
NAG Library Function Document

nag_blgm_lm_design_matrix (g22ycc)

Note: please be advised that this function is classed as ‘experimental’ and its interface may be developed further in the future. Please
see Section 3.1.1 in How to Use the NAG Library and its Documentation for further information.

1 Purpose

nag_blgm_lm_design_matrix (g22ycc) generates a design matrix from a data matrix and model
description.

2 Specification

#include <nag.h>
#include <nagg22.h>

void nag_blgm_lm_design_matrix (void *hform, void *hddesc,
const double dat[], Integer pddat, Integer sddat, void **hxdesc,
double x[], Integer pdx, Integer sdx, Integer *mx, NagError *fail)

3 Description

nag_blgm_lm_design_matrix (g22ycc) generates a design matrix from a data matrix and a model
description. Design matrices encapsulate the observed values of the independent variables and the
required model in a form that can be used by many of the model fitting functions available in the NAG
Library, for example those in Chapter g02.

3.1 Notation

Let D denote a data matrix with n observations on md independent variables, denoted by Vj, for
j ¼ 1; 2; . . . ;md. If Vj is a categorical variable, let Lj denote the number of levels associated with it. If
Vj is a binary, ordinal or continuous variable, let Lj ¼ 1.

Let Vji denote the ith value of Vj.

Let M denote a model made up of one or more terms, denoted by Ti. Each term consists of either a
main effect or an interaction and hence can be described using one or more variable names Vj and the
interaction operator ‘:’. The operator ‘þ’ is used to denote the addition of a term to the model.
Therefore, M ¼ T1 þ T2 þ T3 ¼ V1 þ V2 þ V1:V2 denotes a model with three terms, the first two terms
being the main effects for variables V1 and V2 and the last term the interaction between them. For
simplicity we reorder the terms of the model by the number of variables in them, so main effects come
first, then two-way interactions, then three-way interactions etc. By default it is assumed that the model
M contains a mean effect (or intercept term), if the mean effect is excluded, this will be denoted by
‘�1’, so M ¼ T1 is a model with one term and a mean effect and M ¼ T1 � 1 is the same model with
the mean effect dropped.

nag_blgm_lm_design_matrix (g22ycc) generates an n by mx design matrix, X, from D and M.

3.2 Dummy Variables

When constructing a design matrix, we cannot work directly with categorical variables. Categorical
variables must first be recoded into dummy variables. A categorical variable Vj requires Lj dummy
variables. Let Dj denote an n� Lj matrix of dummy variables for Vj defined as

Dj
li ¼ 1; if Vji ¼ l;

0; otherwise

�

where Dj
l is the lth column of Dj and Dj

li is the ith element of Dj
l .

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.1



For a binary, ordinal or continuous variable, Dj
1i ¼ Vji.

3.3 Full Design Matrix

Given a model, M, and the matrices of dummy variables constructing the full design matrix XF is
trivial. Each term is processed in order and

1. If term i is a main effect, that is Ti ¼ Vj for some j, Dj is copied into XF .

2. If term i is a two-way interaction, that is Ti ¼ Vj:Vk, for some j 6¼ k, then

(i) Loop over lj ¼ 1; 2; . . .Lj.

(ii) Loop over lk ¼ 1; 2; . . .Lk.

(iii) Add a column to XF corresponding to the element-wise product of Dj
lj
and Dk

lk
.

3. Higher interaction terms are handled in a similar manner as the two-way interactions by adding
columns constructed from multiplying all combinations of the columns of the corresponding Ds
that correspond to the variables involved. In all cases, the variables towards the right hand side of a
term are iterated over the quickest.

3.4 Contrasts

Using the full design matrix XF in an analysis can result in an overparameterized model. This is due to
XF often not being of full rank as the sum of all the dummy variables for a particular variable is a
vector of ones. This source of overparameterization can be alleviated by using a design matrix X where
(some) dummy variables are replaced by contrasts. For a categorical variable Vj the contrasts are a set
of Lj � 1 functionally independent linear combinations of the dummy variables.

Whilst the choice of contrasts used in term Ti will affect the individual model coefficients (parameters),
it has no effect on the overall contribution of Ti.

For a given variable Vj, the contrasts can be represented by an Lj by Lj � 1 matrix, Cj. The rows of Cj

correspond to a particular value of Vj and the columns correspond to the values to use in the design
matrix.

