
NAG Library Function Document

nag_opt_sparse_mps_read (e04mzc)

1 Purpose

nag_opt_sparse_mps_read (e04mzc) reads data for a sparse linear programming or quadratic
programming problem from a file which is in standard or compatible MPSX input format.

Note that nag_opt_sparse_mps_read (e04mzc) is particularly suitable for use in conjunction with the
quadratic programming function nag_opt_sparse_convex_qp (e04nkc). For reasons of efficiency, new
users are recommended to use the function pair nag_opt_miqp_mps_read (e04mxc) / nag_opt_sparse_
convex_qp_solve (e04nqc) instead.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_sparse_mps_read (const char *mps_file, Integer *n, Integer *m,
Integer *nnz, Integer *iobj, double **a, Integer **ha, Integer **ka,
double **bl, double **bu, double **xs, Nag_E04_Opt *options,
NagError *fail)

3 Description

nag_opt_sparse_mps_read (e04mzc) reads linear programming (LP) or quadratic programming (QP)
problem data from a file which is prepared in standard or compatible MPSX input format and then
initializes n (the number of variables), m (the number of general linear constraints), the m by n matrix
A, and the vectors l, u and c (stored in row iobj of A) for use with nag_opt_sparse_convex_qp
(e04nkc), which is designed to solve problems of the form

minimize
x2Rn

cTxþ 1

2
xTHx subject to l � x

Ax

� �
� u: ð1Þ

For LP problems, H ¼ 0. For QP problems, a function must be provided to nag_opt_sparse_convex_qp
(e04nkc) to compute Hx for any given vector x. (This is illustrated in Section 10.) The optional
parameter options:minimize may be used to specify whether the objective function is to be minimized
or maximized. The document for nag_opt_sparse_convex_qp (e04nkc) should be consulted for further
details.

Since, in general, the exact size of the problem defined by an MPSX file may not be known in advance,
the arrays returned by nag_opt_sparse_mps_read (e04mzc) are all allocated internally.

MPSX Input Format

The MPSX data file may only contain two types of line:

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored.
Indicator lines must not contain leading blank characters (in other words they must begin in column 1).
The following displays the order in which the indicator lines must appear in the file:

NAME user-supplied name
ROWS

data line(s)
COLUMNS

data line(s)
RHS

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.1

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
ENDATA

The ‘user-supplied name’ specifies a name for the problem and must occupy columns 15–22. The name
can either be blank or up to a maximum of 8 characters.

A data line follows the same fixed format made up of fields defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2–3 5–12 15–22 25–36 40–47 50–61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e., a�z, A�Z, 0� 9, þ, �, asterisk (*),
blank (), colon (:), dollar sign ($) or full stop (.) only) and the names must not contain leading blank
characters. Values may be entered in several equivalent forms. For example, 1:2345678,
1:2345678eþ 0, 123:45678e�2 and 12345678e�07 all represent the same number. It is safest to
include an explicit decimal point. Note that the lower case ‘e’ exponential notation is not standard
MPSX, and if compatibility with other MPSX readers is required then the upper case notation should be
used. The lower case notation is supported by nag_opt_sparse_mps_read (e04mzc) since this is the
natural notation in a C programming language environment.

It is recommended that numeric values be right-justified in the 12-character field, with no trailing
blanks. This is to ensure compatibility with other MPSX readers, some of which may, in certain
situations, interpret trailing blanks as zeros. This can dramatically affect the interpretation of the value
and is relevant if the value contains an exponent, or if it contains neither an exponent nor an explicit
decimal point.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2–80. In any data line, a dollar sign ($) as the first character in Field 3 or 5
indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the function. These columns may be used to enter a sequence number. A non-blank character outside
the predefined six fields and columns 72–80 is considered to be a major error unless it is part of a
comment.

ROWS Data Lines

These lines specify row (constraint) names and their inequality types (i.e., ¼, � or �).

Field 1: defines the constraint type as follows (may be in column 2 or column 3):

N free row, i.e., no constraint. It may be used to define the objective row.

G greater than or equal to (i.e., �).

L less than or equal to (i.e., �).

E exactly equal to (i.e., ¼).

Field 2: defines the row name.

Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective row.
The objective row is a free row that specifies the vector c in the linear objective term cTx. It is taken to
be the first free row, unless some other free row name is specified by the optional parameter
options:obj name (see Section 11.2). Note that c is assumed to be zero if (for example) the line

%N%%DUMMYROW

(where % denotes a blank) appears in the ROWS section of the MPSX data file, and the row name
DUMMYROW is omitted from the COLUMNS section.

e04mzc NAG Library Manual

e04mzc.2 Mark 26

COLUMNS Data Lines

These lines specify the names to be assigned to the variables (columns) in the general linear constraint
matrix A, and define, in terms of column vectors, the actual values of the corresponding matrix
elements.

