bound
obtained by finding an IP solution except that it can be used to eliminate parts of the tree even before
an integer solution is found.

Another argument which you might consider setting to reduce the size of the tree is options:soln tol.
Again this is related to the bounding process, and applies when an integer solution has been found.
When searching the remainder of the tree, instead of setting the bound to f xþð Þ, the objective function
value associated with the integer solution most recently found, nag_ip_bb (h02bbc) sets the bound to
f xþð Þ � options:soln tol. This means that integer solutions with objective values within
options:soln tol of any integer solution already found, cannot themselves be found. The idea here is
to allow you to avoid further search for solutions which are not substantially better (as measured by
options:soln tol) than the best solution found so far. Of course, a sensible choice for the value of
options:soln tol relies on your knowledge of the problem and requirements on the solution.

Further details of the optional parameters options:int obj bound and options:soln tol are given in
Section 11.2.

Finally, a very important factor which can have a large impact on the size of the search tree is the way
the problem is modelled. Often, there is more than one way to formulate a problem as an IP model. A
general aim is that the feasible region of the relaxed IP problem should be as close as possible to that of
the IP problem itself. This has the effect of generating tight bounds in the BB procedure. Note that in
order to achieve this aim, it may be necessary to introduce further constraints, which do not alter the IP
solution but which help to reduce the feasible region of the sub-problems. This is in contrast to standard
LP, for example, in which fewer constraints are generally considered to be associated with an easier
problem. There is of course a balance to be struck since adding constraints to an IP problem will make
the sub-problems harder to solve, despite, it is hoped, reducing the size of the tree. See Williams (1993)
for more information on formulating IP models.
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