
NAG Library Function Document

nag_glopt_bnd_pso (e05sac)

Note: this function uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

nag_glopt_bnd_pso (e05sac) is designed to search for the global minimum or maximum of an arbitrary
function, using Particle Swarm Optimization (PSO). Derivatives are not required, although these may be
used by an accompanying local minimization function if desired. nag_glopt_bnd_pso (e05sac) is
essentially identical to nag_glopt_nlp_pso (e05sbc), but with a simpler interface and with various
optional parameters removed; otherwise most arguments are identical. In particular, nag_glopt_bnd_pso
(e05sac) does not handle general constraints.

2 Specification

#include <nag.h>
#include <nage05.h>

void nag_glopt_bnd_pso (Integer ndim, Integer npar, double xb[], double *fb,
const double bl[], const double bu[],

void (*objfun)(Integer *mode, Integer ndim, const double x[],
double *objf, double vecout[], Integer nstate, Nag_Comm *comm),

void (*monmod)(Integer ndim, Integer npar, double x[],
const double xb[], double fb, const double xbest[],
const double fbest[], const Integer itt[], Nag_Comm *comm,
Integer *inform),

Integer iopts[], double opts[], Nag_Comm *comm, Integer itt[],
Integer *inform, NagError *fail)

Before calling nag_glopt_bnd_pso (e05sac), nag_glopt_opt_set (e05zkc) must be called with optstr set
to ‘Initialize = e05sac’. Optional parameters may also be specified by calling nag_glopt_opt_set
(e05zkc) before the call to nag_glopt_bnd_pso (e05sac).

3 Description

nag_glopt_bnd_pso (e05sac) uses a stochastic method based on Particle Swarm Optimization (PSO) to
search for the global optimum of a nonlinear function F , subject to a set of bound constraints on the
variables. In the PSO algorithm (see Section 11), a set of particles is generated in the search space, and
advances each iteration to (hopefully) better positions using a heuristic velocity based upon inertia,
cognitive memory and global memory. The inertia is provided by a decreasingly weighted contribution
from a particles current velocity, the cognitive memory refers to the best candidate found by an
individual particle and the global memory refers to the best candidate found by all the particles. This
allows for a global search of the domain in question.

Further, this may be coupled with a selection of local minimization functions, which may be called
during the iterations of the heuristic algorithm, the interior phase, to hasten the discovery of locally
optimal points, and after the heuristic phase has completed to attempt to refine the final solution, the
exterior phase. Different options may be set for the local optimizer in each phase.

Without loss of generality, the problem is assumed to be stated in the following form:

minimize
x2Rndim

F xð Þ subject to l � x � u;

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.1

where the objective F xð Þ is a scalar function, x is a vector in Rndim and the vectors l � u are lower and
upper bounds respectively for the ndim variables. The objective function may be nonlinear. Continuity
of F is not essential. For functions which are smooth and primarily unimodal, faster solutions will
almost certainly be achieved by using Chapter e04 functions directly.

For functions which are smooth and multi-modal, gradient dependent local minimization functions may
be coupled with nag_glopt_bnd_pso (e05sac).

For multi-modal functions for which derivatives cannot be provided, particularly functions with a
significant level of noise in their evaluation, nag_glopt_bnd_pso (e05sac) should be used either alone,
or coupled with nag_opt_simplex_easy (e04cbc).

The ndim lower and upper box bounds on the variable x are included to initialize the particle swarm
into a finite hypervolume, although their subsequent influence on the algorithm is user determinable
(see the option Boundary in Section 12). It is strongly recommended that sensible bounds are provided
for all variables.

nag_glopt_bnd_pso (e05sac) may also be used to maximize the objective function (see the option
Optimize).

Due to the nature of global optimization, unless a predefined target is provided, there is no definitive
way of knowing when to end a computation. As such several stopping heuristics have been
implemented into the algorithm. If any of these is achieved, nag_glopt_bnd_pso (e05sac) will exit with
fail:code ¼ NW_SOLUTION_NOT_GUARANTEED, and the parameter inform will indicate which
criteria was reached. See inform for more information.

In addition, you may provide your own stopping criteria through monmod and objfun.

nag_glopt_nlp_pso (e05sbc) provides a comprehensive interface, allowing for the inclusion of general
nonlinear constraints.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Kennedy J and Eberhart R C (1995) Particle Swarm Optimization Proceedings of the 1995 IEEE
International Conference on Neural Networks 1942–1948

Koh B, George A D, Haftka R T and Fregly B J (2006) Parallel Asynchronous Particle Swarm
Optimization International Journal for Numerical Methods in Engineering 67(4) 578–595

Vaz A I and Vicente L N (2007) A Particle Swarm Pattern Search Method for Bound Constrained
Global Optimization Journal of Global Optimization 39(2) 197–219 Kluwer Academic Publishers

5 Arguments

Note: for descriptions of the symbolic variables, see Section 11.

1: ndim – Integer Input

On entry: ndim, the number of dimensions.

Constraint: ndim � 1.

2: npar – Integer Input

On entry: npar , the number of particles to be used in the swarm. Assuming all particles remain
within bounds, each complete iteration will perform at least npar function evaluations.
Otherwise, significantly fewer objective function evaluations may be performed.

Suggested value: npar ¼ 10� ndim.

Constraint: npar � 5.

e05sac NAG Library Manual

e05sac.2 Mark 26

3: xb½ndim� – double Output

On exit: the location of the best solution found, ~x, in Rndim.

4: fb – double * Output

On exit: the objective value of the best solution, ~f ¼ F ~xð Þ.

5: bl½ndim� – const double Input
6: bu½ndim� – const double Input

On entry: bl is l, the array of lower bounds, bu is u, the array of upper bounds. The ndim entries
in bl and bu must contain the lower and upper simple (box) bounds of the variables respectively.
These must be provided to initialize the sample population into a finite hypervolume, although
their subsequent influence on the algorithm is user determinable (see the option Boundary in
Section 12).

If bl½i� 1� ¼ bu½i� 1� for any i 2 1; . . . ; ndimf g, variable i will remain locked to bl½i� 1�
regardless of the Boundary option selected.

It is strongly advised that you place sensible lower and upper bounds on all variables, even if
your model allows for variables to be unbounded (using the option Boundary ¼ ignore) since
these define the initial search space.

Constraints:

bl½i � 1� � bu½i � 1�, for i ¼ 1; 2; . . . ; ndim;
bl½i� 1� 6¼ bu½i� 1� for at least one i 2 1; . . . ;ndimf g.

7: objfun – function, supplied by the user External Function

objfun must, depending on the value of mode, calculate the objective function and/or calculate
the gradient of the objective function for a ndim-variable vector x. Gradients are only required if
a local minimizer has been chosen which requires gradients. See the option Local Minimizer for
more information.

The specification of objfun is:

void objfun (Integer *mode, Integer ndim, const double x[],
double *objf, double vecout[], Integer nstate, Nag_Comm *comm)

1: mode – Integer * Input/Output

On entry: indicates which functionality is required.

mode ¼ 0
F xð Þ should be returned in objf. The value of objf on entry may be used as an
upper bound for the calculation. Any expected value of F xð Þ that is greater than
objf may be approximated by this upper bound; that is objf can remain unaltered.

mode ¼ 1
Local Minimizer ¼ e04ucc only
First derivatives can be evaluated and returned in vecout. Any unaltered elements
of vecout will be approximated using finite differences.

mode ¼ 2
Local Minimizer ¼ e04ucc only
F xð Þ must be calculated and returned in objf, and available first derivatives can
be evaluated and returned in vecout. Any unaltered elements of vecout will be
approximated using finite differences.

mode ¼ 5
F xð Þ must be calculated and returned in objf. The value of objf on entry may not
be used as an upper bound.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.3

mode ¼ 6
Local Minimizer ¼ e04dgc only
All first derivatives must be evaluated and returned in vecout.

mode ¼ 7
Local Minimizer ¼ e04dgc only
F xð Þ must be calculated and returned in objf, and all first derivatives must be
evaluated and returned in vecout.