Field 1: blank (ignored).

Field 2: gives the name of the column associated with the elements specified in the following fields.

Field 3: contains the name of a row.

Field 4: used in conjunction with Field 3; contains the value of the matrix element.

Field 5: is optional (may be used like Field 3).

Field 6: is optional (may be used like Field 4).

Note that only the nonzero elements of A and c need to be specified in the COLUMNS section, as any
zero elements of A are removed and any unspecified elements of c are assumed to be zero. In addition,
any nonzero elements in the jth column of A must be grouped together before those in the j þ 1ð Þth
column, for j ¼ 1; 2; . . . ; n� 1. Nonzero elements within a column may however appear in any order.

RHS Data Lines

This section specifies the right-hand side values of the general linear constraint matrix A (if any). The
lines specify the name to be given to the right-hand side (RHS) vector along with the numerical values
of the elements of the vector, which may appear in any order. The data lines have exactly the same
format as the COLUMNS data lines, except that the column name is replaced by the RHS name. Only
the nonzero elements need be specified. Note that this section may be empty, in which case the RHS
vector is assumed to be zero.

RANGES Data Lines (optional)

Ranges are used for constraints of the form l � Ax � u, where both l and u are finite. The effect of
specifying a range rj for constraint j depends on the type of the constraint (i.e., G, L or E), the sign of
rj, and the bound associated with the constraint in the RHS section. (Recall that this bound is taken to
be zero if the constraint has no entry in the RHS section.) The various possibilities may be summarised
as follows.

Row Type Sign of rj Bound from RHS Resultant lj Resultant uj
G þ or � lj lj lj þ rj

�� ��
L þ or � uj uj � rj

�� �� uj

E þ lj lj lj þ rj
E � uj uj � rj

�� �� uj

The data lines have exactly the same format as the COLUMNS data lines, except that the column name
is replaced by the RANGE name.

BOUNDS Data Lines (optional)

These lines specify limits on the values of the variables (l and u in l � x � u). If the variable is not
specified in the bound set then it is automatically assumed to lie between default lower and upper
bounds (usually 0 and þ1). (These default bounds may be reset to the values specified by the optional
parameters options:col lo default and options:col up default; see Section 11.2.) Like an RHS column
which is given a name, the set of variables in one bound set is also given a name.

Field 1: specifies the type of bound or defines the variable type as follows:

LO lower bound.

UP upper bound.

FX fixed variable.

FR free variable (�1 to þ1).

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.3

MI lower bound is �1.

PL upper bound is þ1. This is the default variable type.

Field 2: identifies a name for the bound set.

Field 3: identifies the column name of the variable belonging to this set.

Field 4: identifies the value of the bound; this has a numerical value only in association with LO, UP,
FX in Field 1, otherwise it is blank.

Field 5: is blank and ignored.

Field 6: is blank and ignored.

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear first.

MPSX and Integer Programming Problems

The MPSX input format allows the specification of integer programming (IP) problems in which some
or all of the variables are constrained to take integer values within a specified range.
nag_opt_sparse_mps_read (e04mzc) can read MPSX files defining IP problems in either the
‘compatible’ or ‘standard’ formats. However, any integer restrictions are ignored: any variable upon
which such restrictions are defined by the file is simply treated as a continuous variable with upper and
lower bounds as specified. The facility to read such files is offered to allow users to solve IP problems
in their ‘relaxed’ LP or QP form using nag_opt_sparse_convex_qp (e04nkc). The compatible and
standard MPSX forms are described below. If you are not interested in this facility you may skip the
remainder of this section.

In the compatible MPSX format, the type of integer variables are defined in Field 1 of the BOUNDS
section, that is:

Field 1: specifies the type of the integer variable as follows:

BV 0–1 integer variable (bound value is 1:0).

UI general integer variable (bound value is in Field 4).

