NAG Library Function Document nag_pde_parab_1d_coll_ode (d03pjc)

1 Purpose

nag_pde_parab_1d_coll_ode (d03pjc) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs), in one space variable with scope for coupled ordinary differential equations (ODEs). The spatial discretization is performed using a Chebyshev C^0 collocation method, and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation formula (BDF) method or a Theta method (switching between Newton's method and functional iteration).

2 Specification

```
#include <nag.h>
#include <nagd03.h>
void nag_pde_parab_1d_coll_ode (Integer npde, Integer m, double *ts,
      double tout,
      void (*pdedef)(Integer npde, double t, const double x[], Integer nptl, const double u[], const double ux[], Integer ncode, const double v[], const double vdot[], double p[], double q[],
             double r[], Integer *ires, Nag_Comm *comm),
      void (*bndary)(Integer npde, double t, const double u[],
            const double ux[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double beta[], double gamma[],
             Integer *ires, Nag_Comm *comm),
      double u[], Integer nbkpts, const double xbkpts[], Integer npoly,
      Integer npts, double x[], Integer ncode,
      \label{eq:void} \mbox{ (*odedef)(Integer npde, double t, Integer ncode, const double v[], }
            const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[], const double rcp[],
             const double ucpt[], const double ucptx[], double f[],
            Integer *ires, Nag_Comm *comm),
      Integer nxi, const double xi[], Integer negn,
      void (*uvinit)(Integer npde, Integer npts, const double x[], double u[],
             Integer ncode, double v[], Nag_Comm *comm),
      const double rtol[], const double atol[], Integer itol,
      Nag_NormType norm, Nag_LinAlgOption laopt, const double algopt[],
      double rsave[], Integer lrsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind,
      Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)
```

3 Description

nag_pde_parab_1d_coll_ode (d03pjc) integrates the system of parabolic-elliptic equations and coupled ODEs

$$\sum_{i=1}^{\mathbf{npde}} P_{i,j} \frac{\partial U_j}{\partial t} + Q_i = x^{-m} \frac{\partial}{\partial x} (x^m R_i), \quad i = 1, 2, \dots, \mathbf{npde}, \quad a \le x \le b, t \ge t_0, \tag{1}$$

$$F_i(t, V, \dot{V}, \xi, U^*, U^*_x, R^*, U^*_t, U^*_{xt}) = 0, \quad i = 1, 2, \dots, \mathbf{ncode},$$
 (2)

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), $P_{i,j}$ and R_i depend on x, t, U, U_x , and V; Q_i depends on x, t, U, U_x , V and **linearly** on \dot{V} . The vector U is the set of PDE solution values

$$U(x,t) = [U_1(x,t), \dots, U_{npde}(x,t)]^T$$

and the vector U_x is the partial derivative with respect to x. Note that $P_{i,j}$, Q_i and R_i must not depend on $\frac{\partial U}{\partial t}$. The vector V is the set of ODE solution values

$$V(t) = [V_1(t), \dots, V_{\mathbf{ncode}}(t)]^{\mathrm{T}},$$

and \dot{V} denotes its derivative with respect to time.

In (2), ξ represents a vector of n_{ξ} spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U^* , U^* , R^* , U^* and U^* are the functions U, U_x , R, U_t and U_{xt} evaluated at these coupling points. Each F_i may only depend linearly on time derivatives. Hence the equation (2) may be written more precisely as

$$F = G - A\dot{V} - B \begin{pmatrix} U_t^* \\ U_{xt}^* \end{pmatrix}, \tag{3}$$

where $F = [F_1, \dots, F_{\mathbf{ncode}}]^T$, G is a vector of length **ncode**, A is an **ncode** by **ncode** matrix, B is an **ncode** by $(n_{\xi} \times \mathbf{npde})$ matrix and the entries in G, A and B may depend on t, ξ , U^* , U_x^* and V. In practice you need only supply a vector of information to define the ODEs and not the matrices A and B. (See Section 5 for the specification of **odedef**.)

The integration in time is from t_0 to $t_{\rm out}$, over the space interval $a \le x \le b$, where $a = x_1$ and $b = x_{\rm nbkpts}$ are the leftmost and rightmost of a user-defined set of break-points $x_1, x_2, \ldots, x_{\rm nbkpts}$. The coordinate system in space is defined by the value of m; m = 0 for Cartesian coordinates, m = 1 for cylindrical polar coordinates and m = 2 for spherical polar coordinates.

The PDE system which is defined by the functions $P_{i,j}$, Q_i and R_i must be specified in **pdedef**.

The initial values of the functions U(x,t) and V(t) must be given at $t=t_0$. These values are calculated in **uvinit**.

The functions R_i which may be thought of as fluxes, are also used in the definition of the boundary conditions. The boundary conditions must have the form

$$\beta_i(x,t)R_i(x,t,U,U_x,V) = \gamma_i(x,t,U,U_x,V,\dot{V}), \quad i = 1,2,\dots, \mathbf{npde}, \tag{4}$$

where x = a or x = b. The functions γ_i may only depend linearly on V.

The boundary conditions must be specified in **bndary**.

The algebraic-differential equation system which is defined by the functions F_i must be specified in **odedef**. You must also specify the coupling points ξ in the array xi. Thus, the problem is subject to the following restrictions:

- (i) in (1), $\dot{V}_j(t)$, for $j=1,2,\ldots,$ ncode, may only appear linearly in the functions Q_i , for $i=1,2,\ldots,$ npde, with a similar restriction for γ ;
- (ii) $P_{i,j}$ and the flux R_i must not depend on any time derivatives;
- (iii) $t_0 < t_{\text{out}}$, so that integration is in the forward direction;
- (iv) the evaluation of the functions $P_{i,j}$, Q_i and R_i is done at both the break-points and internally selected points for each element in turn, that is $P_{i,j}$, Q_i and R_i are evaluated twice at each break-point. Any discontinuities in these functions **must** therefore be at one or more of the mesh points;
- (v) at least one of the functions $P_{i,j}$ must be nonzero so that there is a time derivative present in the PDE problem;
- (vi) if m > 0 and $x_1 = 0.0$, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done either by specifying the solution at x = 0.0 or by specifying a zero flux there, that is $\beta_i = 1.0$ and $\gamma_i = 0.0$.

d03pjc.2 Mark 26

The parabolic equations are approximated by a system of ODEs in time for the values of U_i at the mesh points. This ODE system is obtained by approximating the PDE solution between each pair of breakpoints by a Chebyshev polynomial of degree **npoly**. The interval between each pair of break-points is treated by nag_pde_parab_1d_coll_ode (d03pjc) as an element, and on this element, a polynomial and its space and time derivatives are made to satisfy the system of PDEs at **npoly** -1 spatial points, which are chosen internally by the code and the break-points. The user-defined break-points and the internally selected points together define the mesh. The smallest value that **npoly** can take is one, in which case, the solution is approximated by piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary finite element method.

