
NAG Library Function Document

nag_opt_handle_solve_dfls (e04ffc)

Note: this function uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

nag_opt_handle_solve_dfls (e04ffc) is a derivative free solver from the NAG optimization modelling
suite for small to medium-scale nonlinear least squares problems with bound constraints.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_handle_solve_dfls (void *handle,

void (*objfun)(Integer nvar, const double x[], Integer nres,
double rx[], Integer *inform, Nag_Comm *comm),

void (*mon)(Integer nvar, const double x[], Integer *inform,
const double rinfo[], const double stats[], Nag_Comm *comm),

Integer nvar, double x[], Integer nres, double rx[], double rinfo[],
double stats[], Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_handle_solve_dfls (e04ffc) serves as a solver for compatible problems stored as a handle. The
handle points to an internal data structure which defines the problem and serves as a means of
communication for functions in the suite.

nag_opt_handle_solve_dfls (e04ffc) is aimed at minimizing a sum of a squares objective function
subject to bound constraints:

minimize
x2Rn

Xmr

i¼1

ri xð Þ2 ðaÞ
subject to lx � x � ux; ðbÞ

ð1Þ

Here the ri xð Þ are smooth nonlinear functions called residuals and lx and ux are n-dimensional vectors
defining bounds on the variables. Typically, in a calibration or data fitting context, the residuals will be
defined as the difference between a data point and a nonlinear model (see Section 2.2.3 in the e04
Chapter Introduction)

To define a compatible problem handle, you must call nag_opt_handle_init (e04rac) followed by
nag_opt_handle_set_nlnls (e04rmc) to initialize it and optionally call nag_opt_handle_set_simple
bounds (e04rhc) to define bounds on the variables. If nag_opt_handle_set_simplebounds (e04rhc) is
not called, all the variables will be considered free by the solver. It should be noted that
nag_opt_handle_solve_dfls (e04ffc) always assumes that the Jacobian of the residuals is dense,
therefore defining a sparse structure for the residuals in the call to nag_opt_handle_set_nlnls (e04rmc)
will have no effect.

It is possible to fix some variables with the definition of the bounds. However, some constraints must be
met in order to be able to call the solver:

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.1

the number of non-fixed variables nr has to be at least 2

for all non-fixed variable xi, the value of ux ið Þ � lx ið Þ has to be at least twice the starting trust region
radius (see the consistency constraint of the optional parameter DFLS Starting Trust Region).

The solver is based on a derivative free trust region framework. This type of method is well suited for
small to medium-scale problems (around 100 variables) for which the derivatives are unavailable or not
easy to compute and/or for which the function evaluations are expensive or noisy. For a detailed
description of the algorithm see Section 11. The algorithm behaviour and solver strategy can be
modified by various optional parameters (see Section 12) which can be set by nag_opt_handle_opt_set
(e04zmc) and nag_opt_handle_opt_set_file (e04zpc) anytime between the initialization of the handle
by nag_opt_handle_init (e04rac) and a call to the solver. The default values for these optional
parameters are chosen to work well in the general case but it is recommended to tune them to your
particular problem. In particular, if the objective function is noisy, it is highly recommended to set the
optional parameter DFLS Trust Region Update to SLOW to improve convergence. Once the solver
has finished, options may be modified for the next solve. The solver may be called repeatedly with
various starting points and/or optional parameters.

4 References

Powell M J D (2009) The BOBYQA algorithm for bound constrained optimization without derivatives
Report DAMTP 2009/NA06 University of Cambridge http://www.damtp.cam.ac.uk/user/na/NA_papers/
NA2009_06.pdf

Zhang H, CONN A R and Scheinberg k (2010) A Derivative-Free Algorithm for Least-Squares
Minimization SIAM J. Optim. 20(6) 3555–3576

5 Arguments

1: handle – void * Input

On entry: the handle to the problem. It needs to be initialized by nag_opt_handle_init (e04rac)
and the objective must be declared as nonlinear least squares by a call to the function
nag_opt_handle_set_nlnls (e04rmc). The function nag_opt_handle_set_simplebounds
(e04rhc) can optionally be called to define box bounds. It must not be changed between calls
to the NAG optimization modelling suite.

2: objfun – function, supplied by the user External Function

objfun must evaluate the value of the nonlinear residuals ri xð Þ at a specified point x.

The specification of objfun is:

void objfun (Integer nvar, const double x[], Integer nres,
double rx[], Integer *inform, Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem, as set during the initialization of
the handle by nag_opt_handle_init (e04rac).

2: x½nvar� – const double Input

On entry: x, the vector of variable values at which the residuals ri are to be evaluated.

3: nres – Integer Input

On entry: mr, the number of residuals in the problem, as set during the initialization of
the handle by nag_opt_handle_set_nlnls (e04rmc).