In the standard MPSX format, the integer variables are treated the same as ‘ordinary’ bounded
variables, in the BOUNDS section. Integer markers are, however, introduced in the COLUMNS section
to specify the integer variables. The indicator lines for these markers are:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2–3 5–12 15–22 25–36 40–47 50–61
Contents name ’MARKER’ ’INTORG’

to mark the beginning of the integer variables and

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2–3 5–12 15–22 25–36 40–47 50–61
Contents name ’MARKER’ ’INTEND’

to mark the end. That is, any variables between these markers are treated as integer variables. The name
in Field 2 may be any name different from the preceding and following column names, the other entries
in the indicator lines must be exactly as described above (including quotation marks). Note that if the
INTEND indicator line is not specified then all columns between the INTORG indicator line and the
end of the COLUMNS section are assumed to be integer variables. nag_opt_sparse_mps_read (e04mzc)
accepts both standard and/or compatible MPSX format as a means of specifying integer variables.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

e04mzc NAG Library Manual

e04mzc.4 Mark 26

5 Arguments

1: mps file – const char * Input

On entry: the name of the MPSX data file. If mps_file is a null pointer or null string, then the
data is assumed to come from stdin.

2: n – Integer * Output

On exit: the number of columns (variables) specified by the data file.

3: m – Integer * Output

On exit: the number of rows specified by the data file. This is the number of general linear
constraints in the problem, including the objective row.

4: nnz – Integer * Output

On exit: the number of nonzeros in the problem (including the objective row).

5: iobj – Integer * Output

On exit: if iobj > 0, row iobj of A is a free row containing the nonzero coefficients of the vector
c (the rows of A are indexed 1; 2; . . . ;m). If iobj ¼ 0, the coefficients of c are assumed to be
zero.

6: a – double ** Output

On exit: the nnz nonzero elements of A, ordered by increasing column index.

Sufficient memory is allocated internally by nag_opt_sparse_mps_read (e04mzc) and may be
freed by the utility function nag_opt_sparse_mps_free (e04myc).

7: ha – Integer ** Output

On exit: the nnz row indices of the nonzero elements of A.

Sufficient memory is allocated internally by nag_opt_sparse_mps_read (e04mzc) and may be
freed by the utility function nag_opt_sparse_mps_free (e04myc).

8: ka – Integer ** Output

On exit: the nþ 1 indices indicating the beginning of each column of A in a. More precisely,
ka½j � 1� contains the index in a of the start of the jth column, for j ¼ 1; 2; . . . ;n� 1. Note that
ka½0� ¼ 0 and ka½n� ¼ nnz.

Sufficient memory is allocated internally by nag_opt_sparse_mps_read (e04mzc) and may be
freed by the utility function nag_opt_sparse_mps_free (e04myc).

9: bl – double ** Output
10: bu – double ** Output

On exit: bl and bu hold the lower bounds and upper bounds, respectively, for all the variables
and constraints, in the following order. The first n elements contain the bounds on the variables x
and the next m elements contain the bounds for the linear objective term cTx and the general
linear constraints Ax (if any). Note that an ‘infinite’ lower bound is indicated by
bl½j� 1� ¼ �1020, an ‘infinite’ upper bound by bl½j� 1� ¼ 1020, and an equality constraint by
bl½j� 1� ¼ bu½j� 1�. (The lower bound for cTx, stored in bl½nþ iobj� 1�, is set to
�options:col up default, and the upper bound, stored in bl½nþ iobj� 1� is set to
options:col up default; the optional parameter options:col lo default has a default value of
1020; see Section 11.)

Sufficient memory is allocated internally by nag_opt_sparse_mps_read (e04mzc) and may be
freed by the utility function nag_opt_sparse_mps_free (e04myc).

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.5

11: xs – double ** Output

On exit: a set of initial values for the n variables and m constraints in the problem. More
precisely, xs½j� ¼ min max 0:0; bl½j�ð Þ; bu½j�ð Þ, for j ¼ 0; 1; . . . ;mþ n� 1.

Sufficient memory is allocated internally by nag_opt_sparse_mps_read (e04mzc) and may be
freed by the utility function nag_opt_sparse_mps_free (e04myc).

12: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_sparse_mps_read (e04mzc). These structure members offer the means of
adjusting the argument values used when reading in the MPSX file and on output will supply
further details of the results. A description of the members of options is given below in
Section 11.2.

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_spar
se_mps_read (e04mzc). However, if the optional parameters are not required the NAG defined
null pointer, E04_DEFAULT, can be used in the function call.

13: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

5.1 Description of Printed Output

Results are printed out by default. The level of printed output can be controlled with the structure
members options:list and options:output level (see Section 11.2). If options:list ¼ Nag TRUE then the
argument values to nag_opt_sparse_mps_read (e04mzc) are listed, whereas the printout of results is
governed by options:output level. The default, options:output level ¼ Nag MPS Summary gives the
following information if the MPSX file has been read successfully:

(a) the number of lines read.