On exit: if the value of mode is set to be negative, then nag_glopt_bnd_pso (e05sac)
will exit as soon as possible with fail:code ¼ NE_USER_STOP and inform ¼ mode.

2: ndim – Integer Input

On entry: the number of dimensions.

3: x½ndim� – const double Input

On entry: x, the point at which the objective function and/or its gradient are to be
evaluated.

4: objf – double * Input/Output

On entry: the value of objf passed to objfun varies with the argument mode.

mode ¼ 0
objf is an upper bound for the value of F xð Þ, often equal to the best value of
F xð Þ found so far by a given particle. Only objective function values less than
the value of objf on entry will be used further. As such this upper bound may be
used to stop further evaluation when this will only increase the objective function
value above the upper bound.

mode ¼ 1, 2, 5, 6 or 7
objf is meaningless on entry.

On exit: the value of objf returned varies with the argument mode.

mode ¼ 0
objf must be the value of F xð Þ. Only values of F xð Þ strictly less than objf on
entry need be accurate.

mode ¼ 1 or 6
Need not be set.

mode ¼ 2, 5 or 7
F xð Þ must be calculated and returned in objf. The entry value of objf may not be
used as an upper bound.

5: vecout½ndim� – double Input/Output

On entry: if Local Minimizer ¼ e04ucc, the values of vecout are used internally to
indicate whether a finite difference approximation is required. See nag_opt_nlp
(e04ucc).

On exit: the required values of vecout returned to the calling function depend on the
value of mode.

mode ¼ 0 or 5
The value of vecout need not be set.

mode ¼ 1 or 2
vecout can contain components of the gradient of the objective function @F

@xi
for

some i ¼ 1; 2; . . . ndim, or acceptable approximations. Any unaltered elements of
vecout will be approximated using finite differences.

e05sac NAG Library Manual

e05sac.4 Mark 26

mode ¼ 6 or 7
vecout must contain the gradient of the objective function @F

@xi
for all

i ¼ 1; 2; . . . ndim. Approximation of the gradient is strongly discouraged, and
no finite difference approximations will be performed internally (see
nag_opt_conj_grad (e04dgc)).

6: nstate – Integer Input

On entry: nstate indicates various stages of initialization throughout the function. This
allows for permanent global arguments to be initialized the least number of times. For
example, you may initialize a random number generator seed.

nstate ¼ 2
objfun is called for the very first time. You may save computational time if
certain data must be read or calculated only once.

nstate ¼ 1
objfun is called for the first time by a NAG local minimization function. You
may save computational time if certain data required for the local minimizer need
only be calculated at the initial point of the local minimization.

nstate ¼ 0
Used in all other cases.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_bnd_pso (e05sac) you
may allocate memory and initialize these pointers with various quantities for use
by objfun when called from nag_glopt_bnd_pso (e05sac) (see Section 2.3.1.1 in
How to Use the NAG Library and its Documentation).

8: monmod – function, supplied by the user External Function

A user-specified monitoring and modification function. monmod is called once every complete
iteration after a finalization check. It may be used to modify the particle locations that will be
evaluated at the next iteration. This permits the incorporation of algorithmic modifications such
as including additional advection heuristics and genetic mutations. monmod is only called during
the main loop of the algorithm, and as such will be unaware of any further improvement from the
final local minimization. If no monitoring and/or modification is required, monmod may be
NULLFN.

The specification of monmod is:

void monmod (Integer ndim, Integer npar, double x[],
const double xb[], double fb, const double xbest[],
const double fbest[], const Integer itt[], Nag_Comm *comm,
Integer *inform)

1: ndim – Integer Input

On entry: the number of dimensions.

2: npar – Integer Input

On entry: the number of particles.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.5

3: x½ndim� npar� – double Input/Output

Note: the ith component of the jth particle, xj ið Þ, is stored in x½ j� 1ð Þ � ndimþ i� 1�.
On entry: the npar particle locations, xj, which will currently be used during the next
iteration unless altered in monmod.

On exit: the particle locations to be used during the next iteration.

4: xb½ndim� – const double Input

On entry: the location, ~x, of the best solution yet found.

5: fb – double Input

On entry: the objective value, ~f ¼ F ~xð Þ, of the best solution yet found.

6: xbest½ndim� npar� – const double Input

Note: the ith component of the position of the jth particle's cognitive memory, x̂j ið Þ, is
stored in xbest½ j� 1ð Þ � ndimþ i� 1�.
On entry: the locations currently in the cognitive memory, x̂j , for j ¼ 1; 2; . . . ; npar (see
Section 11).

7: fbest½npar� – const double Input

On entry: the objective values currently in the cognitive memory, F x̂j
� �

, for
j ¼ 1; 2; . . . ;npar.

8: itt½6� – const Integer Input

On entry: iteration and function evaluation counters (see description of itt below).

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to
monmod.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_glopt_bnd_pso (e05sac) you
may allocate memory and initialize these pointers with various quantities for use
by monmod when called from nag_glopt_bnd_pso (e05sac) (see Section 2.3.1.1
in How to Use the NAG Library and its Documentation).

10: inform – Integer * Input/Output

On entry: inform ¼ 0

On exit: setting inform < 0 will cause near immediate exit from nag_glopt_bnd_pso
(e05sac). This value will be returned as inform with fail:code ¼ NE_USER_STOP. You
need not set inform unless you wish to force an exit.

9: iopts½dim� – Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
iopts in the previous call to nag_glopt_opt_set (e05zkc).

On entry: optional parameter array as generated and possibly modified by calls to
nag_glopt_opt_set (e05zkc). The contents of iopts MUST NOT be modified directly between
calls to nag_glopt_bnd_pso (e05sac), nag_glopt_opt_set (e05zkc) or nag_glopt_opt_get (e05zlc).

e05sac NAG Library Manual

e05sac.6 Mark 26

10: opts½dim� – double Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
opts in the previous call to nag_glopt_opt_set (e05zkc).

On entry: optional parameter array as generated and possibly modified by calls to
nag_glopt_opt_set (e05zkc). The contents of opts MUST NOT be modified directly between
calls to nag_glopt_bnd_pso (e05sac), nag_glopt_opt_set (e05zkc) or nag_glopt_opt_get (e05zlc).

11: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

12: itt½6� – Integer Output

On exit: integer iteration counters for nag_glopt_bnd_pso (e05sac).

itt½0�
Number of complete iterations.

itt½1�
Number of complete iterations without improvement to the current optimum.

itt½2�
Number of particles converged to the current optimum.

itt½3�
Number of improvements to the optimum.

itt½4�
Number of function evaluations performed.

itt½5�
Number of particles reset.

13: inform – Integer * Output

On exit: indicates which finalization criterion was reached. The possible values of inform are:

inform Meaning

< 0 Exit from a user-supplied function.

0 nag_glopt_bnd_pso (e05sac) has detected an error and terminated.

1 The provided objective target has been achieved. (Target Objective Value).

2 The standard deviation of the location of all the particles is below the set
threshold (Swarm Standard Deviation). If the solution returned is not
satisfactory, you may try setting a smaller value of
Swarm Standard Deviation, or try adjusting the options governing the
repulsive phase (Repulsion Initialize, Repulsion Finalize).

3 The total number of particles converged (Maximum Particles Converged) to
the current global optimum has reached the set limit. This is the number of
particles which have moved to a distance less than Distance Tolerance from
the optimum with regard to the L2 norm. If the solution is not satisfactory,
you may consider lowering the Distance Tolerance. However, this may
hinder the global search capability of the algorithm.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.7

4 The maximum number of iterations without improvement
(Maximum Iterations Static) has been reached, and the required number of
particles (Maximum Iterations Static Particles) have converged to the
current optimum. Increasing either of these options will allow the algorithm to
continue searching for longer. Alternatively if the solution is not satisfactory,
re-starting the application several times with Repeatability ¼ OFF may lead
to an improved solution.