4: rx½nres� – double Output

On exit: the value of the residuals ri xð Þ at x.

e04ffc NAG Library Manual

e04ffc.2 Mark 26.1

http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

5: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: may be used to request the solver to stop immediately. Specifically, if
inform < 0 then the value of rx will be discarded and the solver will terminate
immediately with fail:code ¼ NE_USER_STOP otherwise, the solver will proceed
normally.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_dfls
(e04ffc) you may allocate memory and initialize these pointers with various
quantities for use by objfun when called from nag_opt_handle_solve_dfls
(e04ffc) (see Section 3.3.1.1 in How to Use the NAG Library and its
Documentation).

Note: objfun should not return floating-point NaN (Not a Number) or infinity values, since these
are not handled by nag_opt_handle_solve_dfls (e04ffc). If your code inadvertently does return
any NaNs or infinities, nag_opt_handle_solve_dfls (e04ffc) is likely to produce unexpected
results.

3: mon – function, supplied by the user External Function

mon is provided to enable you to monitor the progress of the optimization and, if necessary, to
halt the optimization process using argument inform.

If no monitoring is required, mon may be specified as NULLFN.

mon is called at the end of every ith step where i is controlled by the optional parameter
DFLS Monitor Frequency (default value 0, mon is never called).

The specification of mon is:

void mon (Integer nvar, const double x[], Integer *inform,
const double rinfo[], const double stats[], Nag_Comm *comm)

1: nvar – Integer Input

On entry: n, the number of variables in the problem.

2: x½nvar� – const double Input

On entry: the current best point.

3: inform – Integer * Input/Output

On entry: a non-negative value.

On exit: may be used to request the solver to stop immediately. Specifically, if
inform < 0 then the value of rx will be discarded and the solver will terminate
immediately with fail:code ¼ NE_USER_STOP otherwise, the solver will proceed
normally.

4: rinfo½100� – const double Input

On entry: best objective value computed and various indicators (the values are as
described in the main argument rinfo).

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.3

5: stats½100� – const double Input

On entry: solver statistics at the end of the current iteration (the values are as described
in the main argument stats).

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to mon.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_handle_solve_dfls
(e04ffc) you may allocate memory and initialize these pointers with various
quantities for use by mon when called from nag_opt_handle_solve_dfls (e04ffc)
(see Section 3.3.1.1 in How to Use the NAG Library and its Documentation).

4: nvar – Integer Input

On entry: n, the number of variables in the problem. It must be unchanged from the value set
during the initialization of the handle by nag_opt_handle_init (e04rac).

Constraint: nvar � 2.

5: x½nvar� – double Input/Output

On entry: x0, the initial estimates of the variables x.

On exit: the final values of the variables x.

6: nres – Integer Input

On entry: mr, the number of residuals in the problem. It must be unchanged from the value set
during the definition of the objective structure by nag_opt_handle_set_nlnls (e04rmc).

7: rx½nres� – double Output

On exit: the values of the residuals at the final point given in x.

8: rinfo½100� – double Output

On exit: optimal objective value and various indicators at the end of the final iteration as given in
the table below:

0 objective function value f xð Þ (sum of the squared residuals);

1 �, the size of trust region at the end of the algorithm;

2 the number of interpolation points used by the solver.

4� 101 reserved for future use.

9: stats½100� – double Output

On exit: solver statistics at the end of the final iteration as given in the table below:

0 number of calls to the objective function;

1 if Stats Time is activated, total time spent in the solver (including time spent
evaluating the objective);

2 if Stats Time is activated, total time spent evaluating the objective function;

3 number of steps.

5� 101 reserved for future use.

e04ffc NAG Library Manual

e04ffc.4 Mark 26.1

10: comm – Nag_Comm *

The NAG communication argument (see Section 3.3.1.1 in How to Use the NAG Library and its
Documentation).

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_BOUND

Optional argument DFLS Starting Trust Region �beg ¼ valueh i, lx ið Þ ¼ valueh i, ux ið Þ ¼ valueh i
and i ¼ valueh i.
Constraint: if lx ið Þ 6¼ ux ið Þ in coordinate i, then ux ið Þ � lx ið Þ � 2� �beg.
Use nag_opt_handle_opt_set (e04zmc) to set compatible option values.

NE_HANDLE

The supplied handle does not define a valid handle to the data structure for the NAG
optimization modelling suite. It has not been initialized by nag_opt_handle_init (e04rac) or it
has been corrupted.

NE_INT

There were nr ¼ valueh i unequal bounds.
Constraint: nr � 2.

T h e r e w e r e nr ¼ valueh i u n e q u a l b o u n d s a n d t h e o p t i o n a l a r g u m e n t
DFLS Number Interp Points npt ¼ valueh i
Constraint: nr þ 2 � npt � nrþ1ð Þ� nrþ2ð Þ

2 .
Use nag_opt_handle_opt_set (e04zmc) to set compatible option values.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_IMPROVEMENT

No progress, the solver was stopped after valueh i consecutive slow steps.
Use the optional argument DFLS Maximum Slow Steps to modify the maximum number of
slow steps accepted.