(b) the number of columns specified by the data. If any of these are specified as integer variables, the
number of such variables is also reported. (However, recall that nag_opt_sparse_mps_read
(e04mzc) will nevertheless regard such variables as continuous variables; see Section 3.)

(c) the number of rows specified by the data. The objective row is counted amongst these.

In addition, the names of the problem, the objective row, the RHS set, the RANGES set, and the
BOUNDS set read are listed. Unless specified otherwise by the optional parameters
options:prob name, options:obj name, options:rhs name, options:range name a n d / o r
options:bnd name (see Section 11), these names will correspond to the first problem, objective row,
etc., encountered in the MPSX file. Where no set was encountered (RANGES and BOUNDS are
optional), a ‘blank’ is output.

Additionally, when options:output level ¼ Nag MPS List, each line of the MPSX file is echoed as it is
read. This may be useful as a debugging aid.

If options:output level ¼ Nag NoOutput then printout will be suppressed; you can print the
information contained in (b) and (c) when nag_opt_sparse_mps_read (e04mzc) returns to the calling
program.

6 Error Indicators and Warnings

NE_2_REAL_EE_OPT_ARG_CONS

On entry, options:col lo default ¼ valueh i while options:col up default ¼ valueh i. Constraint:
options:col lo default � options:col up default.

e04mzc NAG Library Manual

e04mzc.6 Mark 26

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument options:bnd name had an illegal value.

On entry, argument options:obj name had an illegal value.

On entry, argument options:output level had an illegal value.

On entry, argument options:prob name had an illegal value.

On entry, argument options:range name had an illegal value.

On entry, argument options:rhs name had an illegal value.

NE_INT_OPT_ARG_LT

On entry, options:ncol approx ¼ valueh i. Constraint: options:ncol approx � 1.

On entry, options:nrow approx ¼ valueh i. Constraint: options:nrow approx � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_REAL_RANGE_F

Va l u e valueh i g i v e n t o options:est density i s n o t v a l i d . C o r r e c t r a n g e i s
options:est density > 0:0.

NE_MPS_ENDATA_NOT_FOUND

The file does not contain an ENDATA indicator.

NE_MPS_ILLEGAL_DATA_LINE

An illegal data line has been read from the MPSX file. This is neither a comment nor a legal data
line.
Error at MPSX line valueh i: stringh i.

NE_MPS_ILLEGAL_NAME

An illegal row or column name has been detected. Names must contain only alphanumeric
characters with no leading blanks.
Error at MPSX line valueh i: stringh i.

NE_MPS_ILLEGAL_NUMBER

Number expected but value could not be read. Check numerical fields.
Error at MPSX line valueh i: stringh i.

NE_MPS_ILLEGAL_SETNAME

An illegal name has been detected in Field 2 of the RHS, RANGES or BOUNDS section.
Names must contain only alphanumeric characters with no leading blanks.
Error at MPSX line valueh i: stringh i.

NE_MPS_INVALID_BND_TYPE

An invalid bound type appears in the BOUNDS section. Expect: LO, UP, FX, FR, MI, PL, BV or
UI.
Error at MPSX line valueh i: stringh i.

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.7

NE_MPS_INVALID_BND_VAL

Invalid numeric field in bound data. Value expected for types: LO, UP, FX, UI. Blank field
expected for types: FR, MI, PL, BV.
Error at MPSX line valueh i: stringh i.

NE_MPS_INVALID_INDICATOR

Unknown, unexpected or invalid indicator line read. Expect: NAME, ROWS, COLUMNS, RHS,
RANGES, BOUNDS or ENDATA, starting in column 1 of file, and in that order. RANGES and/
or BOUNDS may be omitted. Error at MPSX line valueh i: stringh i.

NE_MPS_INVALID_INTORG_INTEND

An INTORG or INTEND marker is not correctly specified or is unexpected (e.g., INTEND has
no matching INTORG).
Error at MPSX line valueh i: stringh i.

NE_MPS_INVALID_ROW_TYPE

An invalid row type appears in the ROWS section. Expect: N, G, L or E.
Error at MPSX line valueh i: stringh i.

NE_MPS_NO_COLS

There were no columns specified in the COLUMNS section.
Last MPSX line read (valueh i): stringh i.

NE_MPS_NO_NEWLINE

New line expected but not found.
Last MPSX line read (valueh i): stringh i.