5 The maximum number of iterations (Maximum Iterations Completed) has
been reached. If the number of iterations since improvement is small, then a
better solution may be found by increasing this limit, or by using the option
Local Minimizer with corresponding exterior options. Otherwise if the
solution is not satisfactory, you may try re-running the application several
times with Repeatability ¼ OFF and a lower iteration limit, or adjusting the
options governing the repulsive phase (Repulsion Initialize,
Repulsion Finalize).

6 The maximum allowed number of function evaluations
(Maximum Function Evaluations) has been reached. As with inform ¼ 5,
increasing this limit if the number of iterations without improvement is small,
or decreasing this limit and running the algorithm multiple times with
Repeatability ¼ OFF, may provide a superior result.

14: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

nag_glopt_bnd_pso (e05sac) will return fail:code ¼ NE_NOERROR if and only if a finalization
criterion has been reached which can guarantee success. This may only happen if the option
Target Objective Value has been set and reached at a point within the search domain. The
finalization criterion Target Objective Value is not activated using default option settings, and
must be explicitly set using nag_glopt_opt_set (e05zkc) if required.

nag_glopt_bnd_pso (e05sac) will return fail:code ¼ NW_SOLUTION_NOT_GUARANTEED if
no error has been detected, and a finalization criterion has been achieved which cannot guarantee
success. This does not indicate that the function has failed, merely that the returned solution
cannot be guaranteed to be the true global optimum.

The value of inform should be examined to determine which finalization criterion was reached.

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_BOUND

On entry, bl½i� ¼ bu½i� for all i.
Constraint: bu½i� > bl½i� for at least one i.

On entry, bl½ valueh i� ¼ valueh i and bu½ valueh i� ¼ valueh i.
Constraint: bu½i� � bl½i� for all i.

e05sac NAG Library Manual

e05sac.8 Mark 26

NE_DERIV_ERRORS

Derivative checks indicate possible errors in the supplied derivatives. Gradient checks may be
disabled by setting Verify Gradients ¼ OFF.

NE_INT

On entry, ndim ¼ valueh i.
Constraint: ndim � 1.

On entry, npar ¼ valueh i.
Constraint: npar � 5� num threads, where num_threads is the value returned by the OpenMP
environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of this
function.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_INVALID_OPTION

Either the option arrays have not been initialized for nag_glopt_bnd_pso (e05sac), or they have
become corrupted.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_USER_STOP

User requested exit valueh i during call to monmod.

User requested exit valueh i during call to objfun.

NW_FAST_SOLUTION

If the option Target Warning has been activated, this indicates that the Target Objective Value
has been achieved to specified tolerances at a sufficiently constrained point, either during the
initialization phase, or during the first two iterations of the algorithm. While this is not
necessarily an error, it may occur if:

(i) The target was achieved at the first point sampled by the function. This will be the mean of
the lower and upper bounds.

(ii) The target may have been achieved at a randomly generated sample point. This will always
be a possibility provided that the domain under investigation contains a point with a target
objective value.

(iii) If the Local Minimizer has been set, then a sample point may have been inside the basin of
attraction of a satisfactory point. If this occurs repeatedly when the function is called, it may
imply that the objective is largely unimodal, and that it may be more efficient to use the
function selected as the Local Minimizer directly.

Assuming that objfun is correct, you may wish to set a better Target Objective Value, or a
stricter Target Objective Tolerance.

NW_SOLUTION_NOT_GUARANTEED

A finalization criterion was reached that cannot guarantee success.
On exit, inform ¼ valueh i.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.9

7 Accuracy

I f fail:code ¼ NE_NOERROR (or fail:code ¼ NW_FAST_SOLUTION) or fail:code ¼
NW_SOLUTION_NOT_GUARANTEED on exit, either a Target Objective Value or finalization
criterion has been reached, depending on user selected options. As with all global optimization
software, the solution achieved may not be the true global optimum. Various options allow for either
greater search diversity or faster convergence to a (local) optimum (See Sections 11 and 12).

Provided the objective function and constraints are sufficiently well behaved, if a local minimizer is
used in conjunction with nag_glopt_bnd_pso (e05sac), then it is more likely that the final result will at
least be in the near vicinity of a local optimum, and due to the global search characteristics of the
particle swarm, this solution should be superior to many other local optima.

Caution should be used in accelerating the rate of convergence, as with faster convergence, less of the
domain will remain searchable by the swarm, making it increasingly difficult for the algorithm to detect
the basin of attraction of superior local optima. Using the options Repulsion Initialize and
Repulsion Finalize described in Section 12 will help to overcome this, by causing the swarm to
diverge away from the current optimum once no more local improvement is likely.

On successful exit with guaranteed success, fail:code ¼ NE_NOERROR. This may only happen if a
Target Objective Value is assigned and is reached by the algorithm.

On successful exit without guaranteed success, fail:code ¼ NW_SOLUTION_NOT_GUARANTEED is
returned. This will happen if another finalization criterion is achieved without the detection of an error.

In both cases, the value of inform provides further information as to the cause of the exit.

8 Parallelism and Performance

The code for nag_glopt_bnd_pso (e05sac) is not directly threaded for parallel execution. In particular,
none of the user-supplied functions will be called from within a parallel region generated by
nag_glopt_bnd_pso (e05sac).

9 Further Comments

The memory used by nag_glopt_bnd_pso (e05sac) is relatively static throughout. As such,
nag_glopt_bnd_pso (e05sac) may be used in problems with high dimension number (ndim > 100)
without the concern of computational resource exhaustion, although the probability of successfully
locating the global optimum will decrease dramatically with the increase in dimensionality.

Due to the stochastic nature of the algorithm, the result will vary over multiple runs. This is particularly
true if arguments and options are chosen to accelerate convergence at the expense of the global search.
However, the option Repeatability ¼ ON may be set to initialize the internal random number generator
using a preset seed, which will result in identical solutions being obtained.

10 Example

This example uses a particle swarm to find the global minimum of the Schwefel function:

minimize
x2Rndim

f ¼
Xndim
i¼1

xisin
ffiffiffiffiffiffiffi
xij j

p� �

xi 2 �500; 500ð Þ; for i ¼ 1; 2; . . . ;ndim:

In two dimensions the optimum is fmin ¼ �837:966, located at x ¼ �420:97;�420:97ð Þ.
The example demonstrates how to initialize and set the options arrays using nag_glopt_opt_set
(e05zkc), how to query options using nag_glopt_opt_get (e05zlc), and finally how to search for the
global optimum using nag_glopt_bnd_pso (e05sac). The function is minimized several times to
demonstrate using nag_glopt_bnd_pso (e05sac) alone, and coupled with local minimizers. This program
uses the non-default option Repeatability ¼ ON to produce repeatable solutions.

e05sac NAG Library Manual

e05sac.10 Mark 26

10.1 Program Text

/* nag_glopt_bnd_pso (e05sac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage05.h>
#include <nagx02.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL objfun_schwefel(Integer *mode, Integer ndim,
const double x[], double *objf,
double vecout[], Integer nstate,
Nag_Comm *comm);

static void NAG_CALL monmod(Integer ndim, Integer npar, double x[],
const double xb[], double fb,
const double xbest[], const double fbest[],
const Integer itt[], Nag_Comm *comm,
Integer *inform);

#ifdef __cplusplus
}
#endif

static void display_result(Integer ndim, const double xb[], const double
x_target[], double fb, double f_target,
const Integer itt[], Integer inform);

static void display_option(const char *optstr, Nag_VariableType optype,
Integer ivalue, double rvalue, const char *cvalue);

static void get_known_solution(Integer ndim, double x_target[],
double *f_target);