The solver stopped after 5� DFLS Maximum Slow Steps consecutive slow steps and a trust
region above the tolerance set by DFLS Trust Region Slow Tol.

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.5

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_PHASE

The problem is already being solved.

NE_REAL_2

I n c o n s i s t e n t o p t i o n a l a r g u m e n t s DFLS Trust Region Tolerance �end a n d
DFLS Trust Region Slow Tol �tol.
Constraint: �end < �tol.
Use nag_opt_handle_opt_set (e04zmc) to set compatible option values.

I n c o n s i s t e n t o p t i o n a l a r g u m e n t s DFLS Trust Region Tolerance �end a n d
DFLS Starting Trust Region �beg.
Constraint: �end < �beg.
Use nag_opt_handle_opt_set (e04zmc) to set compatible option values.

NE_REF_MATCH

The information supplied does not match with that previously stored.
On entry, nres ¼ valueh i must match that given during the definition of the objective in the
handle, i.e., valueh i.
The information supplied does not match with that previously stored.
On entry, nvar ¼ valueh i must match that given during initialization of the handle, i.e., valueh i.

NE_RESCUE_FAILED

A rescue procedure has been called in order to correct damage from rounding errors when
computing an update to a quadratic approximation of F , but no further progress could be made.
Check your specification of objfun and whether the function needs rescaling. Try a different
initial x.

NE_SETUP_ERROR

The solver does not support the model defined in the handle.
It supports only nonlinear least squares problems with bound constraints.

NE_TIME_LIMIT

The solver terminated after the maximum time allowed was exceeded.

Maximum number of seconds exceeded. Use option Time Limit to reset the limit.

NE_TOO_MANY_ITER

Maximum number of function evaluations exceeded.

NE_TR_STEP_FAILED

The predicted reduction in a trust region step was non-positive. Check your specification of
objfun and whether the function needs rescaling. Try a different initial x.

NE_USER_STOP

User requested termination after a call to the objective function. inform was set to a negative
value within the user-supplied function objfun.

User requested termination during a monitoring step. inform was set to a negative value within
the user-supplied function mon

e04ffc NAG Library Manual

e04ffc.6 Mark 26.1

NW_NOT_CONVERGED

The problem was solved to an acceptable level after valueh i consecutive slow iterations.
Use the optional argument DFLS Maximum Slow Steps to modify the maximum number of
slow steps accepted.

The solver stopped after DFLS Maximum Slow Steps consecutive slow steps and a trust region
below the tolerance set by DFLS Trust Region Slow Tol.

7 Accuracy

The solver can declare convergence on two conditions:

(i) The trust region radius is below the tolerance �end set by the optional parameter
DFLS Trust Region Tolerance. When this condition is met, the corresponding solution will
generally be at a distance lower than 10� �end of a local minimimum.

(ii) The sum of the square of the residuals is below the tolerance set by the optional parameter
DFLS Small Residuals Tol. In a data fitting context, this condition means that the error between
the observed data and the model is smaller than the requested tolerance.

8 Parallelism and Performance

nag_opt_handle_solve_dfls (e04ffc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Description of the Printed Output

The solver can print information to give an overview of the problem and of the progress of the
computation. The output may be sent to two independent file ID which are set by optional parameters
Print File and Monitoring File. Optional parameters Print Level, Print Options, Monitoring Level
and Print Solution determine the exposed level of detail. This allows, for example, a detailed log file to
be generated while the condensed information is displayed on the screen.

By default (Print File ¼ 6, Print Level ¼ 2), four sections are printed to the standard output: a header,
a list of options, an iteration log and a summary.

Header

The header contains statistics about the problem. It should look like:

--
E04FF, Derivative free solver for data fitting

(nonlinear least squares problems)
--
Problem statistics

Number of variables 10
Number of unconstrained variables 10
Number of fixed variables 0
Number of residuals 10

Optional parameters list

If Print Options is set to YES, a list of the optional parameters and their values is printed. The list
shows all options of the solver, each displayed on one line. The line contains the option name, its
current value and an indicator for how it was set. The options left at their defaults are noted by (d) and
the ones set by the user are noted by (U). Note that the output format is compatible with the file format
expected by nag_opt_handle_opt_set_file (e04zpc). The output looks as follows:

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.7

Stats Time = Yes * U
Dfls Trust Region Tolerance = 1.00000E-07 * U
Dfls Max Objective Calls = 500 * d
Dfls Starting Trust Region = 1.10000E-01 * U
Dfls Number Interp Points = 0 * d

Iteration log

If Print Level � 2, the solver will print a summary line for each step. An iteration is considered
successful when it yields a decrease of the objective sufficiently close to the decrease predicted by the
quadratic model. The line shows the step number, the value of the objective function, the radius of the
trust region and the cumulative number of objective function evaluations. The output looks as follow:

--
step | obj rho | nf |

--
1 | 3.82E+01 1.10E-01 | 13 |
2 | 3.55E+01 1.10E-01 | 14 |
3 | 3.05E+01 1.10E-01 | 15 |
4 | 2.15E+01 1.10E-01 | 18 |

Occasionally, the letter ‘s’ is printed at the end of the line indicating that the progress is considered
slow by the slow convergence detection heuristic. After a certain number of consecutive slow steps, the
solver is stopped. The limit on the number of slow iterations can be controlled by the optional
parameter DFLS Maximum Slow Steps and the tolerance on the trust region radius before the solver
can be stopped is driven by DFLS Trust Region Slow Tol.

Summary

Once the solver finishes, a summary is produced:

Status: Converged, small trust region size.

Value of the objective 2.23746E-06
Number of objective function evaluations 107
Number of steps 51

Optionally, if Stats Time is set to YES, the timings are printed:

Timings
Total time spent in the solver 0.056
Time spent in the objective evaluation 0.012

Additionally, if Print Solution is set to YES, the solution is printed along with the bounds:

Computed Solution:
idx Lower bound Value Upper bound

1 -inf -1.00000E+00 inf
2 -inf -1.00000E+00 inf
3 -inf -1.00000E+00 inf
4 -inf -1.00000E+00 inf

10 Example

In this example, we minimize the Kowalik and Osborne function with bounds on some of the variables.
In this problem, the number of variables n ¼ 4 and the number of residuals mr ¼ 11. The residuals ri
are computed by

ri xð Þ ¼ zi � yi yi þ x2ð Þ
yi yi þ x3ð Þ þ x4

x1 ð2Þ

where

y ¼ 4:0000; 2:0000; 1:0000; 0:5000; 0:2500; 0:1670; 0:1250; 0:1000; 0:0833; 0:0714; 0:0625ð Þ
z ¼ 0:1957; 0:1947; 0:1735; 0:1600; 0:0844; 0:0627; 0:0456; 0:0342; 0:0323; 0:0235; 0:0246ð Þ ð3Þ

The following bounds are defined on the variables

0:2 � x2 � 1:0
0:3 � x4

ð4Þ

e04ffc NAG Library Manual

e04ffc.8 Mark 26.1

The initial guess is

x0 ¼ 0:25; 0:39; 0:415; 0:39ð Þ ð5Þ
The expected solution is

x� ¼ 0:1813; 0:5901; 0:2569; 0:3000ð Þ ð6Þ

10.1 Program Text

/* nag_opt_handle_solve_dfls (e04ffc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagx04.h>
#include <assert.h>

typedef struct pdata
{

int ny, nz;
double *y, *z;

} pdata;

static void free_pdata(pdata pd);

#ifdef __cplusplus
extern "C"
{
#endif
static void NAG_CALL objfun(Integer nvar, const double x[],

Integer nres, double rx[],
Integer *inform, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

const int defbounds = 1;
const double infbnd = 1.0e20;

pdata pd;
int nvar, nres, isparse, nnzrd;
double x[4] = { 0.25, 0.39, 0.415, 0.39 };
double rinfo[100], stats[100];
double *rx, *lx, *ux;
void *handle;
int exit_status = 0;

/* Nag Types */
Nag_Comm comm;
NagError fail;

printf("nag_opt_handle_solve_dfls (e04ffc) Example Program Results\n\n");
fflush(stdout);

/* Fill the problem data structure */
nvar = 4;
nres = 11;
pd.ny = nres;
pd.nz = nres;
pd.y = NAG_ALLOC(pd.ny,double); assert(pd.y);
pd.z = NAG_ALLOC(pd.nz,double); assert(pd.z);

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.9

pd.y[0] = 4.0 ; pd.z[0] = 0.1957;
pd.y[1] = 2.0 ; pd.z[1] = 0.1947;
pd.y[2] = 1.0 ; pd.z[2] = 0.1735;
pd.y[3] = 0.5 ; pd.z[3] = 0.16;
pd.y[4] = 0.25 ; pd.z[4] = 0.0844;
pd.y[5] = 0.167 ; pd.z[5] = 0.0627;
pd.y[6] = 0.125 ; pd.z[6] = 0.0456;
pd.y[7] = 0.1 ; pd.z[7] = 0.0342;
pd.y[8] = 0.0833; pd.z[8] = 0.0323;
pd.y[9] = 0.0714; pd.z[9] = 0.0235;
pd.y[10] = 0.0625; pd.z[10] = 0.0246;

/* nag_opt_handle_init (e04rac).
* Initialize the handle
*/

nag_opt_handle_init(&handle, nvar, NAGERR_DEFAULT);