NE_MPS_NO_OBJ

The objective row was not found. There must be at least one row of type N in the ROWS section
and, if an objective name was specified, there must be a type N row with this name. Last MPSX
line read (valueh i): stringh i.

NE_MPS_NO_ROWS

There were no rows specified in the ROWS section.
Last MPSX line read (valueh i): stringh i.

NE_MPS_PROB_NOT_FOUND

The specified problem has not been found in the MPSX file.

NE_MPS_REPEAT_ROW

A row has been specified more than once.
Error at MPSX line valueh i: stringh i.

NE_MPS_RHS_RANGE_BND_NOT_FOUND

The name of the RHS, RANGES or BOUNDS set to be used was not found in the file.

NE_MPS_SPLIT_COL

Column data is not contiguous. All entries for a given column must appear together in the
COLUMNS section.
Error at MPSX line valueh i: stringh i.

e04mzc NAG Library Manual

e04mzc.8 Mark 26

NE_MPS_UNKNOWN_COLNAME

An unknown column name appears in the BOUNDS section. All the column names must be
specified in the COLUMNS section.
Error at MPSX line valueh i: stringh i.

NE_MPS_UNKNOWN_ROWNAME

An unknown row name appears in the stringh i section. All the row names must be specified in
the ROWS section.
Error at MPSX line valueh i: stringh i.

NE_NAMES_NOT_NAG_MEM

options:crnames is not null but does not point to memory allocated by an earlier call to this
function. This function does not accept user-allocated memory assigned to options:crnames.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_NOT_READ_FILE

Cannot open file stringh i for reading.

NE_NULL_ARGUMENT

Argument a is a null pointer. It should contain the address of a variable of type double *.

Argument bl is a null pointer. It should contain the address of a variable of type double *.

Argument bu is a null pointer. It should contain the address of a variable of type double *.

Argument ha is a null pointer. It should contain the address of a variable of type Integer *.

Argument iobj is a null pointer. It should contain the address of a variable of type Integer.

Argument ka is a null pointer. It should contain the address of a variable of type Integer *.

Argument m is a null pointer. It should contain the address of a variable of type Integer.

Argument n is a null pointer. It should contain the address of a variable of type Integer.

Argument nnz is a null pointer. It should contain the address of a variable of type Integer.

Argument xs is a null pointer. It should contain the address of a variable of type double *.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_opt_sparse_mps_read (e04mzc) is not threaded in any implementation.

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.9

9 Further Comments

None.

10 Example

There is one example program file, the main program of which calls both examples ex1 and ex2.
Example 1 (ex1) shows the simple use of nag_opt_sparse_mps_read (e04mzc) where default values are
used for all optional parameters, in conjunction with nag_opt_sparse_convex_qp (e04nkc). An example
showing the use of optional parameters is given in ex2 and is described in Section 12.

Example 1 (ex1)

To solve the quadratic programming problem

minimize cTxþ 1

2
xTHx subject to l � Ax � u;

�2 � x � 2;

where

c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

A ¼
1 1 1 1 1 1 1 1 4
1 2 3 4 �2 1 1 1 1
1 �1 1 �1 1 1 1 1 1

0
@

1
A; l ¼

�2
�2
�2

0
@

1
A and u ¼

1:5
1:5
4:0

0
@

1
A:

The optimal solution (to five significant figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:
Three bound constraints and two general linear constraints are active at the solution. Note that, although
the Hessian is positive semidefinite, the point x� is the unique solution.

The function to calculate Hx (required by nag_opt_sparse_convex_qp (e04nkc)) is qphess for this
example.

Note the use of nag_opt_sparse_mps_free (e04myc) in this example to free the memory returned by
nag_opt_sparse_mps_read (e04mzc), once the problem has been solved.

Note also the memory freeing function nag_opt_free (e04xzc) is used to free the memory assigned to
the pointers in the options structure. You must not use the standard C function free() for this purpose.

The MPSX representation of the problem is given in Section 10.2.