In total there are $(\mathbf{nbkpts} - 1) \times \mathbf{npoly} + 1$ mesh points in the spatial direction, and $\mathbf{npde} \times ((\mathbf{nbkpts} - 1) \times \mathbf{npoly} + 1) + \mathbf{ncode}$ ODEs in the time direction; one ODE at each breakpoint for each PDE component, $\mathbf{npoly} - 1$ ODEs for each PDE component between each pair of breakpoints, and \mathbf{ncode} coupled ODEs. The system is then integrated forwards in time using a Backward Differentiation Formula (BDF) method or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations *Scientific Software Systems* (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic systems of PDEs ACM Trans. Math. Software 17 178–206

Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in simulation and optimization of large systems *Proc. IMA Conf. Simulation and Optimization* (ed A J Osiadcz) 35–50 Clarendon Press, Oxford

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff differential equations *Appl. Numer. Math.* **9** 1–19

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel by a suction at porous walls *Fluid Dynamics Research* 4

5 Arguments

1: **npde** – Integer Input

On entry: the number of PDEs to be solved.

Constraint: $npde \ge 1$.

2: \mathbf{m} - Integer Input

On entry: the coordinate system used:

 $\mathbf{m} = 0$

Indicates Cartesian coordinates.

 $\mathbf{m} = 1$

Indicates cylindrical polar coordinates.

 $\mathbf{m} = 2$

Indicates spherical polar coordinates.

Constraint: $\mathbf{m} = 0$, 1 or 2.

3: **ts** – double * *Input/Output*

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in **u**. Normally ts = tout.

Constraint: ts < tout.

4: **tout** – double *Input*

On entry: the final value of t to which the integration is to be carried out.

5: **pdedef** – function, supplied by the user

External Function

pdedef must compute the functions $P_{i,j}$, Q_i and R_i which define the system of PDEs. The functions may depend on x, t, U, U_x and V; Q_i may depend linearly on \dot{V} . The functions must be evaluated at a set of points.

The specification of **pdedef** is:

void pdedef (Integer npde, double t, const double x[], Integer nptl,
 const double u[], const double ux[], Integer ncode,
 const double v[], const double vdot[], double p[], double q[],
 double r[], Integer *ires, Nag_Comm *comm)

1: **npde** – Integer

Input

On entry: the number of PDEs in the system.

t - double

Input

On entry: the current value of the independent variable t.

3: x[nptl] – const double

Input

On entry: contains a set of mesh points at which $P_{i,j}$, Q_i and R_i are to be evaluated. $\mathbf{x}[0]$ and $\mathbf{x}[\mathbf{nptl}-1]$ contain successive user-supplied break-points and the elements of the array will satisfy $\mathbf{x}[0] < \mathbf{x}[1] < \cdots < \mathbf{x}[\mathbf{nptl}-1]$.

4: **nptl** – Integer

Input

On entry: the number of points at which evaluations are required (the value of $\mathbf{npoly} + 1$).

5: $\mathbf{u}[\mathbf{npde} \times \mathbf{nptl}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: $\mathbf{u}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of the component $U_i(x,t)$ where $x = \mathbf{x}[j-1]$, for $i = 1, 2, \ldots, \mathbf{npde}$ and $j = 1, 2, \ldots, \mathbf{nptl}$.

6: $ux[npde \times nptl]$ – const double

Input

On entry: $\mathbf{ux}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of the component $\frac{\partial U_i(x,t)}{\partial x}$ where $x = \mathbf{x}[j-1]$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{nptl}$.

7: **ncode** – Integer

Input

On entry: the number of coupled ODEs in the system.

8: $\mathbf{v}[\mathbf{ncode}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: if $\mathbf{ncode} > 0$, $\mathbf{v}[i-1]$ contains the value of the component $V_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

9: **vdot**[**ncode**] – const double

Input

On entry: if $\mathbf{ncode} > 0$, $\mathbf{vdot}[i-1]$ contains the value of component $\dot{V}_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

Note: $\dot{V}_i(t)$, for $i=1,2,\ldots,$ ncode, may only appear linearly in Q_j , for $j=1,2,\ldots,$ npde.

d03pjc.4 Mark 26

10: $\mathbf{p}[\mathbf{npde} \times \mathbf{npde} \times \mathbf{nptl}]$ – double

Output

On exit: $\mathbf{p}[\mathbf{npde} \times \mathbf{npde} \times (k-1) + \mathbf{npde} \times (j-1) + (i-1)]$ must be set to the value of $P_{i,j}(x,t,U,U_x,V)$ where $x = \mathbf{x}[k-1]$, for $i=1,2,\ldots,\mathbf{npde}$, $j=1,2,\ldots,\mathbf{npde}$ and $k=1,2,\ldots,\mathbf{nptl}$.

11: $\mathbf{q}[\mathbf{npde} \times \mathbf{nptl}] - \mathbf{double}$

Output

On exit: $\mathbf{q}[\mathbf{npde} \times (j-1) + i - 1]$ must be set to the value of $Q_i(x, t, U, U_x, V, \dot{V})$ where $x = \mathbf{x}[j-1]$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{nptl}$.

12: $\mathbf{r}[\mathbf{npde} \times \mathbf{nptl}] - \mathbf{double}$

Output

On exit: $\mathbf{r}[\mathbf{npde} \times (j-1) + i - 1]$ must be set to the value of $R_i(x, t, U, U_x, V)$ where $x = \mathbf{x}[i-1]$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{nptl}$.

13: **ires** – Integer *

Input/Output

On entry: set to -1 or 1.

On exit: should usually remain unchanged. However, you may set **ires** to force the integration function to take certain actions as described below:

ires = 2

Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to **fail.code** = NE USER STOP.

ires = 3

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires = 3 when a physically meaningless input or output value has been generated. If you consecutively set ires = 3, then $nag_pde_parab_1d_coll_ode$ (d03pjc) returns to the calling function with the error indicator set to fail.code = NE FAILED DERIV.