/* nag_opt_handle_set_nlnls (e04rmc)
* Define residuals structure, isparse=0 means the residual structure is
* dense => irowrd and icolrd arguments can be NULL
*/

isparse = 0;
nnzrd = 1;
nag_opt_handle_set_nlnls(handle, nres, isparse, nnzrd, NULL, NULL,

NAGERR_DEFAULT);

/* nag_opt_handle_opt_set (e04zmc)
* Set options
*/

/* Relax the main convergence criteria a bit */
nag_opt_handle_opt_set(handle, "DFLS Trust Region Tolerance = 5.0e-6",

NAGERR_DEFAULT);
/* Turn off option printing */
nag_opt_handle_opt_set(handle, "Print Options = NO", NAGERR_DEFAULT);
/* Print the solution */
nag_opt_handle_opt_set(handle, "Print Solution = X", NAGERR_DEFAULT);

/* Optionally define bounds for the second and the fourth variable */
if (defbounds)

{
lx = NAG_ALLOC(nvar, double); assert(lx);
ux = NAG_ALLOC(nvar, double); assert(ux);
lx[0] = -infbnd; ux[0] = infbnd;
lx[1] = 0.2; ux[1] = 1.0;
lx[2] = -infbnd; ux[2] = infbnd;
lx[3] = 0.3; ux[3] = infbnd;
/* nag_opt_handle_set_simplebounds (e04rhc) */
nag_opt_handle_set_simplebounds(handle, nvar, lx, ux, NAGERR_DEFAULT);

}

/* nag_opt_handle_solve_dfls (e04ffc)
* Call the solver
*/

rx = NAG_ALLOC(nres, double); assert(rx);
comm.p = &pd;
INIT_FAIL(fail);
nag_opt_handle_solve_dfls(handle, objfun, NULL, nvar, x, nres, rx,

rinfo, stats, &comm, &fail);
if (fail.code != NE_NOERROR){

printf("Error from nag_opt_handle_solve_dfls (e04ffc).\n%s\n",
fail.message);

exit_status = 1;
}

/* Clean data */
if (handle)

/* nag_opt_handle_free (e04rzc).
* Destroy the problem handle and deallocate all the memory used
*/

nag_opt_handle_free(&handle, NAGERR_DEFAULT);
free_pdata(pd);

e04ffc NAG Library Manual

e04ffc.10 Mark 26.1

if (rx)
NAG_FREE(rx);

if (lx)
NAG_FREE(lx);

if (ux)
NAG_FREE(ux);

return exit_status;
}

static void NAG_CALL objfun(Integer nvar, const double x[],
Integer nres, double rx[],
Integer *inform, Nag_Comm *comm)

{
pdata *pd;
int i;
double r1, r2;

/* Interrupt the solver if the comm structure is not correctly initialized */
if (!comm || !(comm->p))

{
*inform = -1;
return;

}

/* Extract the problem data from the comm structure */
pd = (pdata *) comm->p;

/* Interrupt the solver if the data does not correspond to the problem */
if (nvar != 4 || nres != 11 || pd->ny != nres || pd->nz != nres)

{
*inform = -1;
return;

}

/* Fill the residuals values */
for (i = 0; i < nres; i++)

{
r1 = pd->y[i] * (pd->y[i]+x[1]);
r2 = pd->y[i] * (pd->y[i]+x[2]) + x[3];
rx[i] = pd->z[i] - x[0]*r1/r2;

}
}

static void free_pdata(pdata pd)
{

if (pd.y)
NAG_FREE(pd.y);

if (pd.z)
NAG_FREE(pd.z);

}

10.2 Program Data

None.

10.3 Program Results

nag_opt_handle_solve_dfls (e04ffc) Example Program Results

--
E04FF, Derivative free solver for data fitting

(nonlinear least-squares problems)
--

Problem statistics
Number of variables 4
Number of unconstrained variables 2
Number of fixed variables 0
Number of residuals 11

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.11

--
step | obj rho | nf |

--
1 | 1.89E-03 1.00E-01 | 7 |
2 | 5.77E-04 1.00E-01 | 8 |
3 | 4.23E-04 1.00E-01 | 9 |
4 | 4.05E-04 1.00E-02 | 10 |
5 | 4.02E-04 1.00E-02 | 11 |
6 | 4.02E-04 1.00E-03 | 16 |
7 | 4.02E-04 1.00E-03 | 18 |
8 | 4.02E-04 7.07E-05 | 21 |
9 | 4.02E-04 7.07E-05 | 22 |

10 | 4.02E-04 5.00E-06 | 30 |
--
Status: Converged, small trust region size.

Value of the objective 4.02423E-04
Number of objective function evaluations 30
Number of steps 10

Computed Solution:
idx Lower bound Value Upper bound

1 -inf 1.81300E-01 inf
2 2.00000E-01 5.90128E-01 1.00000E+00
3 -inf 2.56927E-01 inf
4 3.00000E-01 3.00000E-01 inf

11 Algorithmic Details

This section contains a short description of the algorithm used in nag_opt_handle_solve_dfls (e04ffc)
which is based on Powell's method BOBYQA Powell (2009) and the work of Zhang et al. (2010). It is
based on a model-based derivative free trust region framework adapted to exploit least squares
problems structure.