10.1 Program Text

/* nag_opt_sparse_mps_read (e04mzc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

e04mzc NAG Library Manual

e04mzc.10 Mark 26

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL qphess(Integer ncolh, const double x[], double hx[],
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[1] = { -1.0 };
Integer exit_status = 0;
Integer *ha, i, iobj, *ka, m, n, ncolh, ninf, nnz;
Nag_E04_Opt options;
double *a, *bl, *bu, obj, sinf, *xs;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_opt_sparse_mps_read (e04mzc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

fflush(stdout);
/* Initialize the options structure and read MPSX data */
/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
#ifdef _WIN32

strcpy_s(options.prob_name, (unsigned)_countof(options.prob_name),
"..QP 2..");

#else
strcpy(options.prob_name, "..QP 2..");

#endif
#ifdef _WIN32

strcpy_s(options.obj_name, (unsigned)_countof(options.obj_name),
"..COST..");

#else
strcpy(options.obj_name, "..COST..");

#endif

printf("\n");
printf("Reading MPSX file:\n");

/* Turn off printing of intermediate output from
nag_opt_sparse_mps_read() and nag_opt_sparse_convex_qp() */

options.list = Nag_FALSE;
options.output_level = Nag_NoOutput;
options.print_level = Nag_NoPrint;

/* nag_opt_sparse_mps_read (e04mzc), see above. */
nag_opt_sparse_mps_read((char *) 0, &n, &m, &nnz, &iobj, &a, &ha, &ka, &bl,

&bu, &xs, &options, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_sparse_mps_read (e04mzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.11

}
printf("MPSX file contains %" NAG_IFMT " variables and %"

NAG_IFMT " linear constraints\n", n, m);

printf("\n");
printf("Solving QP problem:\n");
/* Column and row names are now available via options */
ncolh = 5;
/* nag_opt_sparse_convex_qp (e04nkc), see above. */
nag_opt_sparse_convex_qp(n, m, nnz, iobj, ncolh, qphess, a, ha, ka, bl, bu,

xs, &ninf, &sinf, &obj, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_sparse_convex_qp (e04nkc).\n%s\n",
fail.message);

exit_status = 1;
}

if (fail.code != NE_NOERROR)
{

printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
else

{
printf("Optimal objective value: %11.3e\n", obj);
printf("Optimal X:\n");
for (i = 0; i < n; i++)

printf(" x[%" NAG_IFMT "] = %8.4f\n", i, xs[i]);
}

/* Free memory returned by nag_opt_sparse_mps_read (e04mzc) */
/* nag_opt_sparse_mps_free (e04myc), see above. */
nag_opt_sparse_mps_free(&a, &ha, &ka, &bl, &bu, &xs);

/* Free memory in options (including column & row names) */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);

END:

return exit_status;
}

static void NAG_CALL qphess(Integer ncolh, const double x[], double hx[],
Nag_Comm *comm)

{
/* Function to compute H*x. */
if (comm->user[0] == -1.0) {

printf("(User-supplied callback qphess, first invocation.)\n");
fflush(stdout);
comm->user[0] = 0.0;

}
hx[0] = 2.0 * x[0] + x[1] + x[2] + x[3] + x[4];
hx[1] = x[0] + 2.0 * x[1] + x[2] + x[3] + x[4];
hx[2] = x[0] + x[1] + 2.0 * x[2] + x[3] + x[4];
hx[3] = x[0] + x[1] + x[2] + 2.0 * x[3] + x[4];
hx[4] = x[0] + x[1] + x[2] + x[3] + 2.0 * x[4];

} /* qphess */

10.2 Program Data

* nag_opt_sparse_mps_read (e04mzc) Example Program Data
*
* MPSX data
*
NAME ..QP 2..
ROWS

e04mzc NAG Library Manual

e04mzc.12 Mark 26

L ..ROW1..
L ..ROW2..
L ..ROW3..
N FREE ROW
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0
...X5... ..ROW3.. 1.0 ..COST.. -1.0
...X6... ..ROW1.. 1.0 ..ROW2.. 1.0
...X6... ..ROW3.. 1.0 ..COST.. -1.0
...X7... ..ROW1.. 1.0 ..ROW2.. 1.0
...X7... ..ROW3.. 1.0 ..COST.. -1.0
...X8... ..ROW1.. 1.0 ..ROW2.. 1.0
...X8... ..ROW3.. 1.0 ..COST.. -0.1
...X9... ..ROW1.. 4.0 ..ROW2.. 1.0
...X9... ..ROW3.. 1.0 ..COST.. -0.3

RHS
RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

ENDATA

10.3 Program Results

nag_opt_sparse_mps_read (e04mzc) Example Program Results

Reading MPSX file:
MPSX file contains 9 variables and 5 linear constraints

Solving QP problem:
(User-supplied callback qphess, first invocation.)
Optimal objective value: -8.068e+00
Optimal X:

x[0] = 2.0000
x[1] = -0.2333
x[2] = -0.2667
x[3] = -0.3000

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.13

x[4] = -0.1000
x[5] = 2.0000
x[6] = 2.0000
x[7] = -1.7778
x[8] = -0.4556

11 Optional Parameters

A number of optional input and output arguments to nag_opt_sparse_mps_read (e04mzc) are available
through the structure argument options, type Nag_E04_Opt. An argument may be selected by assigning
an appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_sparse_mps_read
(e04mzc); the default settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag_opt_sparse_mps_read (e04mzc) together with their default values where relevant.