14: **comm** – Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to pdedef.

```
user - double *
iuser - Integer *
p - Pointer
```

The type Pointer will be <code>void *.</code> Before calling <code>nag_pde_parab_ld_coll_ode</code> (d03pjc) you may allocate memory and initialize these pointers with various quantities for use by <code>pdedef</code> when called from <code>nag_pde_parab_ld_coll_ode</code> (d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

6: **bndary** – function, supplied by the user

External Function

bndary must compute the functions β_i and γ_i which define the boundary conditions as in equation (4).

Mark 26 d03pjc.5

On entry: the number of PDEs in the system.

2: \mathbf{t} – double Input

On entry: the current value of the independent variable t.

3: $\mathbf{u}[\mathbf{npde}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: $\mathbf{u}[i-1]$ contains the value of the component $U_i(x,t)$ at the boundary specified by **ibnd**, for $i=1,2,\ldots,\mathbf{npde}$.

4: ux[npde] – const double

Input

On entry: $\mathbf{ux}[i-1]$ contains the value of the component $\frac{\partial U_i(x,t)}{\partial x}$ at the boundary specified by **ibnd**, for $i=1,2,\ldots,$ **npde**.

5: **ncode** – Integer

Input

On entry: the number of coupled ODEs in the system.

6: $\mathbf{v}[\mathbf{ncode}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: if $\mathbf{ncode} > 0$, $\mathbf{v}[i-1]$ contains the value of the component $V_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

7: **vdot**[**ncode**] – const double

Input

On entry: if $\mathbf{ncode} > 0$, $\mathbf{vdot}[i-1]$ contains the value of component $\dot{V}_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

Note: $\dot{V}_i(t)$, for i = 1, 2, ..., **ncode**, may only appear linearly in Q_j , for j = 1, 2, ..., **npde**.

8: **ibnd** – Integer

Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd = 0

bndary must set up the coefficients of the left-hand boundary, x = a.

ibnd $\neq 0$

bndary must set up the coefficients of the right-hand boundary, x = b.

9: **beta[npde**] – double

Output

On exit: **beta**[i-1] must be set to the value of $\beta_i(x,t)$ at the boundary specified by **ibnd**, for $i=1,2,\ldots,$ **npde**.

10: **gamma[npde]** – double

Output

On exit: gamma[i-1] must be set to the value of $\gamma_i(x,t,U,U_x,V,\dot{V})$ at the boundary specified by ibnd, for $i=1,2,\ldots,$ npde.

11: **ires** – Integer *

Input/Output

On entry: set to -1 or 1.

On exit: should usually remain unchanged. However, you may set **ires** to force the integration function to take certain actions as described below:

ires — 2

Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to $fail.code = NE_USER_STOP$.

d03pjc.6 Mark 26

ires = 3

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set **ires** = 3 when a physically meaningless input or output value has been generated. If you consecutively set **ires** = 3, then nag_pde_parab_1d_coll_ode (d03pjc) returns to the calling function with the error indicator set to **fail.code** = NE_FAILED_DERIV.

12: comm - Nag Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

```
user - double *
iuser - Integer *
p - Pointer
```

The type Pointer will be void *. Before calling nag_pde_parab_ld_coll_ode (d03pjc) you may allocate memory and initialize these pointers with various quantities for use by **bndary** when called from nag_pde_parab_ld_coll_ode (d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

7: $\mathbf{u}[\mathbf{neqn}] - \text{double}$

Input/Output

On entry: if ind = 1 the value of u must be unchanged from the previous call.

On exit: the computed solution $U_i(x_j, t)$, for i = 1, 2, ..., **npde** and j = 1, 2, ..., **npts**, and $V_k(t)$, for k = 1, 2, ..., **ncode**, evaluated at t = ts, as follows:

 $\mathbf{u}[\mathbf{npde} \times (j-1) + i - 1]$ contain $U_i(x_j, t)$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{npts}$, and

 $\mathbf{u}[\mathbf{npts} \times \mathbf{npde} + i - 1]$ contain $V_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

8: **nbkpts** – Integer

Input

On entry: the number of break-points in the interval [a, b].

Constraint: $\mathbf{nbkpts} \geq 2$.

9: **xbkpts**[**nbkpts**] – const double

Input

On entry: the values of the break-points in the space direction. $\mathbf{xbkpts}[0]$ must specify the left-hand boundary, a, and $\mathbf{xbkpts}[\mathbf{nbkpts}-1]$ must specify the right-hand boundary, b.

Constraint: $xbkpts[0] < xbkpts[1] < \cdots < xbkpts[nbkpts - 1]$.

10: **npoly** – Integer

Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution between each pair of break-points.

Constraint: $1 \le \text{npoly} \le 49$.

11: **npts** – Integer

Input

On entry: the number of mesh points in the interval [a, b].

Constraint: $npts = (nbkpts - 1) \times npoly + 1$.

12: $\mathbf{x}[\mathbf{npts}] - double$

Output

On exit: the mesh points chosen by nag_pde_parab_1d_coll_ode (d03pjc) in the spatial direction. The values of \mathbf{x} will satisfy $\mathbf{x}[0] < \mathbf{x}[1] < \cdots < \mathbf{x}[\mathbf{npts}-1]$.

13: **ncode** – Integer Input

On entry: the number of coupled ODE components.

Constraint: $\mathbf{ncode} \geq 0$.

14: **odedef** – function, supplied by the user

External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (3).

odedef will never be called and the NAG defined null void function pointer, NULLFN, can be supplied in the call to nag pde parab 1d coll ode (d03pjc).

The specification of odedef is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
 const double vdot[], Integer nxi, const double xi[],
 const double ucp[], const double ucpx[], const double rcp[],
 const double ucpt[], const double ucptx[], double f[],
 Integer *ires, Nag_Comm *comm)

1: **npde** – Integer

Input

On entry: the number of PDEs in the system.

2: \mathbf{t} - double Input

On entry: the current value of the independent variable t.

3: **ncode** – Integer Input

On entry: the number of coupled ODEs in the system.

