
NAG Library Function Document

nag_dgejsv (f08khc)

1 Purpose

nag_dgejsv (f08khc) computes the singular value decomposition (SVD) of a real m by n matrix A
where m � n, and optionally computes the left and/or right singular vectors. nag_dgejsv (f08khc)
implements the preconditioned Jacobi SVD of Drmac and Veselic. This is the expert driver function that
calls nag_dgesvj (f08kjc) after certain preconditioning. In most cases nag_dgesvd (f08kbc) or
nag_dgesdd (f08kdc) is sufficient to obtain the SVD of a real matrix. These are much simpler to use
and also handle the case m < n.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgejsv (Nag_OrderType order, Nag_Preprocess joba,
Nag_LeftVecsType jobu, Nag_RightVecsType jobv, Nag_ZeroCols jobr,
Nag_TransType jobt, Nag_Perturb jobp, Integer m, Integer n, double a[],
Integer pda, double sva[], double u[], Integer pdu, double v[],
Integer pdv, double work[], Integer iwork[], NagError *fail)

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its n diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A in descending order of magnitude. The columns of U and V are the left and the right
singular vectors of A. The diagonal of � is computed and stored in the array sva.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.3.1.3 in How to Use the NAG Library and its
Documentation for a more detailed explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.1

http://www.netlib.org/lapack/lug

2: joba – Nag_Preprocess Input

On entry: specifies the form of pivoting for the QR factorization stage; whether an estimate of
the condition number of the scaled matrix is required; and the form of rank reduction that is
performed.

joba ¼ Nag ColpivRrank
The initial QR factorization of the input matrix is performed with column pivoting; no
estimate of condition number is computed; and, the rank is reduced by only the
underflowed part of the triangular factor R. This option works well (high relative accuracy)
if A ¼ BD, with well-conditioned B and arbitrary diagonal matrix D. The accuracy cannot
be spoiled by column scaling. The accuracy of the computed output depends on the
condition of B, and the procedure aims at the best theoretical accuracy.

joba ¼ Nag ColpivRrankCond
Computation as with joba ¼ Nag ColpivRrank with an additional estimate of the condition
number of B. It provides a realistic error bound.

joba ¼ Nag FullpivRrank
The initial QR factorization of the input matrix is performed with full row and column
pivoting; no estimate of condition number is computed; and, the rank is reduced by only
the underflowed part of the triangular factor R. If A ¼ D1 � C �D2 with ill-conditioned
diagonal scalings D1, D2, and well-conditioned matrix C, this option gives higher
accuracy than the joba ¼ Nag ColpivRrank option. If the structure of the input matrix is
not known, and relative accuracy is desirable, then this option is advisable.

joba ¼ Nag FullpivRrankCond
Computation as with joba ¼ Nag FullpivRrank with an additional estimate of the
condition number of B, where A ¼ DB (i.e., B ¼ C �D2). If A has heavily weighted
rows, then using this condition number gives too pessimistic an error bound.

joba ¼ Nag ColpivSVrankAbs
Computation as with joba ¼ Nag ColpivRrank except in the treatment of rank reduction.
In this case, small singular values are to be considered as noise and, if found, the matrix is
treated as numerically rank deficient. The computed SVD A ¼ U�V T restores A up to
f m; nð Þ � �� Ak k, where � is machine precision. This gives the procedure licence to
discard (set to zero) all singular values below n� �� Ak k.

joba ¼ Nag ColpivSVrankRel
Similar to joba ¼ Nag ColpivSVrankAbs. The rank revealing property of the initial QR
factorization is used to reveal (using the upper triangular factor) a gap �rþ1 < ��r in which
case the numerical rank is declared to be r. The SVD is computed with absolute error
bounds, but more accurately than with joba ¼ Nag ColpivSVrankAbs.

C o n s t r a i n t : joba ¼ Nag ColpivRrank, Nag ColpivRrankCond, Nag FullpivRrank,
Nag FullpivRrankCond, Nag ColpivSVrankAbs or Nag ColpivSVrankRel.