/* Global constants - set the behaviour of the monitoring function.*/
static const Integer detail_level = 0;
static const Integer report_freq = 100;

int main(void)
{

/* This example program demonstrates how to use
* nag_glopt_bnd_pso (e05sac) in standard execution, and with a
* selection of coupled local minimizers.
* The non-default option ’Repeatability = On’ is used here, giving
* repeatable results.
*/

/* Scalars */
Integer ndim = 2, npar = 5;
Integer exit_status = 0, lcvalue = 17;
Integer liopts = 100, lopts = 100;
double fb, f_target, rvalue;
Integer i, inform, ivalue;
/* Arrays */
static double ruser[2] = { -1.0, -1.0 };
char cvalue[17], optstr[81];
double *bl = 0, *bu = 0, opts[100], *xb = 0, *x_target = 0;
Integer iopts[100], itt[6];
/* Nag Types */
Nag_VariableType optype;
NagError fail;
Nag_Comm comm;

/* Print advisory information. */

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.11

printf("nag_glopt_bnd_pso (e05sac) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

printf("Minimization of the Schwefel function.\n\n");

/* Allocate memory. */
if (!(bl = NAG_ALLOC(ndim, double)) || !(bu = NAG_ALLOC(ndim, double)) ||

!(xb = NAG_ALLOC(ndim, double))
|| !(x_target = NAG_ALLOC(ndim, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Store the known solution of the problem for a comparison. */
get_known_solution(ndim, x_target, &f_target);

/* Set box bounds for problem. */
for (i = 0; i < ndim; i++) {

bl[i] = -500.0;
bu[i] = 500.0;

}

/* Initialize fail structures. */
INIT_FAIL(fail);

/* Initialize the option arrays for nag_glopt_bnd_pso (e05sac)
* using nag_glopt_opt_set (e05zkc).
*/

nag_glopt_opt_set("Initialize = e05sac", iopts, liopts, opts, lopts, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Query some default option values. */
printf(" Default Option Queries:\n\n");
/* nag_glopt_opt_get (e05zlc).
* Option getting routine for nag_glopt_bnd_pso (e05sac).
*/

nag_glopt_opt_get("Boundary", &ivalue, &rvalue, cvalue, lcvalue, &optype,
iopts, opts, &fail);

if (fail.code == NE_NOERROR) {
display_option("Boundary", optype, ivalue, rvalue, cvalue);
nag_glopt_opt_get("Maximum Iterations Completed", &ivalue, &rvalue,

cvalue, lcvalue, &optype, iopts, opts, &fail);
}
if (fail.code == NE_NOERROR) {

display_option("Maximum Iterations Completed", optype, ivalue, rvalue,
cvalue);

nag_glopt_opt_get("Distance Tolerance", &ivalue, &rvalue, cvalue, lcvalue,
&optype, iopts, opts, &fail);

}
if (fail.code != NE_NOERROR) {

printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
display_option("Distance Tolerance", optype, ivalue, rvalue, cvalue);

/* -- */

printf("\n1. Solution without using coupled local minimizer.\n\n");

/* Set various options to non-default values if required. */
nag_glopt_opt_set("Repeatability = On", iopts, liopts, opts, lopts, &fail);
if (fail.code == NE_NOERROR)

e05sac NAG Library Manual

e05sac.12 Mark 26

nag_glopt_opt_set("Verify Gradients = Off", iopts, liopts, opts, lopts,
&fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Boundary = Hyperspherical", iopts, liopts, opts, lopts,

&fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Maximum iterations static = 150", iopts, liopts, opts,
lopts, &fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Repulsion Initialize = 30", iopts, liopts, opts, lopts,

&fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Repulsion Finalize = 30", iopts, liopts, opts, lopts,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_glopt_bnd_pso (e05sac).
* Global optimization using particle swarm algorithm (PSO),
* bound constraints only.
*/

nag_glopt_bnd_pso(ndim, npar, xb, &fb, bl, bu, objfun_schwefel, monmod,
iopts, opts, &comm, itt, &inform, &fail);

/* It is essential to test fail.code on exit. */
switch (fail.code) {
case NE_NOERROR:
case NW_FAST_SOLUTION:
case NW_SOLUTION_NOT_GUARANTEED:

/* No errors, best found solution at xb returned in fb. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

case NE_USER_STOP:
/* Exit flag set in objfun or monmod and returned in inform. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

default: /* An error was detected. */
exit_status = 1;
printf("Error from nag_glopt_bnd_pso (e05sac)\n%s\n", fail.message);
goto END;

}

/* -- */

printf("2. Solution using coupled local minimizer "
"nag_opt_simplex_easy (e04cbc).\n\n");

/* Initialize fail structures. */
INIT_FAIL(fail);

/* Set an objective target. */
#ifdef _WIN32

sprintf_s(optstr, (unsigned)_countof(optstr),
"Target Objective Value = %32.16e", f_target);

#else
sprintf(optstr, "Target Objective Value = %32.16e", f_target);

#endif
nag_glopt_opt_set(optstr, iopts, liopts, opts, lopts, &fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Target Objective Tolerance = 1.0e-5", iopts, liopts,
opts, lopts, &fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Target Objective Safeguard = 1.0e-8", iopts, liopts,

opts, lopts, &fail);

/* Set the local minimizer to be nag_opt_simplex_easy (e04cbc)
* and set corresponding options.
*/

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.13

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Local Minimizer = e04cbc", iopts, liopts, opts, lopts,

&fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Local Interior Iterations = 10", iopts, liopts, opts,
lopts, &fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Local Exterior Iterations = 20", iopts, liopts, opts,

lopts, &fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Local Interior Tolerance = 1.0e-4", iopts, liopts,
opts, lopts, &fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Local Exterior Tolerance = 1.0e-4", iopts, liopts,

opts, lopts, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Search for the global optimum. */
nag_glopt_bnd_pso(ndim, npar, xb, &fb, bl, bu, objfun_schwefel, monmod,

iopts, opts, &comm, itt, &inform, &fail);
/* It is essential to test fail.code on exit. */
switch (fail.code) {
case NE_NOERROR:
case NW_FAST_SOLUTION:
case NW_SOLUTION_NOT_GUARANTEED:

/* No errors, best found solution at xb returned in fb. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

case NE_USER_STOP:
/* Exit flag set in objfun or monmod and returned in inform. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

default: /* An error was detected. */
exit_status = 1;
printf("Error from nag_glopt_bnd_pso (e05sac)\n%s\n", fail.message);
goto END;

}

/* --- */

printf("3. Solution using coupled local minimizer "
"nag_opt_conj_grad (e04dgc).\n\n");

/* Initialize fail structures. */
INIT_FAIL(fail);

/* set the local minimizer to be nag_opt_conj_grad (e04dgc)
* and set corresponding options.
*/

nag_glopt_opt_set("Local Minimizer = e04dgc", iopts, liopts, opts, lopts,
&fail);

if (fail.code == NE_NOERROR)
nag_glopt_opt_set("Local Interior Iterations = 5", iopts, liopts, opts,

lopts, &fail);
if (fail.code == NE_NOERROR)

nag_glopt_opt_set("Local Exterior Iterations = 20", iopts, liopts, opts,
lopts, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_glopt_opt_set (e05zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Search for the global optimum. */
nag_glopt_bnd_pso(ndim, npar, xb, &fb, bl, bu, objfun_schwefel, monmod,

iopts, opts, &comm, itt, &inform, &fail);
/* It is essential to test fail.code on exit. */

e05sac NAG Library Manual

e05sac.14 Mark 26

switch (fail.code) {
case NE_NOERROR:
case NW_FAST_SOLUTION:
case NW_SOLUTION_NOT_GUARANTEED:

/* No errors, best found solution at xb returned in fb. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

case NE_USER_STOP:
/* Exit flag set in objfun or monmod and returned in inform. */
display_result(ndim, xb, x_target, fb, f_target, itt, inform);
break;

default: /* An error was detected. */
exit_status = 1;
printf("Error from nag_glopt_bnd_pso (e05sac)\n%s\n", fail.message);
goto END;