4: v[ncode] – const double

On entry: if $\mathbf{ncode} > 0$, $\mathbf{v}[i-1]$ contains the value of the component $V_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

5: **vdot**[**ncode**] – const double

Input

Input

On entry: if $\mathbf{ncode} > 0$, $\mathbf{vdot}[i-1]$ contains the value of component $\dot{V}_i(t)$, for $i = 1, 2, \dots, \mathbf{ncode}$.

6: **nxi** – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi[nxi] – const double

Input

On entry: if $\mathbf{nxi} > 0$, $\mathbf{xi}[i-1]$ contains the ODE/PDE coupling points, ξ_i , for $i = 1, 2, \dots, \mathbf{nxi}$.

8: $\mathbf{ucp}[\mathbf{npde} \times \mathbf{nxi}] - \text{const double}$

Input

On entry: if $\mathbf{nxi} > 0$, $\mathbf{ucp}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of $U_i(x,t)$ at the coupling point $x = \xi_j$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{nxi}$.

9: $\mathbf{ucpx}[\mathbf{npde} \times \mathbf{nxi}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: if $\mathbf{n} \mathbf{x} \mathbf{i} > 0$, $\mathbf{u} \mathbf{c} \mathbf{p} \mathbf{x} [\mathbf{n} \mathbf{p} \mathbf{d} \mathbf{e} \times (j-1) + i-1]$ contains the value of $\frac{\partial U_i(x,t)}{\partial x}$ at the coupling point $x = \xi_j$, for $i = 1, 2, ..., \mathbf{n} \mathbf{p} \mathbf{d} \mathbf{e}$ and $j = 1, 2, ..., \mathbf{n} \mathbf{x} \mathbf{i}$.

d03pjc.8 Mark 26

10: $rcp[npde \times nxi] - const double$

Input

On entry: $\mathbf{rcp}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of the flux R_i at the coupling point $x = \xi_j$, for $i = 1, 2, ..., \mathbf{npde}$ and $j = 1, 2, ..., \mathbf{nxi}$.

11: $\mathbf{ucpt}[\mathbf{npde} \times \mathbf{nxi}] - \text{const double}$

Input

On entry: if $\mathbf{nxi} > 0$, $\mathbf{ucpt}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of $\frac{\partial U_i}{\partial t}$ at the coupling point $x = \xi_j$, for $i = 1, 2, \dots, \mathbf{npde}$ and $j = 1, 2, \dots, \mathbf{nxi}$.

12: $\mathbf{ucptx}[\mathbf{npde} \times \mathbf{nxi}] - \mathbf{const} \ \mathbf{double}$

Inpu

On entry: $\mathbf{ucptx}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of $\frac{\partial^2 U_i}{\partial x \partial t}$ at the coupling point $x = \xi_j$, for $i = 1, 2, \dots, \mathbf{npde}$ and $j = 1, 2, \dots, \mathbf{nxi}$.

13: $\mathbf{f}[\mathbf{ncode}] - double$

Output

On exit: $\mathbf{f}[i-1]$ must contain the *i*th component of F, for $i=1,2,\ldots,$ **ncode**, where F is defined as

$$F = G - A\dot{V} - B\begin{pmatrix} U_t^* \\ U_{xt}^* \end{pmatrix}, \tag{5}$$

or

$$F = -A\dot{V} - B \begin{pmatrix} U_t^* \\ U_{rt}^* \end{pmatrix}. \tag{6}$$

The definition of F is determined by the input value of **ires**.

14: ires - Integer *

Input/Output

On entry: the form of F that must be returned in the array \mathbf{f} .

ires =

Equation (5) must be used.

ires = -1

Equation (6) must be used.

On exit: should usually remain unchanged. However, you may reset **ires** to force the integration function to take certain actions as described below:

ires = 2

Indicates to the integrator that control should be passed back immediately to the calling function with the error indicator set to **fail.code** = NE USER STOP.

ires = 3

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set **ires** = 3 when a physically meaningless input or output value has been generated. If you consecutively set **ires** = 3, then nag_pde_parab_1d_coll_ode (d03pjc) returns to the calling function with the error indicator set to **fail.code** = NE FAILED DERIV.

15: **comm** – Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to **odedef**.

```
user - double *
iuser - Integer *
p - Pointer
```

The type Pointer will be <code>void *.</code> Before calling <code>nag_pde_parab_ld_coll_ode</code> (d03pjc) you may allocate memory and initialize these pointers with various quantities for use by <code>odedef</code> when called from <code>nag_pde_parab_ld_coll_ode</code> (d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

15: **nxi** – Integer

Input

On entry: the number of ODE/PDE coupling points.

Constraints:

```
if \mathbf{ncode} = 0, \mathbf{nxi} = 0; if \mathbf{ncode} > 0, \mathbf{nxi} \ge 0.
```

16: xi[dim] – const double

Input

Note: the dimension, dim, of the array xi must be at least max(1, nxi).

On entry: xi[i-1], for $i=1,2,\ldots,nxi$, must be set to the ODE/PDE coupling points.

Constraint: $xbkpts[0] \le xi[0] < xi[1] < \cdots < xi[nxi-1] \le xbkpts[nbkpts-1]$.

17: **neqn** – Integer

Input

On entry: the number of ODEs in the time direction.

Constraint: $neqn = npde \times npts + ncode$.

18: **uvinit** – function, supplied by the user

External Function

uvinit must compute the initial values of the PDE and the ODE components $U_i(x_j, t_0)$, for i = 1, 2, ..., **npde** and j = 1, 2, ..., **npts**, and $V_k(t_0)$, for k = 1, 2, ..., **ncode**.

The specification of **uvinit** is:

1: **npde** – Integer

Input

On entry: the number of PDEs in the system.

2: **npts** – Integer

Input

On entry: the number of mesh points in the interval [a, b].

3: $\mathbf{x}[\mathbf{npts}] - \mathbf{const} \ \mathbf{double}$

Input

On entry: $\mathbf{x}[i-1]$, for $i=1,2,\ldots,\mathbf{npts}$, contains the current values of the space variable x_i .

4: $\mathbf{u}[\mathbf{npde} \times \mathbf{npts}] - \mathbf{double}$

Output

On exit: if $\mathbf{nxi} > 0$, $\mathbf{u}[\mathbf{npde} \times (j-1) + i - 1]$ contains the value of the component $U_i(x_i, t_0)$, for $i = 1, 2, \dots, \mathbf{npde}$ and $j = 1, 2, \dots, \mathbf{npts}$.