11.1 Derivative free trust region algorithm

In this section, we are interested in generic problems of the form

minimize
x2Rn

f xð Þ ð7Þ
where the derivatives of the objective function f are not easily available. A model-based derivative free
optimization (DFO) algorithm maintains a set of points Yk centred on an iterate xk to build quadratic
interpolation models of the objective

f xk þ sð Þ � �k sð Þ ¼ f xkð Þ þ gk
T sþ 1

2
sTHks ð8Þ

where gk and Hk are built with the interpolation conditions

y 2 Yk; �k y� xkð Þ ¼ f yð Þ ð9Þ
Note that if the number of interpolation points npt is smaller than nrþ1ð Þ� nrþ2ð Þ

2 , the model chosen is the
one for which the hessian Hk is the closest to Hk�1 in the Frobenius norm sense. This model is
iteratively optimized over a trust region, updated and moved around the new computed points. More
precisely, it can be described as:

DFO Algorithm

1. Initialization

Choose an initial interpolation set Y0, trust region radius �beg and build the first quadratic model �0.

2. Iteration k

e04ffc NAG Library Manual

e04ffc.12 Mark 26.1

(i) Minimize the model in the trust region to obtain a step sk.

(ii) If the step is too small, adjust the geometry of the interpolation set and the trust region size
�k and restart the iteration.

(iii) Evaluate the objective at the new point xk þ sk.

(iv) Replace a far away point from Yk by xk þ sk to create Ykþ1.

(v) If the decrease of the objective is sufficient (successful step), choose xkþ1 ¼ xk þ sk, else
choose xkþ1 ¼ xk.

(vi) Choose �kþ1 and adjust the geometry of Ykþ1, if necessary.

(vii) Build �kþ1 using the new interpolation set.

(viii) Stop the algorithm if �kþ1is below the chosen tolerance �end.

In the rest of this documentation page, we call an iteration successful when the trial point xk þ sk is
accepted as the next iterate.

11.2 Bounds on the variables

The bounds on the variables are handled during the model optimization step (step 2(i) of DFO
Algorithm) with an active set method. If a bound is hit, it is fixed and step 2(i) is restarted. The set of
active constraints is kept throughout the optimization, progressively fixing the corresponding variables.

11.3 Adaptation to nonlinear least squares problems

In the specific case where f is a sum of square f xð Þ ¼
Xmr

i¼1

ri xð Þ2, a good approximation of the hessian

of the objective can be

r2f xð Þ � J xð ÞTJ xð Þ ð10Þ
where J is the mr by n first derivative matrix of f . This approximation is the main idea behind the
Gauss–Newton and Levenberg–Marquardt methods. Following the work of Zhang et al. (2010), it is
possible to adapt it to the DFO framework. In nag_opt_handle_solve_dfls (e04ffc), one quadratic
model is built for each residual ri

ri xþ sð Þ � ri xð Þ þ gðiÞ
T
sþ 1

2
sTHðiÞs ð11Þ

We call J ¼ gð1Þ; gð2Þ; :::
� �T

. To build the model of the objective f , we then choose

f xþ sð Þ � � sð Þ ¼ f xð Þ þ gf
T sþ 1

2
sTHfs ð12Þ

where gf is chosen as

gf ¼ JTf xð Þ ð13Þ
and Hf as

Hf ¼ JTJ þ
0 if gf

�� �� � �1

�3 f xð Þk kI if gf
�� �� < �1 and 1

2f xð Þ < �2 gf
�� ��

Xmr

i¼1

ri xð ÞHðiÞ otherwise

8>><
>>:

ð14Þ

The constants �1, �2 and �3 are chosen as proposed in Zhang et al. (2010). The first expression amounts
to making a Gauss–Newton approximation when we are far from a stationary point, the second to a
Levenberg–Marquardt approximation when we are close to a stationary point with small residuals while
the third takes the full hessian into account.

nag_opt_handle_solve_dfls (e04ffc) integrates this method of building models into the framework
presented in the algorithm DFO Algorithm.

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.13

12 Optional Parameters

Several optional parameters in nag_opt_handle_solve_dfls (e04ffc) define choices in the problem
specification or the algorithm logic. In order to reduce the number of formal arguments of
nag_opt_handle_solve_dfls (e04ffc) these optional parameters have associated default values that are
appropriate for most problems. Therefore, you need only specify those optional parameters whose
values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The optional parameters can be changed by calling nag_opt_handle_opt_set (e04zmc) anytime
between the initialization of the handle by nag_opt_handle_init (e04rac) and the call to the solver.
Modification of the arguments during intermediate monitoring stops is not allowed. Once the solver
finishes, the optional parameters can be altered again for the next solve.