}

END:
/* Clean up memory. */
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(xb);
NAG_FREE(x_target);

return exit_status;
}

static void NAG_CALL objfun_schwefel(Integer *mode, Integer ndim,
const double x[], double *objf,
double vecout[], Integer nstate,
Nag_Comm *comm)

{
/* Objective function routine returning the schwefel function and
* its gradient.
*/

Nag_Boolean evalobjf, evalobjg;
Integer i;
if (comm->user[0] == -1.0) {

printf("(User-supplied callback objfun_schwefel, first invocation.)\n");
comm->user[0] = 0.0;

}
/* Test nstate to indicate what stage of computation has been reached. */
switch (nstate) {
case 2:

/* objfun is called for the very first time. */
break;

case 1:
/* objfun is called on entry to a NAG local minimizer. */
break;

default: /* This will be the normal value of nstate. */
;

}
/* Test mode to determine whether to calculate objf and/or objgrd. */
evalobjf = Nag_FALSE;
evalobjg = Nag_FALSE;
switch (*mode) {
case 0:
case 5:

/* Only the value of the objective function is needed. */
evalobjf = Nag_TRUE;
break;

case 1:
case 6:

/* Only the values of the ndim gradients are required. */
evalobjg = Nag_TRUE;
break;

case 2:
case 7:

/* Both the objective function and the ndim gradients are required. */
evalobjf = Nag_TRUE;
evalobjg = Nag_TRUE;

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.15

}
if (evalobjf) {

/* Evaluate the objective function. */
*objf = 0.0;
for (i = 0; i < ndim; i++)

*objf += x[i] * sin(sqrt(fabs(x[i])));
}
if (evalobjg) {

/* Calculate the gradient of the objective function,
* and return the result in vecout.
*/

for (i = 0; i < ndim; i++) {
vecout[i] = sqrt(fabs(x[i]));
vecout[i] = sin(vecout[i]) + 0.5 * vecout[i] * cos(vecout[i]);

}
}

}

static void NAG_CALL monmod(Integer ndim, Integer npar, double x[],
const double xb[], double fb,
const double xbest[], const double fbest[],
const Integer itt[], Nag_Comm *comm,
Integer *inform)

{
Integer i, j;

#define X(J, I) x[(J-1)*ndim + (I-1)]
#define XBEST(J, I) xbest[(J-1)*ndim + (I-1)]

if (comm->user[1] == -1.0) {
printf("(User-supplied callback monmod, first invocation.)\n");
comm->user[1] = 0.0;

}
if (detail_level) {

/* Report on the first iteration, and every report_freq iterations. */
if (itt[0] == 1 || itt[0] % report_freq == 0) {

printf("* Locations of particles\n");
for (j = 1; j <= npar; j++) {

printf(" * Particle %2" NAG_IFMT "\n", j);
for (i = 1; i <= ndim; i++)

printf(" %2" NAG_IFMT " %13.5f\n", i, X(j, i));
}
printf("* Cognitive memory\n");
for (j = 1; j <= npar; j++) {

printf(" * Particle %2" NAG_IFMT "\n", j);
printf(" * Best position\n");
for (i = 1; i <= ndim; i++)

printf(" %2" NAG_IFMT " %13.5f\n", i, XBEST(j, i));
printf(" * Function value at best position\n");
printf(" %13.5f\n", fbest[j - 1]);

}
printf("* Current global optimum candidate\n");
for (i = 1; i <= ndim; i++)

printf(" %2" NAG_IFMT " %13.5f\n", i, xb[i - 1]);
printf("* Current global optimum value\n");
printf(" %13.5f\n\n", fb);

}
}
/* If required set *inform<0 to force exit. */
*inform = 0;

#undef XBEST
#undef X
}

static void display_option(const char *optstr, Nag_VariableType optype,
Integer ivalue, double rvalue, const char *cvalue)

{
/* Subroutine to query optype and print the appropriate option values. */
switch (optype) {
case Nag_Integer:

printf("%-38s: %13" NAG_IFMT "\n", optstr, ivalue);
break;

case Nag_Real:

e05sac NAG Library Manual

e05sac.16 Mark 26

printf("%-38s: %13.4f\n", optstr, rvalue);
break;

case Nag_Character:
printf("%-38s: %13s\n", optstr, cvalue);
break;

case Nag_Integer_Additional:
printf("%-38s: %13" NAG_IFMT " %16s\n", optstr, ivalue, cvalue);
break;

case Nag_Real_Additional:
printf("%-38s: %13.4f %16s\n", optstr, rvalue, cvalue);
break;

default:;
}

}

static void display_result(Integer ndim, const double xb[], const double
x_target[], double fb, double f_target,
const Integer itt[], Integer inform)

{
/* Display final results in comparison to known global optimum. */
Integer i;

/* Display final counters. */
printf(" Algorithm Statistics\n");
printf(" --------------------\n");
printf("%-38s: %13" NAG_IFMT "\n", "Total complete iterations", itt[0]);
printf("%-38s: %13" NAG_IFMT "\n", "Complete iterations since improvement",

itt[1]);
printf("%-38s: %13" NAG_IFMT "\n", "Total particles converged to xb",

itt[2]);
printf("%-38s: %13" NAG_IFMT "\n", "Total improvements to global optimum",

itt[3]);
printf("%-38s: %13" NAG_IFMT "\n", "Total function evaluations", itt[4]);
printf("%-38s: %13" NAG_IFMT "\n\n", "Total particles re-initialized",

itt[5]);
/* Display why finalization occurred. */
switch (inform) {
case 1:

printf("Solution Status : Target value achieved\n");
break;

case 2:
printf("Solution Status : Minimum swarm standard deviation obtained\n");
break;

case 3:
printf("Solution Status : Sufficient number of particles converged\n");
break;

case 4:
printf("Solution Status : Maximum static iterations attained\n");
break;

case 5:
printf("Solution Status : Maximum complete iterations attained\n");
break;

case 6:
printf("Solution Status : Maximum function evaluations exceeded\n");
break;

default:
if (inform < 0)

printf("Solution Status : User termination, inform = %16" NAG_IFMT "\n",
inform);

else
printf("Solution Status : Termination, an error has been detected\n");

break;
}
/* Display final objective value and location. */
printf(" Known objective optimum : %13.5f\n", f_target);
printf(" Achieved objective value : %13.5f\n\n", fb);

printf(" Comparison between the known optimum and the achieved solution.\n");
printf(" x_target xb\n");
for (i = 0; i < ndim; i++)

printf(" %2" NAG_IFMT " %12.2f %12.2f\n", i + 1, x_target[i], xb[i]);

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.17

printf("\n");
}

static void get_known_solution(Integer ndim, double x_target[],
double *f_target)

{
/* Fill in the known solution of multidimensional Schwefel’s function. */
Integer i;

if (f_target && x_target && ndim > 0) {
*f_target = -418.9828872724337 * ndim;
for (i = 0; i < ndim; i++)

x_target[i] = -420.9687463599820;
}

}

10.2 Program Data

None.

10.3 Program Results

nag_glopt_bnd_pso (e05sac) Example Program Results

Minimization of the Schwefel function.