Boolean list Nag_TRUE
Nag_OutputType output_level Nag_MPS_Summary

char outfile[80] stdout

char prob_name[9] 'n0'
char obj_name[9] 'n0'
char rhs_name[9] 'n0'
char range_name[9] 'n0'
char bnd_name[9] 'n0'
double col_lo_default 0.0
double col_up_default 1020

Integer ncol_approx 500
Integer nrow_approx 500
double est_density 0.05
char **crnames size nþm

11.2 Description of the Optional Parameters

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_sparse_mps_read
(e04mzc) will be printed.

output level – Nag_OutputType Default ¼ Nag MPS Summary

On entry: the level of printout produced by nag_opt_sparse_mps_read (e04mzc). The following values
are available:

Nag NoOutput No output.

Nag MPS Summary A summary of the dimensions of the problem read and a list of the ‘MPSX
names’ (problem name, objective row name, etc.).

e04mzc NAG Library Manual

e04mzc.14 Mark 26

Nag MPS List As Nag MPS Summary but each line of the MPSX file is echoed as it is read.
This can be useful for debugging the file.

Constraint: options:output level ¼ Nag NoOutput, Nag MPS Summary or Nag MPS List.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

prob name – char Default: options:prob name½0� ¼ n0
obj name – char Default: options:obj name½0� ¼ n0
rhs name – char Default: options:rhs name½0� ¼ n0
range name – char Default: options:range name½0� ¼ n0
bnd name – char Default: options:bnd name½0� ¼ n0
On entry: these options contain the names associated with the MPSX form of the problem. These names
must be specified as follows:

options:prob name
must contain the name of the problem to be read or be blank. The problem name is
specified in the NAME indicator line (see Section 3) and if options:prob name is not
blank, then nag_opt_sparse_mps_read (e04mzc) will search the MPSX file for the specified
problem. If options:prob name is blank, then the first problem encountered will be read.

options:obj name
must contain the name of the objective row or be blank (in which case the first objective
free row is used).

options:rhs name
must contain the name of the RHS set to be used or be blank (in which case the first RHS
set is used).

options:range name
must contain the name of the RANGES set to be used or be blank (in which case the first
RANGES set, if any, is used).

options:bnd name
must contain the name of the BOUNDS set to be used or be blank (in which case the first
BOUNDS set, if any, is used).

Constraint: the names must be valid MPSX names, i.e., they must consist only of the ‘alphanumeric’
characters as specified in Section 3 and must not contain leading blank characters.

On exit: the members contain the appropriate names as read from the MPSX file. Any names specified
on input which are not found in the MPSX file are unchanged on exit but will give rise to an error exit
from nag_opt_sparse_mps_read (e04mzc) (see Section 6).

If the MPSX file is successfully read, the options structure can be passed on to nag_opt_sparse_
convex_qp (e04nkc), which will solve the problem specified by the file and which can make use of
these structure members in its solution output.

col lo default – double Default ¼ 0:0

On entry: the default lower bound to be used for the variables in the problem when none is specified in
the BOUNDS section of the MPSX data file.

col up default – double Default ¼ 1020

On entry: the default upper bound to be used for the variables in the problem when none is specified in
the BOUNDS section of the MPSX data file.

Constraint: options:col up default � options:col lo default.

e04 – Minimizing or Maximizing a Function e04mzc

Mark 26 e04mzc.15

ncol approx – Integer Default ¼ 500
nrow approx – Integer Default ¼ 500

On entry: an estimate of the number of columns and rows in the problem. nag_opt_sparse_mps_read
(e04mzc) is designed so that the problem size does not have to be known in advance, and allocates
memory according to the data contained in the MPSX file. However, for very large problems, an
advance estimate of the problem size might allow slightly more efficient memory usage to be achieved.
See also the description of optional parameter options:est density.

Constraints:

options:ncol approx > 0;
options:nrow approx > 0.

est density – double Default ¼ 0:05

On entry: an estimate of the density of the nonzeros in the sparse matrix A, i.e., an estimate of
nnz= n�mð Þ. As with the optional parameters options:ncol approx and options:nrow approx, if this
is known to be significantly larger or smaller than the default, then you should specify an appropriate
value to aid nag_opt_sparse_mps_read (e04mzc) in its memory management.