The option values may be retrieved by nag_opt_handle_opt_get (e04znc).

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 12.1.

Defaults

DFLS Maximum Slow Steps

DFLS Max Objective Calls

DFLS Monitor Frequency

DFLS Number Interp Points

DFLS Print Frequency

DFLS Small Residuals Tol

DFLS Starting Trust Region

DFLS Trust Region Slow Tol

DFLS Trust Region Tolerance

DFLS Trust Region Update

Infinite Bound Size

Monitoring File

Monitoring Level

Print File

Print Level

Print Options

Print Solution

Stats Time

Time Limit

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

the default value, where the symbol � is a generic notation for machine precision (see
nag_machine_precision (X02AJC)).

All options accept the value DEFAULT to return single options to their default states.

Keywords and character values are case and white space insensitive.

e04ffc NAG Library Manual

e04ffc.14 Mark 26.1

Defaults

This special keyword may be used to reset all optional parameters to their default values. Any argument
value given with this keyword will be ignored.

DFLS Maximum Slow Steps i Default ¼ 20

If DFLS Maximum Slow Steps > 0, this argument defines the maximum number of consecutive slow
iterations nslow allowed. Set it to 0 to deactivate the slow iteration detection. The algorithm can stop in
two situations:

nslow > DFLS Maximum Slow Steps a n d � < DFLS Trust Region Slow Tol w i t h fail:code ¼
NW_NOT_CONVERGED

nslow > 5� DFLS Maximum Slow Steps with fail:code ¼ NE_NO_IMPROVEMENT

Constraint: DFLS Maximum Slow Steps � 0.

DFLS Max Objective Calls i Default ¼ 500

A limit on the number of objective function evaluations the solver is allowed to compute. If the limit is
reached, the solver stops with fail:code ¼ NE_TOO_MANY_ITER.

Constraint: DFLS Max Objective Calls � 1.

DFLS Monitor Frequency i Default ¼ 0

If DFLS Monitor Frequency > 0, the solver calls the user defined monitoring function mon at the end
of every ith step.

Constraint: DFLS Monitor Frequency � 0.

DFLS Number Interp Points i Default ¼ 0

The number of interpolation points in Yk (9) used to build the quadratic models. If
DFLS Number Interp Points ¼ 0, the number of points is chosen to be nr þ 2 where nr is the
number of non-fixed variables.

Constraint: DFLS Number Interp Points � 0.

Consistency constraint, the solver stops with fail:code ¼ NE_INT if not met:

nr þ 2 � DFLS Number Interp Points � nrþ1ð Þ� nrþ2ð Þ
2 .

DFLS Print Frequency i Default ¼ 1

If DFLS Print Frequency > 0, the solver prints the iteration log to the appropriate units at the end of
every ith step.

Constraint: DFLS Print Frequency � 0.

DFLS Small Residuals Tol r Default ¼ �0:75

This option defines the tolerance on the value of the residuals. Namely, the solver declares convergence
if

f xð Þ ¼
Xmr

i¼1

ri xð Þ2 < DFLS Small Residuals Tol.

Constraint: DFLS Small Residuals Tol > �2.

DFLS Starting Trust Region r Default ¼ 0:1

�beg, the initial trust region radius. This argument should be set to about one tenth of the greatest
expected overall change to a variable: the initial quadratic model will be constructed by taking steps
from the initial x of length �beg along each coordinate direction. The default value assumes that the
variables have an order of magnitude 1.

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.15

Constraint: DFLS Starting Trust Region > �.

Consistency constraints, the solver stops with fail:code ¼ NE_BOUND or NE_REAL_2 if not met:

DFLS Starting Trust Region � DFLS Trust Region Tolerance.

DFLS Starting Trust Region � 1
2min

i
ux ið Þ � lx ið Þð Þ

DFLS Trust Region Tolerance r Default ¼ �0:37

�end, the requested trust region radius. The algorithm declares convergence when the trust region radius
reaches this limit. It should indicate the absolute accuracy that is required in the final values of the
variables.

Constraint: DFLS Trust Region Tolerance > �.

Consistency constraints, the solver stops with fail:code ¼ NE_BOUND or NE_REAL_2 if not met:

DFLS Starting Trust Region > DFLS Trust Region Tolerance.

DFLS Trust Region Slow Tol r Default ¼ �0:25

The minimal acceptable trust region radius for the solution to be declared as acceptable. The solver
stops if:

nslow > DFLS Maximum Slow Steps and �k < DFLS Trust Region Slow Tol

Constraint: DFLS Trust Region Slow Tol > �.