Six types of contrast are available in nag_blgm_lm_design_matrix (g22ycc); two types of treatment
contrasts, two types of sum contrasts, Helmert contrasts and polynomial contrasts. Unless specified
otherwise, the contrasts used by nag_blgm_lm_design_matrix (g22ycc) are treatment contrasts relative
to the first level. See the description of the optional parameter Contrast in nag_blgm_lm_formula
(g22yac) for ways of changing the contrasts used.

3.4.1 Treatment Contrasts

Treatment contrasts are taken relative to either the first or last level of the variable. For example, if
Lj ¼ 4,

Cj ¼
0 0 0
1 0 0
0 1 0
0 0 1

0
B@

1
CA

would be the contrast matrix for Vj using treatment contrasts relative to the first level. The contrast
matrix obtained when using treatment contrasts relative to the last level is similar, but the row of zeros
appears at the bottom and all other rows are shifted up one.

Strictly speaking, the term contrast implies that each row in the contrast matrix sums to zero. That is
not the case for treatment contrasts, however they are included as this coding is commonly used in
practice.

g22ycc NAG Library Manual

g22ycc.2 Mark 26.1



3.4.2 Sum Contrasts

Sum contrasts are similar to treatment contrasts and again can be taken relative to the first or last level
of the variable. Unlike treatment contrasts, sum contrasts effectively constrain the coefficients related to
the variable to sum to zero. For example, if Lj ¼ 4,

Cj ¼
1 0 0
0 1 0
0 0 1

�1 �1 �1

0
B@

1
CA

would be the contrast matrix for Vj using treatment contrasts relative to the last level. The contrast
matrix obtained when using treatment contrasts relative to the first level is similar, but the row of �1s
appears at the top and all other rows are shifted down one.

3.4.3 Helmert Contrasts

With Helmert contrasts level l of the variable is compared with the average effect of all previous levels.
For example, if Lj ¼ 4,

Cj ¼
�1 �1 �1
1 �1 �1
0 2 �1
0 0 3

0
B@

1
CA

would be the contrast matrix for Vj using Helmert contrasts.

3.4.4 Polynomial Contrasts

With polynomial contrasts the entries in the columns of Cj correspond in linear, quadratic, cubic,
quartic, etc. terms to a hypothetical underlying numeric variable that takes equally spaced values at
each level. For example, if Lj ¼ 4,

Cj ¼
�0:67 0:50 �0:22
�0:22 �0:50 0:67
0:22 �0:50 �0:67
0:67 0:50 0:22

0
B@

1
CA

would be the contrast matrix for Vj using polynomial contrasts.

3.4.5 When Contrasts Can Be Used

Depending on the specifics of the model, M, it may not be possible to always replace the Lj dummy
variables with Lj � 1 contrasts for all variables in all terms and retain the same model. A simple
example of this is a data matrix, D, with four observations and two variables which have two and three
levels respectively. This data matrix might look something like:

D ¼
1 1
2 3
1 2
2 2

0
B@

1
CA

For the sake of argument, assume that our model contains the main effect for each variable, but does
not contain a mean effect (or intercept term). So using the notation established earlier,
M ¼ V1 þ V2 � 1. The full design matrix, XF , for this data matrix and model would be

XF ¼
1 0 1 0 0
0 1 0 0 1
1 0 0 1 0
0 1 0 1 0

0
B@

1
CA

However, XF is not of full rank (and hence M is overparameterized) because the sum of the first two
columns is a vector of ones as is the sum of the last three columns.

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.3



In order to alleviate this we might try constructing XC where the dummy variables have been replaced
by contrasts. Assuming treatment contrasts, relative to the first level, we would have

XC ¼
0 0 0
1 0 1
0 1 0
1 1 0

0
B@

1
CA

However, using XC makes an implicit assumption that the expected value of the dependent variable (the
quantity being modelled) is zero when V1 ¼ 1 and V2 ¼ 1. This assumption was not made when we
used XF and hence the two design matrices are not equivalent. One solution would be to use dummy
variables for V1 and contrasts for V2, which would result in a design matrix, X of

X ¼
1 0 0 0
0 1 0 1
1 0 1 0
0 1 1 0

0
B@

1
CA

Using X would give an equivalent model to using XF .

The algorithm used by nag_blgm_lm_design_matrix (g22ycc) to decide which variables, in which
terms, can be coded as contrasts and which need to be coded as dummy variables is described below.