5: **ncode** – Integer

Input

On entry: the number of coupled ODEs in the system.

d03pjc.10 Mark 26

6: $\mathbf{v}[\mathbf{ncode}] - \mathbf{double}$

Output

On exit: $\mathbf{v}[i-1]$ contains the value of component $V_i(t_0)$, for $i=1,2,\ldots,\mathbf{ncode}$.

7: **comm** – Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to uvinit.

```
user - double *
iuser - Integer *
p - Pointer
```

The type Pointer will be void *. Before calling nag_pde_parab_ld_coll_ode (d03pjc) you may allocate memory and initialize these pointers with various quantities for use by **uvinit** when called from nag_pde_parab_ld_coll_ode (d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

19: $\mathbf{rtol}[dim] - \text{const double}$

Input

Note: the dimension, dim, of the array rtol must be at least

```
1 when itol = 1 or 2;

neqn when itol = 3 or 4.
```

On entry: the relative local error tolerance.

Constraint: $\mathbf{rtol}[i-1] \ge 0.0$ for all relevant i.

20: atol[dim] - const double

Input

Note: the dimension, dim, of the array atol must be at least

```
1 when itol = 1 or 3;
neqn when itol = 2 or 4.
```

On entry: the absolute local error tolerance.

Constraint: **atol** $[i-1] \ge 0.0$ for all relevant i.

Note: corresponding elements of rtol and atol cannot both be 0.0.

21: **itol** – Integer

Input

On entry: a value to indicate the form of the local error test. **itol** indicates to nag_pde_parab_1d_coll_ode (d03pjc) whether to interpret either or both of **rtol** or **atol** as a vector or scalar. The error test to be satisfied is $||e_i/w_i|| < 1.0$, where w_i is defined as follows:

```
itol rtol
                    atol
        scalar
                   scalar
                               \mathsf{rtol}[0] \times |U_i| + \mathsf{atol}[0]
 1
                               rtol[0] \times |U_i| + atol[i-1]
 2
        scalar
                    vector
                               \mathsf{rtol}[i-1] \times |U_i| + \mathsf{atol}[0]
 3
        vector
                   scalar
                               \mathsf{rtol}[i-1] \times |U_i| + \mathsf{atol}[i-1]
        vector vector
```

In the above, e_i denotes the estimated local error for the *i*th component of the coupled PDE/ODE system in time, $\mathbf{u}[i-1]$, for $i=1,2,\ldots,\mathbf{neqn}$.

The choice of norm used is defined by the argument **norm**.

Constraint: $1 \leq itol \leq 4$.

22: **norm** – Nag_NormType

Input

On entry: the type of norm to be used.

norm = Nag_MaxNorm

Maximum norm.

norm = Nag_TwoNorm

Averaged L_2 norm.

If \mathbf{u}_{norm} denotes the norm of the vector \mathbf{u} of length \mathbf{neqn} , then for the averaged L_2 norm

$$\mathbf{u}_{\mathrm{norm}} = \sqrt{\frac{1}{\underset{i=1}{\operatorname{neqn}}} \sum_{i=1}^{\underset{i=1}{\operatorname{neqn}}} (\mathbf{u}[i-1]/w_i)^2},$$

while for the maximum norm

$$\mathbf{u}_{\text{norm}} = \max_{i} |\mathbf{u}[i-1]/w_i|.$$

See the description of itol for the formulation of the weight vector w.

Constraint: **norm** = Nag_MaxNorm or Nag_TwoNorm.

23: laopt - Nag_LinAlgOption

Input

On entry: the type of matrix algebra required.

laopt = Nag_LinAlgFull

Full matrix methods to be used.

 $\boldsymbol{laopt} = Nag_LinAlgBand$

Banded matrix methods to be used.

laopt = Nag_LinAlgSparse

Sparse matrix methods to be used.

Constraint: laopt = Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e., $\mathbf{ncode} = 0$).

24: **algopt[30]** – const double

Input

On entry: may be set to control various options available in the integrator. If you wish to employ all the default options, then **algopt**[0] should be set to 0.0. Default values will also be used for any other elements of **algopt** set to zero. The permissible values, default values, and meanings are as follows:

algopt[0]

Selects the ODE integration method to be used. If $\mathbf{algopt}[0] = 1.0$, a BDF method is used and if $\mathbf{algopt}[0] = 2.0$, a Theta method is used. The default value is $\mathbf{algopt}[0] = 1.0$.

If $\mathbf{algopt}[0] = 2.0$, then $\mathbf{algopt}[i-1]$, for i = 2, 3, 4 are not used.

algopt[1]

Specifies the maximum order of the BDF integration formula to be used. algopt[1] may be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2]

Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If $\mathbf{algopt}[2] = 1.0$ a modified Newton iteration is used and if $\mathbf{algopt}[2] = 2.0$ a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is $\mathbf{algopt}[2] = 1.0$.

d03pjc.12 Mark 26

algopt[3]

Specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as $P_{i,j} = 0.0$, for $j = 1, 2, \ldots, \mathbf{npde}$, for some i or when there is no $\dot{V}_i(t)$ dependence in the coupled ODE system. If $\mathbf{algopt}[3] = 1.0$, then the Petzold test is used. If $\mathbf{algopt}[3] = 2.0$, then the Petzold test is not used. The default value is $\mathbf{algopt}[3] = 1.0$.

If algopt[0] = 1.0, then algopt[i-1], for i = 5, 6, 7, are not used.

algopt[4]

Specifies the value of Theta to be used in the Theta integration method. $0.51 \le \mathbf{algopt}[4] \le 0.99$. The default value is $\mathbf{algopt}[4] = 0.55$.

algopt[5]

Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If $\mathbf{algopt}[5] = 1.0$, a modified Newton iteration is used and if $\mathbf{algopt}[5] = 2.0$, a functional iteration method is used. The default value is $\mathbf{algopt}[5] = 1.0$.

algopt[6]

Specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If $\mathbf{algopt}[6] = 1.0$, then switching is allowed and if $\mathbf{algopt}[6] = 2.0$, then switching is not allowed. The default value is $\mathbf{algopt}[6] = 1.0$.

algopt[10]

Specifies a point in the time direction, $t_{\rm crit}$, beyond which integration must not be attempted. The use of $t_{\rm crit}$ is described under the argument **itask**. If ${\bf algopt}[0] \neq 0.0$, a value of 0.0 for ${\bf algopt}[10]$, say, should be specified even if **itask** subsequently specifies that $t_{\rm crit}$ will not be used.

algopt[11]

Specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, **algopt**[11] should be set to 0.0.

algopt[12]

Specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, **algopt**[12] should be set to 0.0.

algopt[13]

Specifies the initial step size to be attempted by the integrator. If $\mathbf{algopt}[13] = 0.0$, then the initial step size is calculated internally.

algont[14]

Specifies the maximum number of steps to be attempted by the integrator in any one call. If $\mathbf{algopt}[14] = 0.0$, then no limit is imposed.

algont[22]

Specifies what method is to be used to solve the nonlinear equations at the initial point to initialize the values of U, U_t , V and \dot{V} . If $\mathbf{algopt}[22] = 1.0$, a modified Newton iteration is used and if $\mathbf{algopt}[22] = 2.0$, functional iteration is used. The default value is $\mathbf{algopt}[22] = 1.0$.