Consistency constraints, the solver stops with fail:code ¼ NE_BOUND or NE_REAL_2 if not met:

DFLS Trust Region Slow Tol > DFLS Trust Region Tolerance

DFLS Trust Region Update a Default ¼ FAST

Controls the speed at which the trust region is decreased after unsuccessful iterations. In smooth non-
noisy cases, a fast decrease often leads to faster convergence. However, in noisy cases, a slow decrease
is recommended to avoid premature stops.

Constraint: DFLS Trust Region Update ¼ FAST or SLOW.

Infinite Bound Size r Default ¼ 1020

This defines the ‘infinite’ bound bigbnd in the definition of the problem constraints. Any upper bound
greater than or equal to bigbnd will be regarded as þ1 (and similarly any lower bound less than or
equal to �bigbnd will be regarded as �1). Note that a modification of this optional parameter does not
influence constraints which have already been defined; only the constraints formulated after the change
will be affected.

Constraint: Infinite Bound Size � 1000.

Monitoring File i Default ¼ �1

(See Section 3.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If i � 0, the Nag_FileID number (as returned from nag_open_file (x04acc)) for the secondary
(monitoring) output. If set to �1, no secondary output is provided. The information output to this file
ID is controlled by Monitoring Level.

Constraint: Monitoring File � �1.

Monitoring Level i Default ¼ 4

This argument sets the amount of information detail that will be printed by the solver to the secondary
output. The meaning of the levels is the same as with Print Level.

Constraint: 0 � Monitoring Level � 5.

e04ffc NAG Library Manual

e04ffc.16 Mark 26.1

Print File i Default
¼ Nag FileID number associated with stdout

(See Section 3.3.1.1 in How to Use the NAG Library and its Documentation for further information on
NAG data types.)

If i � 0, the Nag_FileID number (as returned from nag_open_file (x04acc), stdout as the default) for
the primary output of the solver. If Print File ¼ �1, the primary output is completely turned off
independently of other settings. The information output to this unit is controlled by Print Level.

Constraint: Print File � �1.

Print Level i Default ¼ 2

This argument defines how detailed information should be printed by the solver to the primary and
secondary output.

i Output

0 No output from the solver

1 The Header and Summary.

2,3,4,5 Additionally, the Iteration log.

Constraint: 0 � Print Level � 5.

Print Options a Default ¼ YES

If Print Options ¼ YES, a listing of optional parameters will be printed to the primary output. It is
always printed to the secondary output.

Constraint: Print Options ¼ YES or NO.

Print Solution a Default ¼ NO

If Print Solution ¼ YES, the solution will be printed to the primary and secondary output.

Constraint: Print Solution ¼ NO or YES.

Stats Time a Default ¼ NO

This argument turns on timings of various parts of the algorithm to give a better overview of where
most of the time is spent. This might be helpful for a choice of different solving approaches. It is
possible to choose between CPU and wall clock time. Choice YES is equivalent to wall clock.

Constraint: Stats Time ¼ YES, NO, CPU or WALL CLOCK.

Time Limit r Default ¼ 106

A limit on seconds that the solver can use to solve one problem. If during the convergence check this
limit is exceeded, the solver will terminate with fail:code ¼ NE_TIME_LIMIT error message.

Warning: the timings are not computed if Stats Time is set to NO. The solver will therefore NOT be
stopped if the time limit is exceeded in such a case.

Constraint: Time Limit > 0.

e04 – Minimizing or Maximizing a Function e04ffc

Mark 26.1 e04ffc.17 (last)

	e04ffc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Powell (2009)
	Zhang et al. (2010)

	5 Arguments
	handle
	objfun
	nvar
	x
	nres
	rx
	inform
	comm
	user
	iuser
	p

	mon
	nvar
	x
	inform
	rinfo
	stats
	comm
	user
	iuser
	p

	nvar
	x
	nres
	rx
	rinfo
	stats
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BOUND
	NE_HANDLE
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_IMPROVEMENT
	NE_NO_LICENCE
	NE_PHASE
	NE_REAL_2
	NE_REF_MATCH
	NE_RESCUE_FAILED
	NE_SETUP_ERROR
	NE_TIME_LIMIT
	NE_TOO_MANY_ITER
	NE_TR_STEP_FAILED
	NE_USER_STOP
	NW_NOT_CONVERGED

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Description of the Printed Output

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	11.1 Derivative free trust region algorithm
	11.2 Bounds on the variables
	11.3 Adaptation to nonlinear least squares problems

	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Defaults
	DFLS Maximum Slow Steps
	DFLS Max Objective Calls
	DFLS Monitor Frequency
	DFLS Number Interp Points
	DFLS Print Frequency
	DFLS Small Residuals Tol
	DFLS Starting Trust Region
	DFLS Trust Region Tolerance
	DFLS Trust Region Slow Tol
	DFLS Trust Region Update
	Infinite Bound Size
	Monitoring File
	Monitoring Level
	Print File
	Print Level
	Print Options
	Print Solution
	Stats Time
	Time Limit

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