Suppose Vj is any variable that appears in term Ti, let Ti jð Þ denote the term obtained by dropping Vj

from Ti. For example, if T3 ¼ V1:V2:V3, T3 2ð Þ ¼ V1:V3. In this context, the empty term is taken to be the
mean effect (or intercept term). We say that Ti jð Þ appears in M if there exists a term Tk, k < i, that
contains all of the variables appearing in Ti jð Þ. In most cases Tk ¼ Ti jð Þ, but this is not required. Note, as
stated earlier, the terms in M are ordered by the number of variables in them.

A variable, Vj in term Ti is coded by contrasts if Ti jð Þ appears in M and by dummy variables otherwise.
It is therefore possible for variable Vj to be coded by contrasts in some terms and dummy variables in
others within the same X.

The above rule assumes the presence of a mean effect. If no such effect is present in the model, the
main effect of the first categorical variable is coded by dummy variables to compensate. If no main
effects appear in the model, the warning fail:code ¼ NW_POTENTIAL_PROBLEM is returned.

A longer description and informal proof that the resulting X is a suitable design matrix for the model of
interest can be found in chapter two of Chambers and Hastie (1992).

3.5 Mean Effect

The mean effect (or intercept term) is included in a design matrix by adding a column of ones as the
first column of X. However, many model fitting functions in the NAG Library handle the mean effect
as a special case and do not require it to be explicitly added to the design matrix. Therefore, by default,
nag_blgm_lm_design_matrix (g22ycc) does not explicitly add the mean effect to the design matrix.
This behaviour can be changed via the optional parameter Explicit Mean in nag_blgm_lm_formula
(g22yac).

4 References

Chambers J M and Hastie T J (1992) Statistical Models in S Wadsworth and Brooks/Cole Computer
Science Series

5 Arguments

1: hform – void * Input

On entry: a G22 handle to the internal data structure containing a description of the model M as
returned in hform by nag_blgm_lm_formula (g22yac).

g22ycc NAG Library Manual

g22ycc.4 Mark 26.1



2: hddesc – void * Input

On entry: a G22 handle to the internal data structure containing a description of the data matrix,
D as returned in hddesc by nag_blgm_lm_describe_data (g22ybc).

3: dat½pddat� sddat� – const double Input

Note: the i; jð Þth element of the matrix is stored in dat½ j� 1ð Þ � pddatþ i� 1�.
On entry: the data matrix, D. By default Dij, the ith value for the jth variable, for i ¼ 1; 2; . . . ; n
and j ¼ 1; 2; . . . ;md, should be supplied in dat½ j� 1ð Þ � pddatþ i� 1�.
If the optional parameter Storage Order, described in nag_blgm_lm_describe_data (g22ybc), is
set to VAROBS, Dij should be supplied in dat½ i� 1ð Þ � pddatþ j� 1�.

4: pddat – Integer Input

On entry: the stride separating matrix row elements in the array dat.

Constraints:

if the optional parameter Storage Order, described in nag_blgm_lm_describe_data
(g22ybc), is set to VAROBS, pddat � md;
otherwise pddat � n.

5: sddat – Integer Input

On entry: the secondary dimension of dat.

Constraints:

if the optional parameter Storage Order, described in nag_blgm_lm_describe_data
(g22ybc), is set to VAROBS, sddat � n;
otherwise sddat � md.

6: hxdesc – void ** Input/Output

On entry: must be set to NULL.

As an alternative an existing G22 handle may be supplied in which case this function will destroy
the supplied G22 handle as if nag_blgm_handle_free (g22zac) had been called.

On exit: holds a G22 handle to the internal data structure containing a description of the design
matrix, X. You must not change the G22 handle other than through the functions in Chapter g22.

7: x½pdx� sdx� – double Output

Note: the i; jð Þth element of the matrix X is stored in x½ j� 1ð Þ � pdxþ i� 1�.
On exit: the design matrix, X. By default Xij, the ith value for the jth column, for i ¼ 1; 2; . . . ; n
and j ¼ 1; 2; . . . ;mx, is returned in x½ j� 1ð Þ � pdxþ i� 1�
If the optional parameter Storage Order, described in nag_blgm_lm_formula (g22yac), is set to
VAROBS, Xij is returned in x½ i� 1ð Þ � pdxþ j� 1�.
If pdx or sdx are too small to hold x, the number of columns required to hold the design matrix
is returned in mx.