Default Option Queries:

Boundary : FLOATING
Maximum Iterations Completed : 1000 DEFAULT
Distance Tolerance : 0.0001

1. Solution without using coupled local minimizer.

(User-supplied callback objfun_schwefel, first invocation.)
(User-supplied callback monmod, first invocation.)
Algorithm Statistics

Total complete iterations : 395
Complete iterations since improvement : 152
Total particles converged to xb : 2
Total improvements to global optimum : 59
Total function evaluations : 2773
Total particles re-initialized : 2

Solution Status : Maximum static iterations attained
Known objective optimum : -837.96577
Achieved objective value : -837.96567

Comparison between the known optimum and the achieved solution.
x_target xb

1 -420.97 -420.95
2 -420.97 -420.94

2. Solution using coupled local minimizer nag_opt_simplex_easy (e04cbc).

Algorithm Statistics

Total complete iterations : 51
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 12
Total function evaluations : 537
Total particles re-initialized : 0

Solution Status : Target value achieved
Known objective optimum : -837.96577
Achieved objective value : -837.96577

e05sac NAG Library Manual

e05sac.18 Mark 26

Comparison between the known optimum and the achieved solution.
x_target xb

1 -420.97 -420.97
2 -420.97 -420.97

3. Solution using coupled local minimizer nag_opt_conj_grad (e04dgc).

Algorithm Statistics

Total complete iterations : 123
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 10
Total function evaluations : 898
Total particles re-initialized : 0

Solution Status : Target value achieved
Known objective optimum : -837.96577
Achieved objective value : -837.96568

Comparison between the known optimum and the achieved solution.
x_target xb

1 -420.97 -420.95
2 -420.97 -420.95

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.19

11 Algorithmic Details

The following pseudo-code describes the algorithm used with the repulsion mechanism.

INITIALIZE for j ¼ 1; npar
xj ¼ R 2 U lbox; uboxð Þ
x̂j ¼ R 2 U lbox; uboxð Þ
vj ¼ R 2 U �Vmax ;Vmaxð Þ
f̂j ¼ F x̂j

� �
initialize wj

wj ¼
Wmax Weight Initialize ¼ MAXIMUM
Wini Weight Initialize ¼ INITIAL
R 2 U Wmin ;Wmaxð Þ Weight Initialize ¼ RANDOMIZED

8<
:

end for
~x ¼ 1

2 lbox þ uboxð Þ
~f ¼ F ~xð Þ
Ic ¼ Is ¼ 0

SWARM while ðnot finalizedÞ;
Ic ¼ Ic þ 1
for j ¼ 1; npar

xj ¼ BOUNDARY xj; lbox; ubox
� �

fj ¼ F xj
� �

if fj < f̂j

� �
f̂j ¼ fj; x̂j ¼ xj

if fj < ~f
� �

~f ¼ fj; ~x ¼ xj
end for
if new ~f

� �� �
LOCMIN ~x; ~f;Oi

� �
; Is ¼ 0

½see note on repulsion below for code insertion�
else

Is ¼ Is þ 1
for j ¼ 1; npar

vj ¼ wjvj þ CsD1 x̂j � xj
� �þ CgD2 ~x� xj

� �
xj ¼ xj þ vj
if xj � ~x
�� �� < dtol
� �
reset xj; vj; wj; x̂j ¼ xj

else
update wj

� �
end for
if ðtarget achieved or termination criterion satisfiedÞ

finalized ¼ true
monmod xj

� �
end
LOCMIN ~x; ~f;Oe

� �
The definition of terms used in the above pseudo-code are as follows.

npar the number of particles, npar

lbox array of ndim lower box bounds

ubox array of ndim upper box bounds

xj position of particle j

x̂j best position found by particle j

~x best position found by any particle

fj F xj
� �

e05sac NAG Library Manual

e05sac.20 Mark 26

f̂j F x̂j
� �

, best value found by particle j

~f F ~xð Þ, best value found by any particle

vj velocity of particle j

wj weight on vj for velocity update, decreasing according to Weight Decrease

Vmax maximum absolute velocity, dependent upon Maximum Variable Velocity

Ic swarm iteration counter

Is iterations since ~x was updated

D1,D2 diagonal matrices with random elements in range 0; 1ð Þ
Cs the cognitive advance coefficient which weights velocity towards x̂j, adjusted using

Advance Cognitive

Cg the global advance coefficient which weights velocity towards ~x, adjusted using
Advance Global

dtol the Distance Tolerance for resetting a converged particle

R 2 U lbox; uboxð Þ
an array of random numbers whose ith element is drawn from a uniform distribution in the
range lboxi; uboxið Þ, for i ¼ 1; 2; . . . ;ndim

Oi local optimizer interior options

Oe local optimizer exterior options

LOCMIN x; f; Oð Þ
apply local optimizer using the set of options O using the solution x; fð Þ as the starting
point, if used (not default)

monmod monitor progress and possibly modify xj

BOUNDARY
apply required behaviour for xj outside bounding box, (see Boundary)

new (~f) true if ~x, ~c, ~f were updated at this iteration

Additionally a repulsion phase can be introduced by changing from the default values of options
Repulsion Finalize (rf), Repulsion Initialize (ri) and Repulsion Particles (rp). If the number of static

particles is denoted ns then the following can be inserted after the new(~f) check in the pseudo-code
above.

else if ðns � rp and ri � Is � ri þ rfÞ
LOCMIN ~x; ~f;Oi

� �
use �Cg instead of Cg in velocity updates

if Is ¼ ri þ rf
� �
Is ¼ 0

12 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 12.1.

Advance Cognitive

Advance Global

Boundary

Distance Scaling

Distance Tolerance

Function Precision

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.21

Local Boundary Restriction

Local Exterior Iterations

Local Exterior Major Iterations

Local Exterior Minor Iterations

Local Exterior Tolerance

Local Interior Iterations

Local Interior Major Iterations

Local Interior Minor Iterations

Local Interior Tolerance

Local Minimizer

Maximum Function Evaluations

Maximum Iterations Completed

Maximum Iterations Static

Maximum Iterations Static Particles

Maximum Particles Converged

Maximum Particles Reset

Maximum Variable Velocity

Optimize

Repeatability

Repulsion Finalize

Repulsion Initialize

Repulsion Particles

Swarm Standard Deviation

Target Objective

Target Objective Safeguard

Target Objective Tolerance

Target Objective Value

Target Warning

Verify Gradients

Weight Decrease

Weight Initial

Weight Initialize

Weight Maximum

Weight Minimum

Weight Reset

Weight Value

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)), and Imax represents the largest representable integer value
(see nag_max_integer (X02BBC)).

e05sac NAG Library Manual

e05sac.22 Mark 26

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

For nag_glopt_bnd_pso (e05sac) the maximum length of the argument cvalue used by
nag_glopt_opt_get (e05zlc) is 15.

Advance Cognitive r Default ¼ 2:0

The cognitive advance coefficient, Cs. When larger than the global advance coefficient, this will cause
particles to be attracted toward their previous best positions. Setting r ¼ 0:0 will cause
nag_glopt_bnd_pso (e05sac) to act predominantly as a local optimizer. Setting r > 2:0 may cause the
swarm to diverge, and is generally inadvisable. At least one of the global and cognitive coefficients
must be nonzero.

Advance Global r Default ¼ 2:0

The global advance coefficient, Cg. When larger than the cognitive coefficient this will encourage
convergence toward the best solution yet found. Values r 2 0; 1ð Þ will inhibit particles overshooting the
optimum. Values r 2 1; 2½ Þ cause particles to fly over the optimum some of the time. Larger values can
prohibit convergence. Setting r ¼ 0:0 will remove any attraction to the current optimum, effectively
generating a Monte–Carlo multi-start optimization algorithm. At least one of the global and cognitive
coefficients must be nonzero.

Boundary a Default ¼ FLOATING

Determines the behaviour if particles leave the domain described by the box bounds. This only affects
the general PSO algorithm, and will not pass down to any NAG local minimizers chosen.

This option is only effective in those dimensions for which bl½i� 1� 6¼ bu½i� 1�, i ¼ 1; 2; . . . ;ndim.

IGNORE
The box bounds are ignored. The objective function is still evaluated at the new particle position.

RESET
The particle is re-initialized inside the domain. x̂j and f̂j are not affected.

FLOATING
The particle position remains the same, however the objective function will not be evaluated at
the next iteration. The particle will probably be advected back into the domain at the next
advance due to attraction by the cognitive and global memory.

HYPERSPHERICAL
The box bounds are wrapped around an ndim-dimensional hypersphere. As such a particle
leaving through a lower bound will immediately re-enter through the corresponding upper bound
and vice versa. The standard distance between particles is also modified accordingly.