Constraint: options:est density > 0:0.

crnames – char ** Default memory nþm array of char *

On exit: the MPSX names of all the variables and constraints in the problem in the following order.
options:crnames½j � 1� c o n t a i n s t h e n am e o f t h e jt h c o l umn , f o r j ¼ 1; 2; . . . ; n.
options:crnames½nþ i � 1� contains the name of the ith row, for i ¼ 1; 2; . . . ;m. Each name is eight
characters long, and includes any trailing blank characters which appear in the appropriate name field of
the MPSX file.

Sufficient memory to hold the names is allocated internally by nag_opt_sparse_mps_read (e04mzc). The
memory freeing function nag_opt_free (e04xzc) should be used to free this memory. You should not
use the standard C function free() for this purpose.

If, on return from nag_opt_sparse_mps_read (e04mzc), nag_opt_sparse_convex_qp (e04nkc) is called
with options as an argument, and the memory pointed to by options:crnames has not been freed,
nag_opt_sparse_convex_qp (e04nkc) will use the row and column names stored in options:crnames in
its solution output.

12 Example 2 (ex2)

Example 2 (ex2) solves the same problem as Example 1 (ex1), described in Section 10, but shows the
use of the options structure. Although the problem is the same, it is defined by a slightly modified
MPSX file. The same qphess function is used as in ex1 (see Section 10).

The options structure is initialized by a call to nag_opt_init (e04xxc) and two of the optional parameters
are set: options:prob name is set to "..QP 2.." so that nag_opt_sparse_mps_read (e04mzc) will
attempt to read a problem of this name; and options:obj name is set to "..COST..". The MPSX file
(see Section 10.2) contains an additional free row, named "FREE ROW". Since this is the first free row
in the ROWS section of the MPSX file, by default it would be read as the objective row. However,
since options:obj name is specified, nag_opt_sparse_mps_read (e04mzc) takes the second free row
("..COST..") as the objective row.

nag_opt_sparse_mps_read (e04mzc) is called to read the MPSX file, and this is followed by a call to
nag_opt_sparse_convex_qp (e04nkc) to solve the problem. As the options structure is passed as an
argument, the row and column names read from the file are stored in options:crnames and used in the
solution output (see Section 10.3).

Finally, nag_opt_sparse_mps_free (e04myc) is called to free the problem arrays, and nag_opt_free
(e04xzc) is called to free the memory in options.

See Section 10 for the example program.

e04mzc NAG Library Manual

e04mzc.16 (last) Mark 26

	e04mzc
	1 Purpose
	2 Specification
	3 Description
	4 References
	IBM (1971)

	5 Arguments
	mps_file
	n
	m
	nnz
	iobj
	a
	ha
	ka
	bl
	bu
	xs
	options
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_2_REAL_EE_OPT_ARG_CONS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_OPT_ARG_LT
	NE_INTERNAL_ERROR
	NE_INVALID_REAL_RANGE_F
	NE_MPS_ENDATA_NOT_FOUND
	NE_MPS_ILLEGAL_DATA_LINE
	NE_MPS_ILLEGAL_NAME
	NE_MPS_ILLEGAL_NUMBER
	NE_MPS_ILLEGAL_SETNAME
	NE_MPS_INVALID_BND_TYPE
	NE_MPS_INVALID_BND_VAL
	NE_MPS_INVALID_INDICATOR
	NE_MPS_INVALID_INTORG_INTEND
	NE_MPS_INVALID_ROW_TYPE
	NE_MPS_NO_COLS
	NE_MPS_NO_NEWLINE
	NE_MPS_NO_OBJ
	NE_MPS_NO_ROWS
	NE_MPS_PROB_NOT_FOUND
	NE_MPS_REPEAT_ROW
	NE_MPS_RHS_RANGE_BND_NOT_FOUND
	NE_MPS_SPLIT_COL
	NE_MPS_UNKNOWN_COLNAME
	NE_MPS_UNKNOWN_ROWNAME
	NE_NAMES_NOT_NAG_MEM
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_NOT_READ_FILE
	NE_NULL_ARGUMENT
	NE_OPT_NOT_INIT
	NE_WRITE_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Optional Parameter Checklist and Default Values
	11.2 Description of the Optional Parameters
	list
	output_level
	outfile
	prob_name
	obj_name
	rhs_name
	range_name
	bnd_name
	col_lo_default
	col_up_default
	ncol_approx
	nrow_approx
	est_density
	crnames

	12 Example 2 (ex2)

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