Under some conditions it is possible to use the data matrix in place of the design matrix.
Specifically, if D has no categorical variables, M has only main effects and either has no mean
effect or the mean effect does not need to be explicitly added to the design matrix. If pdx or sdx
are too small under such circumstances, fail:code ¼ NW_ALTERNATIVE is returned and hxdesc
is set up in such a way as to allow dat to be used as the design matrix. If pdx and sdx are both
zero, x is not referenced and may be NULL.

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.5



8: pdx – Integer Input

On entry: the stride separating matrix row elements in the array x.

Constraints:

if the optional parameter Storage Order, described in nag_blgm_lm_formula (g22yac),
is set to VAROBS, pdx � mx;
otherwise pdx � n.

9: sdx – Integer Input

On entry: the secondary dimension of x.

Constraints:

if the optional parameter Storage Order, described in nag_blgm_lm_formula (g22yac),
is set to VAROBS, sdx � n;
otherwise sdx � mx.

10: mx – Integer * Output

On exit: the minimum number of columns required to hold the design matrix.

In most cases mx ¼ mx. The one exception is when fail:code ¼ NW_ALTERNATIVE, that is the
size of x was too small but the data matrix given in dat can be used as the design matrix. In this
case mx holds the number of columns that would be required if only the relevant parts of dat
were copied into a new array.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ARRAY_SIZE

On entry, md ¼ valueh i and pddat ¼ valueh i.
Constraint: pddat � md.

On entry, md ¼ valueh i and sddat ¼ valueh i.
Constraint: sddat � md.

On entry, n ¼ valueh i and pddat ¼ valueh i.
Constraint: pddat � n.

On entry, n ¼ valueh i and sddat ¼ valueh i.
Constraint: sddat � n.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FIELD_UNKNOWN

A variable name used when creating hform is not present in hddesc.
Variable name: valueh i.

g22ycc NAG Library Manual

g22ycc.6 Mark 26.1



NE_HANDLE

hddesc has not been initialized or is corrupt.

hddesc is not a G22 handle as generated by nag_blgm_lm_describe_data (g22ybc).

hform has not been initialized or is corrupt.

hform is not a G22 handle as generated by nag_blgm_lm_formula (g22yac).

On entry, hxdesc is not NULL or a recognised G22 handle.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL_ARRAY

On entry, column j of the data matrix, D, is not consistent with information supplied in hddesc,
j ¼ valueh i.

NW_ALTERNATIVE

On entry, the size of x is too small to hold the design matrix. dat can be used instead.

NW_ARRAY_SIZE

On entry, mx ¼ valueh i and pdx ¼ valueh i.
Constraint: pdx � mx.

On entry, mx ¼ valueh i and sdx ¼ valueh i.
Constraint: sdx � mx.

On entry, n ¼ valueh i and pdx ¼ valueh i.
Constraint: pdx � n.

On entry, n ¼ valueh i and sdx ¼ valueh i.
Constraint: sdx � n.

NW_POTENTIAL_PROBLEM

The model contains categorical variables, but no intercept or main effects terms have been
requested.
Please check the design matrix returned matches the model you require.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_blgm_lm_design_matrix (g22ycc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_blgm_lm_design_matrix (g22ycc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.7



Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

nag_blgm_lm_submodel (g22ydc) can be used to obtain labels for the columns of the design matrix X.

Many of the analysis functions that require a design matrix to be supplied allow submodels to be
defined through the use of a vector of ones or zeros indicating whether a column of X should be
included or excluded from the analyses (see for example sx in nag_regsn_mult_linear (g02dac) or
nag_glm_normal (g02gac)). This allows nested models to be fit without having to reconstruct the
design matrix for each analysis. nag_blgm_lm_submodel (g22ydc) offers a mechanism for
constructing these vectors using submodels specified using nag_blgm_lm_formula (g22yac).

10 Example

This example creates and outputs two design matrices for a simple linear regression model. The first
design matrix uses sum contrasts for all variables and the second uses a combination of polynomial and
Helmert contrasts. Column labels are generated using nag_blgm_lm_submodel (g22ydc).

See also the examples for nag_blgm_lm_formula (g22yac), nag_blgm_lm_describe_data (g22ybc)
and nag_blgm_lm_submodel (g22ydc).