FIXED
The particle rests on the boundary, with the corresponding dimensional velocity set to 0:0.

Distance Scaling a Default ¼ ON

Determines whether distances should be scaled by box widths.

ON
When a distance is calculated between x and y, a scaled L2 norm is used.

L2 x; yð Þ ¼
X

ijui 6¼li;i�ndimf g

xi � yi
ui � li

� 	2
0
@

1
A

1
2

:

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.23

OFF
Distances are calculated as the standard L2 norm without any rescaling.

L2 x; yð Þ ¼
Xndim
i¼1

xi � yið Þ2
 !1

2

:

Distance Tolerance r Default ¼ 10�4

This is the distance, dtol between particles and the global optimum which must be reached for the
particle to be considered converged, i.e., that any subsequent movement of such a particle cannot
significantly alter the global optimum. Once achieved the particle is reset into the box bounds to
continue searching.

Constraint: r > 0:0.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that no attempt will be made to distinguish between function
values that differ by less than the error inherent in the calculation.

Local Boundary Restriction r Default ¼ 0:5

Contracts the box boundaries used by a box constrained local minimizer to, �l; �u½ �, containing the start
point x, where

@i ¼ r� ui � lið Þ
�i
l ¼ max li; xi � @i

2

� �
�i
u ¼ min ui; xi þ @i

2

� �
; i ¼ 1; . . . ;ndim:

Smaller values of r thereby restrict the size of the domain exposed to the local minimizer, possibly
reducing the amount of work done by the local minimizer.

Constraint: 0:0 � r � 1:0.

Local Interior Iterations i1
Local Interior Major Iterations i1
Local Exterior Iterations i2
Local Exterior Major Iterations i2

The maximum number of iterations or function evaluations the chosen local minimizer will perform
inside (outside) the main loop if applicable. For the NAG minimizers these correspond to:

Minimizer Parameter/option Default Interior Default Exterior
nag_opt_simplex_easy (e04cbc) maxcal ndimþ 10 2� ndimþ 15
nag_opt_conj_grad (e04dgc) Iteration Limit max 30; 3� ndimð Þ max 50; 5� ndimð Þ
nag_opt_nlp (e04ucc) Major Iteration Limit max 10; 2� ndimð Þ max 30; 3� ndimð Þ

Unless set, these are functions of the parameters passed to nag_glopt_bnd_pso (e05sac).

Setting i ¼ 0 will disable the local minimizer in the corresponding algorithmic region. For example,
setting Local Interior Iterations ¼ 0 and Local Exterior Iterations ¼ 30 will cause the algorithm to

e05sac NAG Library Manual

e05sac.24 Mark 26

perform no local minimizations inside the main loop of the algorithm, and a local minimization with
upto 30 iterations after the main loop has been exited.

Constraint: i1 � 0, i2 � 0.

Local Interior Tolerance r1 Default ¼ 10�4

Local Exterior Tolerance r2 Default ¼ 10�4

This is the tolerance provided to a local minimizer in the interior (exterior) of the main loop of the
algorithm.

Constraint: r1 > 0:0, r2 > 0:0.

Local Interior Minor Iterations i1
Local Exterior Minor Iterations i2

Where applicable, the secondary number of iterations the chosen local minimizer will use inside
(outside) the main loop. Currently the relevant default values are:

Minimizer Parameter/option Default Interior Default Exterior
nag_opt_nlp (e04ucc) Minor Iteration Limit max 10; 2� ndimð Þ max 30; 3� ndimð Þ

Constraint: i1 � 0, i2 � 0.

Local Minimizer a Default ¼ OFF

Allows for a choice of Chapter e04 functions to be used as a coupled, dedicated local minimizer.

OFF
No local minimization will be performed in either the INTERIOR or EXTERIOR sections of the
algorithm.

e04cbc
Use nag_opt_simplex_easy (e04cbc) as the local minimizer. This does not require the calculation
of derivatives.

On a call to objfun during a local minimization, mode ¼ 5.

e04dgc
Use nag_opt_conj_grad (e04dgc) as the local minimizer.

Accurate derivatives must be provided, and will not be approximated internally. Additionally, each call
to objfun during a local minimization will require either the objective to be evaluated alone, or both the
objective and its gradient to be evaluated. Hence on a call to objfun, mode ¼ 5 or 7.

e04ucc
Use nag_opt_nlp (e04ucc) as the local minimizer. This operates such that any derivatives of the
objective function that you cannot supply, will be approximated internally using finite
differences.

Either, the objective, objective gradient, or both may be requested during a local minimization, and as
such on a call to objfun, mode ¼ 1, 2 or 5.

The box bounds forwarded to this function from nag_glopt_bnd_pso (e05sac) will have been acted upon
by Local Boundary Restriction. As such, the domain exposed may be greatly smaller than that
provided to nag_glopt_bnd_pso (e05sac).

Maximum Function Evaluations i Default ¼ Imax

The maximum number of evaluations of the objective function. When reached this will return
fail:code ¼ NW_SOLUTION_NOT_GUARANTEED and inform ¼ 6.

Constraint: i > 0.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.25

Maximum Iterations Completed i Default ¼ 1000� ndim

The maximum number of complete iterations that may be performed. Once exceeded
nag_glopt_bnd_pso (e05sac) will exit with fail:code ¼ NW_SOLUTION_NOT_GUARANTEED and
inform ¼ 5.

Unless set, this adapts to the parameters passed to nag_glopt_bnd_pso (e05sac).

Constraint: i � 1.

Maximum Iterations Static i Default ¼ 100

The maximum number of iterations without any improvement to the current global optimum. If
exceeded nag_glopt_bnd_pso (e05sac) will exit with fail:code ¼
NW_SOLUTION_NOT_GUARANTEED and inform ¼ 4. This exit will be hindered by setting
Maximum Iterations Static Particles to larger values.

Constraint: i � 1.

Maximum Iterations Static Particles i Default ¼ 0

The minimum number of particles that must have converged to the current optimum before the function
m a y e x i t d u e t o Maximum Iterations Static w i t h fail:code ¼
NW_SOLUTION_NOT_GUARANTEED and inform ¼ 4.

Constraint: i � 0.

Maximum Particles Converged i Default ¼ Imax

The maximum number of particles that may converge to the current optimum. When achieved,
nag_glopt_bnd_pso (e05sac) will exit with fail:code ¼ NW_SOLUTION_NOT_GUARANTEED and
inform ¼ 3. This exit will be hindered by setting ‘Repulsion’ options, as these cause the swarm to re-
expand.

Constraint: i > 0.

Maximum Particles Reset i Default ¼ Imax

The maximum number of particles that may be reset after converging to the current optimum. Once
achieved no further particles will be reset, and any particles within Distance Tolerance of the global
optimum will continue to evolve as normal.

Constraint: i > 0.

Maximum Variable Velocity r Default ¼ 0:25

Along any dimension j, the absolute velocity is bounded above by vj

 � r� uj � lj

� � ¼ Vmax . Very
low values will greatly increase convergence time. There is no upper limit, although larger values will
allow more particles to be advected out of the box bounds, and values greater than 4:0 may cause
significant and potentially unrecoverable swarm divergence.

Constraint: r > 0:0.

Optimize a Default ¼ MINIMIZE

Determines whether to maximize or minimize the objective function.

MINIMIZE
The objective function will be minimized.

MAXIMIZE
The objective function will be maximized. This is accomplished by minimizing the negative of
the objective.

e05sac NAG Library Manual

e05sac.26 Mark 26

Repeatability a Default ¼ OFF

Allows for the same random number generator seed to be used for every call to nag_glopt_bnd_pso
(e05sac). Repeatability ¼ OFF is recommended in general.

OFF
The internal generation of random numbers will be nonrepeatable.

ON
The same seed will be used.