 $\label{eq:algopt} \begin{array}{llll} \textbf{algopt}[28] & \text{and} & \textbf{algopt}[29] & \text{are used only for the sparse matrix algebra option,} \\ \textbf{laopt} = Nag_LinAlgSparse. \end{array}$

algopt[28]

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range $0.0 < \mathbf{algopt}[28] < 1.0$, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If $\mathbf{algopt}[28]$ lies outside this range then the default value is used. If the functions regard the Jacobian matrix as numerically singular then increasing $\mathbf{algopt}[28]$ towards 1.0 may help, but at the cost of increased fill-in. The default value is $\mathbf{algopt}[28] = 0.1$.

```
algopt[29]
```

Is used as a relative pivot threshold during subsequent Jacobian decompositions (see $\mathbf{algopt}[28]$) below which an internal error is invoked. If $\mathbf{algopt}[29]$ is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see $\mathbf{algopt}[28]$). The default value is $\mathbf{algopt}[29] = 0.0001$.

25: rsave[lrsave] - double

Communication Array

If ind = 0, rsave need not be set on entry.

If **ind** = 1, **rsave** must be unchanged from the previous call to the function because it contains required information about the iteration.

26: **Irsave** – Integer

Input

On entry: the dimension of the array **rsave**. Its size depends on the type of matrix algebra selected.

If $laopt = Nag_LinAlgFull$, $lrsave \ge neqn \times neqn + neqn + nwkres + lenode$.

If $laopt = Nag_LinAlgBand$, $lrsave \ge (3 \times mlu + 1) \times neqn + nwkres + lenode$.

If $laopt = Nag_LinAlgSparse$, $lrsave \ge 4 \times neqn + 11 \times neqn/2 + 1 + nwkres + lenode$.

Where

mlu is the lower or upper half bandwidths such that $mlu = 3 \times \mathbf{npde} - 1$, for PDE problems only (no coupled ODEs); or $mlu = \mathbf{neqn} - 1$, for coupled PDE/ODE problems.

$$nwkres = \begin{cases} 3 \times (\mathbf{npoly} + 1)^2 + (\mathbf{npoly} + 1) \times \left[\mathbf{npde}^2 + 6 \times \mathbf{npde} + \mathbf{nbkpts} + 1\right] + 8 \times \mathbf{npde} + \mathbf{nxi} \times (5 \times \mathbf{npde} + 1) + \mathbf{ncode} + 3, & \text{when } \mathbf{ncode} > 0 \text{ and } \mathbf{nxi} > 0; \text{ or } \mathbf{npoly} + 1)^2 + (\mathbf{npoly} + 1) \times \left[\mathbf{npde}^2 + 6 \times \mathbf{npde} + \mathbf{nbkpts} + 1\right] + 13 \times \mathbf{npde} + \mathbf{ncode} + 4, & \text{when } \mathbf{ncode} > 0 \text{ and } \mathbf{nxi} = 0; \text{ or } \mathbf{npoly} + 1) \times \left[\mathbf{npde}^2 + 6 \times \mathbf{npde} + \mathbf{nbkpts} + 1\right] + 13 \times \mathbf{npde} + 5, & \text{when } \mathbf{ncode} = 0. \end{cases}$$

$$lenode = \begin{cases} (6 + \text{int}(\mathbf{algopt}[1])) \times \mathbf{neqn} + 50, & \text{when the BDF method is used; or} \\ 9 \times \mathbf{neqn} + 50, & \text{when the Theta method is used.} \end{cases}$$

Note: when $laopt = Nag_LinAlgSparse$, the value of lrsave may be too small when supplied to the integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if itrace > 0 and the function returns with $fail.code = NE_INT_2$.

27: **isave**[lisave] – Integer

Communication Array

If ind = 0, isave need not be set on entry.

If ind = 1, isave must be unchanged from the previous call to the function because it contains required information about the iteration required for subsequent calls. In particular:

isave[0]

Contains the number of steps taken in time.

isave[1]

Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.

isave[2]

Contains the number of Jacobian evaluations performed by the time integrator.

isave[3]

Contains the order of the ODE method last used in the time integration.

isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the LU decomposition of the Jacobian matrix.

d03pjc.14 Mark 26

28: lisave – Integer

Input

On entry: the dimension of the array isave. Its size depends on the type of matrix algebra selected:

if $laopt = Nag_LinAlgFull$, $lisave \ge 24$;

if $laopt = Nag_LinAlgBand$, lisave > neqn + 24;

if $laopt = Nag_LinAlgSparse$, $lisave \ge 25 \times neqn + 24$.

Note: when using the sparse option, the value of **lisave** may be too small when supplied to the integrator. An estimate of the minimum size of **lisave** is printed if **itrace** > 0 and the function returns with **fail.code** = NE_INT_2.

29: itask – Integer

Input

On entry: specifies the task to be performed by the ODE integrator.

itask = 1

Normal computation of output values \mathbf{u} at $t = \mathbf{tout}$.

itask = 2

One step and return.

itask = 3

Stop at first internal integration point at or beyond t = tout.

itask = 4

Normal computation of output values **u** at t =tout but without overshooting $t = t_{crit}$ where t_{crit} is described under the argument **algopt**.

itask = 5

Take one step in the time direction and return, without passing t_{crit} , where t_{crit} is described under the argument **algopt**.

Constraint: itask = 1, 2, 3, 4 or 5.