3: jobu – Nag_LeftVecsType Input

On entry: specifies options for computing the left singular vectors U .

jobu ¼ Nag LeftSpan
The first n left singular vectors (columns of U) are computed and returned in the array u.

jobu ¼ Nag LeftVecs
All m left singular vectors are computed and returned in the array u.

jobu ¼ Nag NotLeftWork
No left singular vectors are computed, but the array u (with pdu � m and second
dimension at least n) is available as workspace for computing right singular values. See
the description of u.

f08khc NAG Library Manual

f08khc.2 Mark 27.1

jobu ¼ Nag NotLeftVecs
No left singular vectors are computed. u is not referenced when jobv ¼ Nag NotRightVecs
or Nag NotRightWork.

Constraint: jobu ¼ Nag LeftSpan, Nag LeftVecs, Nag NotLeftWork or Nag NotLeftVecs.

4: jobv – Nag_RightVecsType Input

On entry: specifies options for computing the right singular vectors V .

jobv ¼ Nag RightVecs
the n right singular vectors (columns of V) are computed and returned in the array v;
Jacobi rotations are not explicitly accumulated.

jobv ¼ Nag RightVecsJRots
the n right singular vectors (columns of V) are computed and returned in the array v, but
they are computed as the product of Jacobi rotations. This option is allowed only if
jobu ¼ Nag LeftSpan or Nag LeftVecs, i.e., in computing the full SVD.

This is equivalent to multiplying the input matrix, on the right, by the matrix V .

jobv ¼ Nag NotRightWork
No right singular values are computed, but the array v (with pdv � n and second
dimension at least n) is available as workspace for computing left singular values. See the
description of v.

jobv ¼ Nag NotRightVecs
No right singular vectors are computed. v is not referenced when jobu ¼ Nag NotLeftVecs
or Nag NotLeftWork or jobt ¼ Nag NoTrans or m 6¼ n.

Constraints:

jobv ¼ Nag RightVecs, Nag RightVecsJRots, Nag NotRightWork or Nag NotRightVecs;
if jobu ¼ Nag NotLeftWork or Nag NotLeftVecs, jobv 6¼ Nag RightVecsJRots.

5: jobr – Nag_ZeroCols Input

On entry: specifies the conditions under which columns of A are to be set to zero. This
effectively specifies a lower limit on the range of singular values; any singular values below this
limit are (through column zeroing) set to zero. If A 6¼ 0 is scaled so that the largest column (in
the Euclidean norm) of cA is equal to the square root of the overflow threshold, then jobr allows
the function to kill columns of A whose norm in cA is less than

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin

p
(for

jobr ¼ Nag ZeroColsRestrict), or less than sfmin=� (otherwise). sfmin is the safe range
argument, as returned by function nag_real_safe_small_number (X02AMC).

jobr ¼ Nag ZeroColsNormal
Only set to zero those columns of A for which the norm of corresponding column of
cA < sfmin=�, that is, those columns that are effectively zero (to machine precision)
anyway. If the condition number of A is greater than the overflow threshold �, where � is
the value returned by nag_real_largest_number (X02ALC), you are recommended to use
function nag_dgesvj (f08kjc).

jobr ¼ Nag ZeroColsRestrict
Set to zero those columns of A for which the norm of the corresponding column of
cA <

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin

p
. This approximately represents a restricted range for � cAð Þ offfiffiffiffiffiffiffiffiffiffiffiffi

sfmin
p

;
ffiffiffi
�

p� �
.

For computing the singular values in the full range from the safe minimum up to the overflow
threshold use nag_dgesvj (f08kjc).

Suggested value: jobr ¼ Nag ZeroColsRestrict.

Constraint: jobr ¼ Nag ZeroColsNormal or Nag ZeroColsRestrict.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.3

6: jobt – Nag_TransType Input

On entry: specifies, in the case n ¼ m, whether the function is permitted to use the transpose of
A for improved efficiency. If the matrix is square then the procedure may use transposed A if AT

seems to be better with respect to convergence. If the matrix is not square, jobt is ignored. The
decision is based on two values of entropy over the adjoint orbit of ATA. See the descriptions of
work½5� and work½6�.
jobt ¼ Nag Trans

If n ¼ m, perform an entropy test and then transpose if the test indicates possibly faster
convergence of the Jacobi process if AT is taken as input. If A is replaced with AT, then
the row pivoting is included automatically.

jobt ¼ Nag NoTrans
No entropy test and no transposition is performed.