10.1 Program Text

/* nag_blgm_lm_design_matrix (g22ycc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2016.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagg22.h>
#include <nagx04.h>

#define MAX_FORMULA_LEN 200
#define MAX_VNAME_LEN 200
#define MAX_PLAB_LEN 200
#define MAX_OPTION_LEN 200

#define DAT(I,J) dat[j*lddat+i]
#define X(I,J) x[j*ldx+i]

char *read_line(char formula[],Integer nchar);
void print_x(Nag_IncludeIntercept intcpt,char *const plab[],Integer nobs,

Integer mx,const double x[],Integer ldx,const char *text);

int main(void)
{

/* Integer scalar and array declarations */
Integer i, j, ip = 0, lddat, ldx, lisx, lplab = 0, lvinfo,

lvnames = 0, mx, nobs, nvar, sddat, sdx, lenlab, mncat;
Integer exit_status = 0;
Integer *isx = 0, *levels = 0, *vinfo = 0;
Integer tvinfo[3];

/* Nag Types */
NagError fail;
Nag_IncludeIntercept intcpt;

g22ycc NAG Library Manual

g22ycc.8 Mark 26.1



/* Double scalar and array declarations */
double *dat = 0, *x = 0;

/* Character scalar and array declarations */
char formula[MAX_FORMULA_LEN], tcontrast[MAX_OPTION_LEN],

optstr[MAX_OPTION_LEN];
char *pch;
char **vnames = 0, **plab = 0;

/* Void pointers */
void *hform = 0, *hddesc = 0, *hxdesc = 0;

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_blgm_lm_design_matrix (g22ycc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read in the formula for the full model, remove comments and */
/* call nag_blgm_lm_formula (g22yac) to parse it */
read_line(formula,MAX_FORMULA_LEN);
nag_blgm_lm_formula(&hform,formula,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_formula (g22yac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Read in the contrast to use for all parameters */
read_line(tcontrast,MAX_OPTION_LEN);

/* Set up the option string */
mncat = MAX_OPTION_LEN;
strcpy(optstr, "Contrast = ");
mncat -= strlen(optstr) + 1;
strncat(optstr, tcontrast, mncat);

/* Call nag_blgm_optset (g22zmc) to set the contrast optional argument */
nag_blgm_optset(hform,optstr,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_optset (g22zmc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Read in size of the data matrix and number of variable labels supplied */
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &nobs, &nvar,
&lvnames);

#else
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &nobs, &nvar,

&lvnames);
#endif

/* Allocate memory */
if (!(levels = NAG_ALLOC(nvar, Integer)) ||

!(vnames = NAG_ALLOC(lvnames, char *))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < lvnames; i++)

if (!(vnames[i] = NAG_ALLOC(MAX_VNAME_LEN, char))) {
printf("Allocation failure\n");
exit_status = -1;

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.9



goto END;
}

/* Read in number of levels and names for the variables */
for (i = 0; i < nvar; i++) {

#ifdef _WIN32
scanf_s("%" NAG_IFMT "", &levels[i]);

#else
scanf("%" NAG_IFMT "", &levels[i]);

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

if (lvnames > 0) {
for (i = 0; i < lvnames; i++)

#ifdef _WIN32
scanf_s("%50s", vnames[i], 51);

#else
scanf("%50s", vnames[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}

/* Call nag_blgm_lm_describe_data (g22ybc) to get a description of */
/* the data matrix */
nag_blgm_lm_describe_data(&hddesc,nobs,nvar,levels,lvnames,vnames,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_describe_data (g22ybc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Read in the data matrix */
lddat = nobs;
sddat = nvar;
if (!(dat = NAG_ALLOC(lddat*sddat, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < nobs; i++) {

for (j = 0; j < nvar; j++)
#ifdef _WIN32

scanf_s("%lf", &DAT(i, j));
#else

scanf("%lf", &DAT(i, j));
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Start of constructing the design matrix ... */

/* Call nag_blgm_lm_design_matrix (g22ycc) to get the size of */
/* the design matrix */
ldx = 0;
sdx = 0;
nag_blgm_lm_design_matrix(hform,hddesc,dat,lddat,sddat,&hxdesc,

x,ldx,sdx,&mx,&fail);

g22ycc NAG Library Manual

g22ycc.10 Mark 26.1



if (fail.code != NW_ARRAY_SIZE && fail.code != NW_ALTERNATIVE) {
printf("Error from nag_blgm_lm_design_matrix (g22ycc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Allocate design matrix */
ldx = nobs;
sdx = mx;
if (!(x = NAG_ALLOC(ldx*sdx, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Call nag_blgm_lm_design_matrix (g22ycc) to generate the design matrix */
nag_blgm_lm_design_matrix(hform,hddesc,dat,lddat,sddat,&hxdesc,

x,ldx,sdx,&mx,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_design_matrix (g22ycc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
/* ... End of constructing the design matrix */