Repulsion Finalize i Default ¼ Imax

The number of iterations performed in a repulsive phase before re-contraction. This allows a re-
diversified swarm to contract back toward the current optimum, allowing for a finer search of the near
optimum space.

Constraint: i � 2.

Repulsion Initialize i Default ¼ Imax

The number of iterations without any improvement to the global optimum before the algorithm begins a
repulsive phase. This phase allows the particle swarm to re-expand away from the current optimum,
allowing more of the domain to be investigated. The repulsive phase is automatically ended if a
superior optimum is found.

Constraint: i � 2.

Repulsion Particles i Default ¼ 0

The number of particles required to have converged to the current optimum before any repulsive phase
may be initialized. This will prevent repulsion before a satisfactory search of the near optimum area has
been performed, which may happen for large dimensional problems.

Constraint: i � 0.

Swarm Standard Deviation r Default ¼ 0:1

The target standard deviation of the particle distances from the current optimum. Once the standard
deviation is below this level, nag_glopt_bnd_pso (e05sac) will exit with fail:code ¼
NW_SOLUTION_NOT_GUARANTEED and inform ¼ 2. This criterion will be penalized by the use
of ‘Repulsion’ options, as these cause the swarm to re-expand, increasing the standard deviation of the
particle distances from the best point.

Constraint: r � 0:0.

Target Objective a Default ¼ OFF
Target Objective Value r Default ¼ 0:0

Activate or deactivate the use of a target value as a finalization criterion. If active, then once the
supplied target value for the objective function is found (beyond the first iteration if Target Warning is
active) nag_glopt_bnd_pso (e05sac) will exit with fail:code ¼ NE_NOERROR and inform ¼ 1. Other
than checking for feasibility only (Optimize ¼ CONSTRAINTS), this is the only finalization criterion
that guarantees that the algorithm has been successful. If the target value was achieved at the
initialization phase or first iteration and Target Warning is active, nag_glopt_bnd_pso (e05sac) will
exit with fail:code ¼ NW_FAST_SOLUTION. This option may take any real value r, or the character
ON/OFF as well as DEFAULT. If this option is queried using nag_glopt_opt_get (e05zlc), the current
value of r will be returned in rvalue, and cvalue will indicate whether this option is ON or OFF. The
behaviour of the option is as follows:

r
Once a point is found with an objective value within the Target Objective Tolerance of r,
nag_glopt_bnd_pso (e05sac) will exit successfully with fail:code ¼ NE_NOERROR and
inform ¼ 1.

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.27

OFF
The current value of r will remain stored, however it will not be used as a finalization criterion.

ON
The current value of r stored will be used as a finalization criterion.

DEFAULT
The stored value of r will be reset to its default value (0:0), and this finalization criterion will be
deactivated.

Target Objective Safeguard r Default ¼ 100:0�

If you have given a target objective value to reach in objval (the value of the optional parameter
Target Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval
is close to zero.

Constraint: objsfg � 2�.

Target Objective Tolerance r Default ¼ 0:0

The optional tolerance to a user-specified target value.

Constraint: r � 0:0.

Target Warning a Default ¼ OFF

Activates or deactivates the error exit associated with the target value being achieved before entry into
the main loop of the algorithm, fail:code ¼ NW_FAST_SOLUTION.

OFF
No error will be returned, and the function will exit normally.

ON
An error will be returned if the target objective is reached prematurely, and the function will exit
with fail:code ¼ NW_FAST_SOLUTION.

Verify Gradients a Default ¼ ON

Adjusts the level of gradient checking performed when gradients are required. Gradient checks are only
performed on the first call to the chosen local minimizer if it requires gradients. There is no guarantee
that the gradient check will be correct, as the finite differences used in the gradient check are
themselves subject to inaccuracies.

OFF
No gradient checking will be performed.

ON
A cheap gradient check will be performed on both the gradients corresponding to the objective
through objfun.

OBJECTIVE
FULL

A more expensive gradient check will be performed on the gradients corresponding to the
objective objfun.

Weight Decrease a Default ¼ INTEREST

Determines how particle weights decrease.

OFF
Weights do not decrease.

INTEREST
Weights decrease through compound interest as wITþ1 ¼ wIT 1�Wvalð Þ, where Wval is the
Weight Value and IT is the current number of iterations.

e05sac NAG Library Manual

e05sac.28 Mark 26

LINEAR
Weights decrease linearly following wITþ1 ¼ wIT � IT � Wmax �Wminð Þ=ITmax , where IT is
the iteration number and ITmax is the maximum number of iterations as set by
Maximum Iterations Completed.

Weight Initial r Default ¼ Wmax

The initial value of any particle's inertial weight, Wini, or the minimum possible initial value if initial
weights are randomized. When set, this will override Weight Initialize ¼ RANDOMIZED or
MAXIMUM, and as such these must be set afterwards if so desired.

Constraint: Wmin � r � Wmax .

Weight Initialize a Default ¼ MAXIMUM

Determines how the initial weights are distributed.

INITIAL
All weights are initialized at the initial weight, Wini, if set. If Weight Initial has not been set,
this will be the maximum weight, Wmax .

MAXIMUM
All weights are initialized at the maximum weight, Wmax .

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Maximum r Default ¼ 1:0

The maximum particle weight, Wmax .

Constraint: 1:0 � r � Wmin (If Wini has been set then 1:0 � r � Wini.)

Weight Minimum r Default ¼ 0:1

The minimum achievable weight of any particle, Wmin . Once achieved, no further weight reduction is
possible.

Constraint: 0:0 � r � Wmax (If Wini has been set then 0:0 � r � Wini.)

Weight Reset a Default ¼ MAXIMUM

Determines how particle weights are re-initialized.

INITIAL
Weights are re-initialized at the initial weight if set. If Weight Initial has not been set, this will
be the maximum weight.

MAXIMUM
Weights are re-initialized at the maximum weight.

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Value r Default ¼ 0:01

The constant Wval used with Weight Decrease ¼ INTEREST.

Constraint: 0:0 � r � 1
3 .

e05 – Global Optimization of a Function e05sac

Mark 26 e05sac.29 (last)

	e05sac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill et al. (1981)
	Kennedy and Eberhart (1995)
	Koh et al. (2006)
	Vaz and Vicente (2007)

	5 Arguments
	ndim
	npar
	xb
	fb
	bl
	bu
	objfun
	mode
	ndim
	x
	objf
	vecout
	nstate
	comm
	user
	iuser
	p

	monmod
	ndim
	npar
	x
	xb
	fb
	xbest
	fbest
	itt
	comm
	user
	iuser
	p

	inform

	iopts
	opts
	comm
	itt
	inform
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BOUND
	NE_DERIV_ERRORS
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_OPTION
	NE_NO_LICENCE
	NE_USER_STOP
	NW_FAST_SOLUTION
	NW_SOLUTION_NOT_GUARANTEED

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Advance Cognitive
	Advance Global
	Boundary
	Distance Scaling
	Distance Tolerance
	Function Precision
	Local Boundary Restriction
	Local Interior Iterations
	Local Interior Major Iterations
	Local Exterior Iterations
	Local Exterior Major Iterations
	Local Interior Tolerance
	Local Exterior Tolerance
	Local Interior Minor Iterations
	Local Exterior Minor Iterations
	Local Minimizer
	Maximum Function Evaluations
	Maximum Iterations Completed
	Maximum Iterations Static
	Maximum Iterations Static Particles
	Maximum Particles Converged
	Maximum Particles Reset
	Maximum Variable Velocity
	Optimize
	Repeatability
	Repulsion Finalize
	Repulsion Initialize
	Repulsion Particles
	Swarm Standard Deviation
	Target Objective
	Target Objective Value
	Target Objective Safeguard
	Target Objective Tolerance
	Target Warning
	Verify Gradients
	Weight Decrease
	Weight Initial
	Weight Initialize
	Weight Maximum
	Weight Minimum
	Weight Reset
	Weight Value

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