The option jobt ¼ Nag Trans can be used to compute only the singular values, or the full SVD
(U , � and V). In the case where only one set of singular vectors (U or V) is required, the caller
must still provide both u and v, as one of the matrices is used as workspace if the matrix A is
transposed. See the descriptions of u and v.

Constraint: jobt ¼ Nag Trans or Nag NoTrans.

7: jobp – Nag_Perturb Input

On entry: specifies whether the function should be allowed to introduce structured perturbations
to drown denormalized numbers. For details see Drmac and Veselic (2008a) and Drmac and
Veselic (2008b). For the sake of simplicity, these perturbations are included only when the full
SVD or only the singular values are requested.

jobp ¼ Nag PerturbOn
Introduce perturbation if A is found to be very badly scaled (introducing denormalized
numbers).

jobp ¼ Nag PerturbOff
Do not perturb.

Constraint: jobp ¼ Nag PerturbOn or Nag PerturbOff.

8: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

9: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: m � n � 0.

10: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: the contents of a are overwritten.

f08khc NAG Library Manual

f08khc.4 Mark 27.1

11: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

12: sva½n� – double Output

On exit: the, possibly scaled, singular values of A.

The singular values of A are �i ¼ �sva½i � 1�, for i ¼ 1; 2; . . . ; n, where � ¼ work½0�=work½1�.
Normally � ¼ 1 and no scaling is required to obtain the singular values. However, if the largest
singular value of A overflows or if small singular values have been saved from underflow by
scaling the input matrix A, then � 6¼ 1.

If jobr ¼ Nag ZeroColsRestrict then some of the singular values may be returned as exact zeros
because they are below the numerical rank threshold or are denormalized numbers.

13: u½dim� – double Output

Note: the dimension, dim, of the array u must be at least

max 1;pdu�mð Þ when jobu ¼ Nag LeftVecs;
max 1;pdu� nð Þ when jobu ¼ Nag LeftSpan or Nag NotLeftWork and
order ¼ Nag ColMajor;
max 1;m� pduð Þ when jobu ¼ Nag LeftSpan or Nag NotLeftWork and
order ¼ Nag RowMajor;
max 1;mð Þ otherwise.

The i; jð Þth element of the matrix U is stored in

u½ j� 1ð Þ � pduþ i� 1� when order ¼ Nag ColMajor;
u½ i� 1ð Þ � pduþ j� 1� when order ¼ Nag RowMajor.

On exit: if jobu ¼ Nag LeftSpan, u contains the m by n matrix of the left singular vectors.

If jobu ¼ Nag LeftVecs, u contains the m by m matrix of the left singular vectors, including an
orthonormal basis of the orthogonal complement of Range(A).

u is not referenced when jobu ¼ Nag NotLeftWork or Nag NotLeftVecs and one of the
following is satisfied:

jobv ¼ Nag NotRightWork or Nag NotRightVecs, or

n ¼ 1, or

A is the zero matrix.

14: pdu – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array u.

Constraints:

if order ¼ Nag ColMajor,

if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1;mð Þ;
otherwise pdu � 1.;

if order ¼ Nag RowMajor,

if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1; nð Þ;
otherwise pdu � 1..

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.5

15: v½dim� – double Output

Note: the dimension, dim, of the array v must be at least

max 1;pdv� nð Þ when jobv ¼ Nag RightVecs, Nag RightVecsJRots or
Nag NotRightWork;
1 otherwise.

The i; jð Þth element of the matrix V is stored in

v½ j� 1ð Þ � pdvþ i� 1� when order ¼ Nag ColMajor;
v½ i� 1ð Þ � pdvþ j� 1� when order ¼ Nag RowMajor.

On exit: if jobv ¼ Nag RightVecs or Nag RightVecsJRots, v contains the n by n matrix of the
right singular vectors.

v is not referenced when jobv ¼ Nag NotRightWork or Nag NotRightVecs and one of the
following is satisfied:

jobu ¼ Nag LeftSpan or Nag LeftVecs and jobt ¼ Nag Trans, or

n ¼ 1, or

A is the zero matrix.