/* Start of getting the column labels for X ... */
/* Get size of output arrays used by nag_blgm_lm_submodel (g22ydc) */
lvinfo = 3;
lisx = lplab = lenlab = 0;
nag_blgm_lm_submodel(hform,hxdesc,&intcpt,&ip,lisx,isx,lplab,plab,lenlab,

lvinfo,tvinfo, &fail);
if (fail.code != NW_ARRAY_SIZE) {

printf("Error from nag_blgm_lm_submodel (g22ydc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Allocate output arrays (we only want plab) */
lisx = lvinfo = 0;
lplab = tvinfo[1];
if (!(plab = NAG_ALLOC(ip, char *))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
lenlab = MAX_PLAB_LEN;
for (i = 0; i < ip; i++)

if (!(plab[i] = NAG_ALLOC(lenlab, char))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Call nag_blgm_lm_submodel (g22ydc) to generate the labels */
nag_blgm_lm_submodel(hform,hxdesc,&intcpt,&ip,lisx,isx,lplab,plab,lenlab,

lvinfo,vinfo,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_submodel (g22ydc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* ... End of getting the column labels for X */

/* Display the design matrix */
print_x(intcpt,plab,nobs,mx,x,ldx,"First");
printf("\n");

/* Read in the name of the variable whose contrasts need to be changed, */
/* the value to change them to, remove comments and set the contrast */

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.11



/* optional argument for the specified variable */
for (;read_line(tcontrast,MAX_OPTION_LEN);) {

/* Add an equals sign between variable name and contrast name */
pch = strstr(tcontrast," ");
*pch = ’=’;

/* Set up the option string */
mncat = MAX_OPTION_LEN;
strncpy(optstr, "Contrast:",mncat);
mncat -= strlen(optstr) + 1;
strncat(optstr, tcontrast, mncat);

/* Call nag_blgm_optset (g22zmc) to set the contrast optional argument */
nag_blgm_optset(hform,optstr,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_optset (g22zmc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

/* Call nag_blgm_lm_design_matrix (g22ycc) to regenerate */
/* the design matrix */
nag_blgm_lm_design_matrix(hform,hddesc,dat,lddat,sddat,&hxdesc,

x,ldx,sdx,&mx,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_design_matrix (g22ycc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Call nag_blgm_lm_submodel (g22ydc) to regenerate the column labels */
nag_blgm_lm_submodel(hform,hxdesc,&intcpt,&ip,lisx,isx,lplab,plab,lenlab,

lvinfo,vinfo,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_blgm_lm_submodel (g22ydc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Display the design matrix */
print_x(intcpt,plab,nobs,mx,x,ldx,"Second");

END:
/* Call nag_blgm_handle_free (g22zac) to clean-up the g22 handles */
nag_blgm_handle_free(&hform,&fail);
nag_blgm_handle_free(&hddesc,&fail);
nag_blgm_handle_free(&hxdesc,&fail);

NAG_FREE(dat);
NAG_FREE(x);
NAG_FREE(levels);
for (i = 0; i < lvnames; i++)

NAG_FREE(vnames[i]);
NAG_FREE(vnames);
for (i = 0; i < ip; i++)

NAG_FREE(plab[i]);
NAG_FREE(plab);
NAG_FREE(isx);
NAG_FREE(vinfo);
return (exit_status);

}

char *read_line(char formula[],Integer nchar) {
/* Read in a line from stdin and remove any comments */
char *pch;

/* Read in the model formula */
if (fgets(formula,nchar,stdin)) {

/* Strip comments from formula */

g22ycc NAG Library Manual

g22ycc.12 Mark 26.1



pch = strstr(formula,"::");
if (pch) *pch = ’\setminus 0’;
return formula;

} else {
return 0;

}
}

void print_x(Nag_IncludeIntercept intcpt,char *const plab[],Integer nobs,
Integer mx,const double x[],Integer ldx,const char *text) {

/* Print the transpose of the first 10 rows of the design matrix */

/* Integer scalar and array declarations */
Integer max_rows = 10, i, j, pnobs, si;

/* plab holds the labels for the model parameters, so includes a label */
/* for the mean effect, if one is present. As the mean effect is not */
/* being explicitly included in the design matrix, we may need to skip */
/* the first element of plab (which will always be the label for the */
/* mean effect if one is present) */
si = (intcpt == Nag_Intercept) ? 1 : 0;

/* Printing the first max_rows rows of the design matrix */
pnobs = MIN(max_rows,nobs);