30: **itrace** – Integer

Input

On entry: the level of trace information required from nag_pde_parab_1d_coll_ode (d03pjc) and the underlying ODE solver. **itrace** may take the value -1, 0, 1, 2 or 3.

itrace = -1

No output is generated.

itrace = 0

Only warning messages from the PDE solver are printed.

itrace > 0

Output from the underlying ODE solver is printed. This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.

If **itrace** < -1, then -1 is assumed and similarly if **itrace** > 3, then 3 is assumed.

The advisory messages are given in greater detail as **itrace** increases.

31: **outfile** – const char *

Input

On entry: the name of a file to which diagnostic output will be directed. If **outfile** is **NULL** the diagnostic output will be directed to standard output.

32: ind – Integer *

Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind = 0

Starts or restarts the integration in time.

Mark 26

ind = 1

Continues the integration after an earlier exit from the function. In this case, only the arguments **tout** and **fail** should be reset between calls to nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: ind = 0 or 1.

On exit: ind = 1.

33: comm - Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

34: saved - Nag D03 Save *

Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to any subsequent call to a Chapter d03 function.

35: **fail** – NagError *

Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE ACC IN DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE ALLOC FAIL

Dynamic memory allocation failed.

See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE FAILED DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could be due to your setting ires = 3 in pdedef or bndary.

NE FAILED START

atol and rtol were too small to start integration.

NE FAILED STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as $\mathbf{ts} = \langle value \rangle$.

Underlying ODE solver cannot make further progress from the point **ts** with the supplied values of **atol** and **rtol**. **ts** = $\langle value \rangle$.

NE_INCOMPAT_PARAM

```
On entry, \mathbf{m} = \langle value \rangle and \mathbf{xbkpts}[0] = \langle value \rangle. Constraint: \mathbf{m} \leq 0 or \mathbf{xbkpts}[0] \geq 0.0
```

d03pjc.16 Mark 26

NE INT

```
ires set to an invalid value in call to pdedef, bndary, or odedef.
         On entry, ind = \langle value \rangle.
         Constraint: ind = 0 or 1.
         On entry, itask = \langle value \rangle.
         Constraint: itask = 1, 2, 3, 4 \text{ or } 5.
         On entry, itol = \langle value \rangle.
         Constraint: itol = 1, 2, 3 or 4.
         On entry, \mathbf{m} = \langle value \rangle.
         Constraint: \mathbf{m} = 0, 1 or 2.
         On entry, nbkpts = \langle value \rangle.
         Constraint: \mathbf{nbkpts} \geq 2.
         On entry, \mathbf{ncode} = \langle value \rangle.
         Constraint: \mathbf{ncode} \geq 0.
         On entry, \mathbf{npde} = \langle value \rangle.
         Constraint: npde \ge 1.
         On entry, npoly = \langle value \rangle.
         Constraint: npoly \leq 49.
         On entry, npoly = \langle value \rangle.
         Constraint: npoly > 1.
NE INT 2
         On entry, corresponding elements atol[I-1] and rtol[J-1] are both zero: I = \langle value \rangle and
         J = \langle value \rangle.
         On entry, lisave is too small: lisave = \langle value \rangle. Minimum possible dimension: \langle value \rangle.
         On entry, Irsave is too small: Irsave = \langle value \rangle. Minimum possible dimension: \langle value \rangle.
         On entry, \mathbf{ncode} = \langle value \rangle and \mathbf{nxi} = \langle value \rangle.
         Constraint: \mathbf{nxi} = 0 when \mathbf{ncode} = 0.
         On entry, \mathbf{ncode} = \langle value \rangle and \mathbf{nxi} = \langle value \rangle.
         Constraint: \mathbf{nxi} \geq 0 when \mathbf{ncode} > 0.
         When using the sparse option lisave or lrsave is too small: lisave = \langle value \rangle, lrsave = \langle value \rangle.
NE INT 3
         On entry, npts = \langle value \rangle, nbkpts = \langle value \rangle and npoly = \langle value \rangle.
         Constraint: npts = (nbkpts - 1) \times npoly + 1.
NE INT 4
         On entry, \mathbf{neqn} = \langle value \rangle, \mathbf{npde} = \langle value \rangle, \mathbf{npts} = \langle value \rangle and \mathbf{ncode} = \langle value \rangle.
         Constraint: neqn = npde \times npts + ncode.
```

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE ITER FAIL

In solving ODE system, the maximum number of steps $\mathbf{algopt}[14]$ has been exceeded. $\mathbf{algopt}[14] = \langle value \rangle$.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_CLOSE_FILE

Cannot close file \(\text{value} \).

NE_NOT_STRICTLY_INCREASING

```
On entry, break-points xbkpts badly ordered: I = \langle value \rangle, xbkpts[I-1] = \langle value \rangle, J = \langle value \rangle and xbkpts[J-1] = \langle value \rangle.
```

```
On entry, I = \langle value \rangle, \mathbf{xi}[I] = \langle value \rangle and \mathbf{xi}[I-1] = \langle value \rangle. Constraint: \mathbf{xi}[I] > \mathbf{xi}[I-1].
```

NE_NOT_WRITE_FILE

Cannot open file $\langle value \rangle$ for writing.

NE REAL

```
On entry, \mathbf{algopt}[0] = \langle value \rangle.
Constraint: \mathbf{algopt}[0] = 0.0, 1.0 \text{ or } 2.0.
```

NE REAL 2

```
On entry, at least one point in xi lies outside [xbkpts[0], xbkpts[nbkpts - 1]]: \mathbf{xbkpts}[0] = \langle value \rangle and \mathbf{xbkpts}[\mathbf{nbkpts} - 1] = \langle value \rangle.
```

```
On entry, tout = \langle value \rangle and ts = \langle value \rangle.
```

Constraint: tout > ts.

On entry, **tout** – **ts** is too small: **tout** = $\langle value \rangle$ and **ts** = $\langle value \rangle$.

NE REAL ARRAY

```
On entry, I = \langle value \rangle and \mathbf{atol}[I-1] = \langle value \rangle. Constraint: \mathbf{atol}[I-1] \geq 0.0. On entry, I = \langle value \rangle and \mathbf{rtol}[I-1] = \langle value \rangle. Constraint: \mathbf{rtol}[I-1] \geq 0.0.
```

NE SING JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires = 2 has been set in **pdedef**, **bndary**, or **odedef**. Integration is successful as far as \mathbf{ts} : $\mathbf{ts} = \langle value \rangle$.