16: pdv – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array v.

Constraints:

if jobv ¼ Nag RightVecs, Nag RightVecsJRots or Nag NotRightWork, pdv � max 1; nð Þ;
otherwise pdv � 1.

17: work½7� – double Output

On exit: contains information about the completed job.

work½0�
� ¼ work½0�=work½1� is the scaling factor such that �i ¼ �sva½i � 1�, for i ¼ 1; 2; . . . ; n
are the computed singular values of A. (See the description of sva.)

work½1�
See the description of work½0�.

work½2�
sconda, an estimate for the condition number of column equilibrated A (if
joba ¼ Nag ColpivRrankCond or Nag FullpivRrankCond). sconda is an estimate offfi

RTRð Þ�1
��� ���

1

� �r
. It is computed using nag_dpocon (f07fgc) . It satisfies

n�1
4 � sconda � R�1

�� ��
2
� n

1
4 � sconda where R is the triangular factor from the QR

factorization of A. However, if R is truncated and the numerical rank is determined to be
strictly smaller than n, sconda is returned as �1, thus indicating that the smallest singular
values might be lost.

If full SVD is needed, and you are familiar with the details of the method, the following two
condition numbers are useful for the analysis of the algorithm.

work½3�
An estimate of the scaled condition number of the triangular factor in the first QR
factorization.

work½4�
An estimate of the scaled condition number of the triangular factor in the second QR
factorization.

f08khc NAG Library Manual

f08khc.6 Mark 27.1

The following two parameters are computed if jobt ¼ Nag Trans.

work½5�
The entropy of ATA: this is the Shannon entropy of diagATA= traceATA taken as a point
in the probability simplex.

work½6�
The entropy of AAT.

18: iwork½3� – Integer Output

On exit: contains information about the completed job.

iwork½0�
The numerical rank of A determined after the initial QR factorization with pivoting. See
the descriptions of joba and jobr.

iwork½1�
The number of computed nonzero singular values.

iwork½2�
If nonzero, a warning message: If iwork½2� ¼ 1 then some of the column norms of A were
denormalized (tiny) numbers. The requested high accuracy is not warranted by the data.

19: fail – NagError * Input/Output

The NAG error argument (see Section 3.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONSTRAINT

On entry, jobv ¼ valueh i and jobu ¼ valueh i.
C o n s t r a i n t : jobv ¼ Nag RightVecs, Nag RightVecsJRots, Nag NotRightWork o r
Nag NotRightVecs and
if jobu ¼ Nag NotLeftWork or Nag NotLeftVecs, jobv 6¼ Nag RightVecsJRots.

NE_CONVERGENCE

nag_dgejsv (f08khc) did not converge in the allowed number of iterations (30). The computed
values might be inaccurate.

NE_ENUM_INT_2

On entry, jobu ¼ valueh i, m ¼ valueh i and pdu ¼ valueh i.
Constraint: if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1;mð Þ;
otherwise pdu � 1.

On entry, jobv ¼ valueh i, pdv ¼ valueh i and n ¼ valueh i.
C o n s t r a i n t : i f jobv ¼ Nag RightVecs, Nag RightVecsJRots o r Nag NotRightWork,
pdv � max 1; nð Þ;
otherwise pdv � 1.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.7

NE_ENUM_INT_3

On entry, jobu ¼ valueh i, pdu ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1; nð Þ;
otherwise pdu � 1.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

On entry, pdu ¼ valueh i.
Constraint: pdu > 0.

On entry, pdv ¼ valueh i.
Constraint: pdv > 0.

NE_INT_2

On entry, m ¼ valueh i and n ¼ valueh i.
Constraint: m � n � 0.