/* Display the design matrix */
printf(" Transpose of First %"NAG_IFMT" Rows of the %s Design Matrix (X)\n",

pnobs, text);
printf(" Column Name ");
for (i = 0; i < pnobs; i++)

printf(" %2"NAG_IFMT, i+1);
printf("\n ");
for (i = 0; i < 15+pnobs*5; i++)

printf("-");
printf("\n");
for (j = 0; j < mx; j++) {

printf(" %-15s", plab[j+si]);
for (i = 0; i < pnobs; i++)

printf(" %4.1f", X(i,j));
printf("\n");

}

/* Display the intercept flag using nag_enum_value_to_name (x04nbc) */
printf(" Intercept flag = %s\n", nag_enum_value_to_name(intcpt));

}

10.2 Program Data

nag_blgm_lm_design_matrix (g22ycc) Example Program Data
F1*F2*Con - F1.F2.Con :: formula
Sum First :: contrast to use
25 3 3 :: nobs,nvar,lvnames
3 3 1 :: levels
F1 F2 Con :: vnames
3 1 -2.4
3 3 0.2
1 3 -1.4
2 1 -5.4
3 3 0.2
3 2 1.4
1 2 6.8
1 2 6.7
1 1 5.3
2 3 -1.3
3 2 -3.6
3 2 -0.7
1 1 5.7
3 3 2.3
1 2 3.3
2 3 -0.5

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.13



1 1 -2.6
1 2 3.7
1 2 0.9
3 1 -1.1
2 2 2.1
1 3 4.6
2 3 4.6
1 2 5.1
1 3 0.9 :: dat
F1 Helmert
F2 Polynomial :: new contrasts to use

10.3 Program Results

nag_blgm_lm_design_matrix (g22ycc) Example Program Results

Transpose of First 10 Rows of the First Design Matrix (X)
Column Name 1 2 3 4 5 6 7 8 9 10
-----------------------------------------------------------------
F1_SF1 0.0 0.0 -1.0 1.0 0.0 0.0 -1.0 -1.0 -1.0 1.0
F1_SF2 1.0 1.0 -1.0 0.0 1.0 1.0 -1.0 -1.0 -1.0 0.0
F2_SF1 -1.0 0.0 0.0 -1.0 0.0 1.0 1.0 1.0 -1.0 0.0
F2_SF2 -1.0 1.0 1.0 -1.0 1.0 0.0 0.0 0.0 -1.0 1.0
CON -2.4 0.2 -1.4 -5.4 0.2 1.4 6.8 6.7 5.3 -1.3
F1_SF1.F2_SF1 -0.0 0.0 -0.0 -1.0 0.0 0.0 -1.0 -1.0 1.0 0.0
F1_SF1.F2_SF2 -0.0 0.0 -1.0 -1.0 0.0 0.0 -0.0 -0.0 1.0 1.0
F1_SF2.F2_SF1 -1.0 0.0 -0.0 -0.0 0.0 1.0 -1.0 -1.0 1.0 0.0
F1_SF2.F2_SF2 -1.0 1.0 -1.0 -0.0 1.0 0.0 -0.0 -0.0 1.0 0.0
F1_SF1.CON -0.0 0.0 1.4 -5.4 0.0 0.0 -6.8 -6.7 -5.3 -1.3
F1_SF2.CON -2.4 0.2 1.4 -0.0 0.2 1.4 -6.8 -6.7 -5.3 -0.0
F2_SF1.CON 2.4 0.0 -0.0 5.4 0.0 1.4 6.8 6.7 -5.3 -0.0
F2_SF2.CON 2.4 0.2 -1.4 5.4 0.2 0.0 0.0 0.0 -5.3 -1.3
Intercept flag = Nag_Intercept

Transpose of First 10 Rows of the Second Design Matrix (X)
Column Name 1 2 3 4 5 6 7 8 9 10
-----------------------------------------------------------------
F1_H1 0.0 0.0 -1.0 1.0 0.0 0.0 -1.0 -1.0 -1.0 1.0
F1_H2 2.0 2.0 -1.0 -1.0 2.0 2.0 -1.0 -1.0 -1.0 -1.0
F2_P1 -0.7 0.7 0.7 -0.7 0.7 0.0 0.0 0.0 -0.7 0.7
F2_P2 0.4 0.4 0.4 0.4 0.4 -0.8 -0.8 -0.8 0.4 0.4
CON -2.4 0.2 -1.4 -5.4 0.2 1.4 6.8 6.7 5.3 -1.3
F1_H1.F2_P1 -0.0 0.0 -0.7 -0.7 0.0 0.0 -0.0 -0.0 0.7 0.7
F1_H1.F2_P2 0.0 0.0 -0.4 0.4 0.0 -0.0 0.8 0.8 -0.4 0.4
F1_H2.F2_P1 -1.4 1.4 -0.7 0.7 1.4 0.0 -0.0 -0.0 0.7 -0.7
F1_H2.F2_P2 0.8 0.8 -0.4 -0.4 0.8 -1.6 0.8 0.8 -0.4 -0.4
F1_H1.CON -0.0 0.0 1.4 -5.4 0.0 0.0 -6.8 -6.7 -5.3 -1.3
F1_H2.CON -4.8 0.4 1.4 5.4 0.4 2.8 -6.8 -6.7 -5.3 1.3
F2_P1.CON 1.7 0.1 -1.0 3.8 0.1 0.0 0.0 0.0 -3.7 -0.9
F2_P2.CON -1.0 0.1 -0.6 -2.2 0.1 -1.1 -5.6 -5.5 2.2 -0.5
Intercept flag = Nag_Intercept

11 Optional Parameters

As well as the optional parameters common to all G22 handles described in nag_blgm_optset
(g22zmc) and nag_blgm_optget (g22znc), a number of additional optional parameters can be specified
for a G22 handle holding the description of a design matrix as returned by nag_blgm_lm_design_ma
trix (g22ycc) in hxdesc.

The value of an optional parameter can be queried using nag_blgm_optget (g22znc).

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

g22ycc NAG Library Manual

g22ycc.14 Mark 26.1



Formula

Min Number of Columns

Number of Columns

Number of Observations

Storage Order

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

Keywords and character values are case and white space insensitive.

Formula a

This optional parameter returns a verbose formula string describing the model, M, used to create the
design matrix. This formula will only contain variable names, the operators ‘þ’ and ‘:’ and any contrast
identifiers present.

Min Number of Columns i

This optional parameter returns the minimum number of columns required to hold the design matrix, X.
In most cases Min Number of Columns ¼ Number of Columns. The one exception is when
fail:code ¼ NW_ALTERNATIVE, that is the size of x was too small but the data matrix given in
dat can be used as the design matrix. In this case, Number of Columns ¼ mx ¼ md and
Min Number of Columns holds the number of columns that would be required if only the relevant
parts of dat were copied into a new array.

Number of Columns i

This optional parameter returns mx, the number of columns in the design matrix.

Number of Observations i

This optional parameter returns n, the number of observations in the design matrix.

Storage Order a

This optional parameter returns how the design matrix, X, is stored in x.

If Storage Order ¼ OBSVAR, Xij, the value for the jth variable of the ith observation of the design
matrix is stored in x½ j� 1ð Þ � pdxþ i� 1�.
If Storage Order ¼ VAROBS, Xij, the value for the jth variable of the ith observation of the design
matrix is stored in x½ i� 1ð Þ � pdxþ j� 1�.
It should be noted that Storage Order is not writeable. If you wish to change the storage order of the
design matrix you need to change Storage Order in hform as described in Section 11 in
nag_blgm_lm_formula (g22yac) prior to calling nag_blgm_lm_design_matrix (g22ycc).

g22 – Linear Model Specification g22ycc

Mark 26.1 g22ycc.15 (last)


	g22ycc
	1 Purpose
	2 Specification
	3 Description
	3.1 Notation
	3.2 Dummy Variables
	3.3 Full Design Matrix
	3.4 Contrasts
	3.4.1 Treatment Contrasts
	3.4.2 Sum Contrasts
	3.4.3 Helmert Contrasts
	3.4.4 Polynomial Contrasts
	3.4.5 When Contrasts Can Be Used

	3.5 Mean Effect

	4 References
	Chambers and Hastie (1992)

	5 Arguments
	hform
	hddesc
	dat
	pddat
	sddat
	hxdesc
	x
	pdx
	sdx
	mx
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ARRAY_SIZE
	NE_BAD_PARAM
	NE_FIELD_UNKNOWN
	NE_HANDLE
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL_ARRAY
	NW_ALTERNATIVE
	NW_ARRAY_SIZE
	NW_POTENTIAL_PROBLEM

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	Formula
	Min Number of Columns
	Number of Columns
	Number of Observations
	Storage Order



	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1 
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction