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1;nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;
and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_dgejsv (f08khc) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

nag_dgejsv (f08khc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

f08khc NAG Library Manual

f08khc.8 Mark 27.1

9 Further Comments

nag_dgejsv (f08khc) implements a preconditioned Jacobi SVD algorithm. It uses nag_dgeqrf (f08aec),
nag_dgelqf (f08ahc) and nag_dgeqp3 (f08bfc) as preprocessors and preconditioners. Optionally, an
additional row pivoting can be used as a preprocessor, which in some cases results in much higher
accuracy. An example is matrix A with the structure A ¼ D1CD2, where D1, D2 are arbitrarily ill-
conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the
first QR factorizations provides accuracy dependent on the condition number of C, and independent of
D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.
Further, if A can be written as A ¼ BD, with well-conditioned B and some diagonal D, then the high
accuracy is guaranteed, both theoretically and in software, independent of D.

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78

�0:48 �3:09 0:99 �0:21
1:07 1:22 0:79 0:63

�2:35 2:93 �1:45 2:30
0:62 �7:39 1:03 �2:57

0
BBBBB@

1
CCCCCA
;

together with the condition number of A and approximate error bounds for the computed singular
values and vectors.

10.1 Program Text

/* nag_dgejsv (f08khc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double eps, serrbd;
Integer exit_status = 0;
Integer pda, pdu, pdv;
Integer i, j, m, n, n_uvecs, n_vvecs;
/* Arrays */
double *a = 0, *rcondu = 0, *rcondv = 0, *s = 0, *u = 0, *v = 0;
double work[7];
Integer iwork[3];
char nag_enum_arg[40];

/* Nag Types */
Nag_OrderType order;
Nag_Preprocess joba;
Nag_LeftVecsType jobu;
Nag_RightVecsType jobv;
Nag_ZeroCols jobr;
Nag_TransType jobt;
Nag_Perturb jobp;
NagError fail;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.9

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I-1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J-1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgejsv (f08khc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &m, &n);
#endif

if (n < 0 || m < n) {
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;;

}

/* Read Nag type arguments by name and convert to value */
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

joba = (Nag_Preprocess) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

jobu = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

jobv = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

jobr = (Nag_ZeroCols) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

jobt = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
#ifdef _WIN32

scanf_s(" %39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n]", nag_enum_arg);
#endif

jobp = (Nag_Perturb) nag_enum_name_to_value(nag_enum_arg);

f08khc NAG Library Manual

f08khc.10 Mark 27.1

/* Size of u and v depends on some of the above Nag type arguments. */
n_uvecs = 1;
if (jobu == Nag_LeftVecs) {

n_uvecs = m;
}
else if (jobu == Nag_LeftSpan) {

n_uvecs = n;
}
else if (jobu == Nag_NotLeftWork && jobv == Nag_RightVecs &&

jobt == Nag_Trans && m == n) {
n_uvecs = m;

}
if (jobv == Nag_NotRightVecs) {

n_vvecs = 1;
}
else {

n_vvecs = n;
}

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdu = m;
pdv = n;

#else
pda = n;
pdu = n_uvecs;
pdv = n_vvecs;

#endif

if (!(a = NAG_ALLOC(m * n, double)) ||
!(rcondu = NAG_ALLOC(m, double)) ||
!(rcondv = NAG_ALLOC(m, double)) ||
!(s = NAG_ALLOC(n, double)) ||
!(u = NAG_ALLOC(m * n_uvecs, double)) ||
!(v = NAG_ALLOC(n_vvecs * n_vvecs, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read the m by n matrix A from data file */
for (i = 1; i <= m; i++)

#ifdef _WIN32
for (j = 1; j <= n; j++)

scanf_s("%lf", &A(i, j));
#else

for (j = 1; j <= n; j++)
scanf("%lf", &A(i, j));

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* nag_dgejsv (f08khc)
* Compute the singular values and left and right singular vectors
* of A (A = U*S*V^T, m>=n).
*/

nag_dgejsv(order, joba, jobu, jobv, jobr, jobt, jobp, m, n, a, pda, s, u,
pdu, v, pdv, work, iwork, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dgejsv (f08khc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Get the machine precision, eps and compute the approximate
* error bound for the computed singular values. Note that for
* the 2-norm, s[0] = norm(A).
*/

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.11

eps = nag_machine_precision;
serrbd = eps * s[0];

/* Print (possibly scaled) singular values. */
if (fabs(work[0] - work[1]) < 2.0 * eps) {

/* No scaling required */
printf("Singular values\n");
for (j = 0; j < n; j++)

printf("%8.4f", s[j]);
}
else {

printf("Scaled singular values\n");
for (j = 0; j < n; j++)

printf("%8.4f", s[j]);
printf("\nFor true singular values, multiply by a/b,\n");
printf("where a = %f and b = %f", work[0], work[1]);

}
printf("\n\n");

/* Print left and right (spanning) singular vectors, if requested. using
* nag_gen_real_mat_print (x04cac)
* Print real general matrix (easy-to-use)
*/

if (jobu == Nag_LeftVecs || jobu == Nag_LeftSpan) {
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n, u,

pdu, "Left singular vectors", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}
if (jobv == Nag_RightVecs || jobv == Nag_RightVecsJRots) {

printf("\n");
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, v,

pdv, "Right singular vectors", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}

/* nag_ddisna (f08flc)
* Estimate reciprocal condition numbers for the singular vectors.
*/

nag_ddisna(Nag_LeftSingVecs, m, n, s, rcondu, &fail);
if (fail.code == NE_NOERROR)

nag_ddisna(Nag_RightSingVecs, m, n, s, rcondv, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ddisna (f08flc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

if (joba == Nag_ColpivRrankCond || joba == Nag_FullpivRrankCond) {
printf("\n\nEstimate of the condition number of column equilibrated A\n");
printf("%11.1e", work[2]);

}

/* Print the approximate error bounds for the singular values and vectors. */
printf("\n\nError estimate for the singular values\n%11.1e", serrbd);

printf("\n\nError estimates for left singular vectors\n");
for (i = 0; i < n; i++)

printf("%11.1e", serrbd / rcondu[i]);

f08khc NAG Library Manual

f08khc.12 Mark 27.1

printf("\n\nError estimates for right singular vectors\n");
for (i = 0; i < n; i++)

printf("%11.1e", serrbd / rcondv[i]);
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(rcondu);
NAG_FREE(rcondv);
NAG_FREE(s);
NAG_FREE(u);
NAG_FREE(v);

return exit_status;
}

10.2 Program Data

nag_dgejsv (f08khc) Example Program Data

6 4 : m and n

Nag_ColpivRrankCond : joba
Nag_LeftSpan : jobu
Nag_RightVecs : jobv
Nag_ZeroColsRestrict : jobr
Nag_NoTrans : jobt
Nag_PerturbOff : jobp

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 : matrix a

10.3 Program Results

nag_dgejsv (f08khc) Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 0.2774 -0.6003 -0.1277 0.1323
2 0.2020 -0.0301 0.2805 0.7034
3 0.2918 0.3348 0.6453 0.1906
4 -0.0938 -0.3699 0.6781 -0.5399
5 -0.4213 0.5266 0.0413 -0.0575
6 0.7816 0.3353 -0.1645 -0.3957

Right singular vectors
1 2 3 4

1 0.1921 -0.8030 0.0041 -0.5642
2 -0.8794 -0.3926 -0.0752 0.2587
3 0.2140 -0.2980 0.7827 0.5027
4 -0.3795 0.3351 0.6178 -0.6017

Estimate of the condition number of column equilibrated A
9.0e+00

Error estimate for the singular values
1.1e-15

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08khc

Mark 27.1 f08khc.13

Error estimates for left singular vectors
1.8e-16 4.8e-16 1.3e-15 2.2e-15

Error estimates for right singular vectors
1.8e-16 4.8e-16 1.3e-15 1.3e-15

f08khc NAG Library Manual

f08khc.14 (last) Mark 27.1

	f08khc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Drmac and Veselic (2008a)
	Drmac and Veselic (2008b)
	Golub and Van Loan (1996)

	5 Arguments
	order
	joba
	jobu
	jobv
	jobr
	jobt
	jobp
	m
	n
	a
	pda
	sva
	u
	pdu
	v
	pdv
	work
	iwork
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONSTRAINT
	NE_CONVERGENCE
	NE_ENUM_INT_2
	NE_ENUM_INT_3
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