NE ZERO WTS

Zero error weights encountered during time integration.

d03pjc.18 Mark 26

7 Accuracy

nag_pde_parab_1d_coll_ode (d03pjc) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument **atol** and **rtol**.

8 Parallelism and Performance

nag_pde_parab_1d_coll_ode (d03pjc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_pde_parab_1d_coll_ode (d03pjc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

This example provides a simple coupled system of one PDE and one ODE.

$$(V_1)^2 \frac{\partial U_1}{\partial t} - xV_1 \dot{V}_1 \frac{\partial U_1}{\partial x} = \frac{\partial^2 U_1}{\partial x^2}$$
$$\dot{V}_1 = V_1 U_1 + \frac{\partial U_1}{\partial x} + 1 + t,$$

for $t \in [10^{-4}, 0.1 \times 2^i]$, $i = 1, 2, \dots, 5, x \in [0, 1]$.

The left boundary condition at x = 0 is

$$\frac{\partial U_1}{\partial x} = -V_1 \exp t.$$

The right boundary condition at x = 1 is

$$U_1 = -V_1 \dot{V}_1.$$

The initial conditions at $t = 10^{-4}$ are defined by the exact solution:

$$V_1 = t$$
, and $U_1(x,t) = \exp\{t(1-x)\} - 1.0$, $x \in [0,1]$,

and the coupling point is at $\xi_1 = 1.0$.

10.1 Program Text

```
/* nag_pde_parab_1d_coll_ode (d03pjc) Example Program.
 * NAGPRODCODE Version.
 * Copyright 2016 Numerical Algorithms Group.
 * Mark 26, 2016.
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
\begin{array}{ll} \texttt{\#ifdef} & \underline{\quad} \texttt{cplusplus} \\ \texttt{extern} & \underline{\quad} \texttt{"C"} \end{array}
#endif
  static void NAG_CALL pdedef(Integer, double, const double[], Integer, const
                                double[], const double[], Integer,
                                const double[], const double[], double[],
                                double[], double[], Integer *, Nag_Comm *);
  static void NAG_CALL bndary(Integer, double, const double[], const double[], Integer, const double[], const double[],
                                Integer, double[], double[], Integer *,
                                Nag_Comm *);
  static void NAG_CALL odedef(Integer, double, Integer, const double[], const double[], Integer, const double[],
                                const double[], const double[], const double[],
                                const double[], const double[], double[],
  #ifdef __cplusplus
#endif
#define U(I, J)
                   u[npde*((J) -1)+(I) -1]
#define UX(I, J)
                   ux[npde*((J) -1)+(I) -1]
#define UCP(I, J) ucp[npde*((J) -1)+(I) -1]
#define UCPX(I, J) ucpx[npde*((J) -1)+(I) -1] #define P(I, J, K) p[npde*(npde*((K) -1)+(J) -1)+(I) -1]
#define Q(I, J) q[npde*((\bar{J}) -1)+(I) -1]
#define R(I, J)
                    r[npde*((J) -1)+(I) -1]
int main(void)
  /* Constant scalars */
  const Integer print_stat = 0;
  const Integer npde = 1, ncode = 1, npoly = 3, m = 0, nbkpts = 30;
  const Integer nel = nbkpts - 1, npts = nel * npoly + 1;
  const Integer negn = npde*npts + ncode;
  const Integer nxi = 1, lisave = 24, npl1 = npoly + 1;
  const Integer nwkres = npl1*(3*npl1 + npde*(npde + 6) + nbkpts + 1) +
                          8*npde + nxi*(5*npde + 1) + ncode + 3;
  const Integer lenode = 11 * negn + 50;
  const Integer lrsave = neqn*neqn + neqn + nwkres + lenode;
  /* Constant arrays */
  static double ruser[4] = \{-1.0, -1.0, -1.0, -1.0\};
  /* Scalars */
  double
               tout, ts;
                exit_status = 0, i, ind, it, itask, itol, itrace;
  Integer
  Nag_Boolean theta;
  double
```

d03pjc.20 Mark 26

```
*u = 0, *x = 0, *xbkpts = 0, *xi = 0;
double
Integer
              *isave = 0;
/* Nag Types */
NagError
            fail;
Nag_Comm
             comm;
Nag_D03_Save saved;
INIT_FAIL(fail);
printf(" nag_pde_parab_1d_coll_ode (d03pjc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
/* Allocate memory */
if (!(algopt = NAG_ALLOC(30, double)) ||
    !(atol = NAG_ALLOC(1, double)) ||
    !(rsave = NAG_ALLOC(lrsave, double)) ||
    !(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(neqn, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
    !(xbkpts = NAG_ALLOC(nbkpts, double)) ||
    !(xi = NAG_ALLOC(nxi, double)) ||
    !(isave = NAG_ALLOC(lisave, Integer)))
  printf("Allocation failure\n");
  exit_status = 1;
  goto END;
itrace = 0;
itol = 1;
atol[0] = 1e-5;
rtol[0] = atol[0];
printf("\n Simple coupled PDE using BDF\n\n");
printf("
           Degree of Polynomial =%4" NAG_IFMT "\n", npoly);
printf("
           Number of elements =%4" NAG_IFMT "\n", nbkpts - 1);
printf("
           Accuracy requirement =%12.3e\n", atol[0]);
printf("
                                =%4" NAG_IFMT "\n\n", npts);
           Number of points
/* Set break-points */
for (i = 0; i < nbkpts; ++i)
  xbkpts[i] = i / (nbkpts - 1.0);
xi[0] = 1.0;
ind = 0;
itask = 1;
/* Set theta = TRUE if the Theta integrator is required */
theta = Nag_FALSE;
for (i = 0; i < 30; ++i)
  algopt[i] = 0.0;
if (theta) {
  algopt[0] = 2.0;
else {
 algopt[0] = 0.0;
/* Loop over output value of t */
ts = 1.e-4;
comm.p = (Pointer) &ts;
printf("%7s%8s%s\n", "time", "", "solution at x=0");
```

```
tout = 0.1;
  for (it = 0; it < 5; ++it) {
    tout = tout + tout;
    /* nag_pde_parab_1d_coll_ode (d03pjc).
     * General system of parabolic PDEs, coupled DAEs, method of
     * lines, Chebyshev C^O collocation, one space variable
    nag_pde_parab_1d_coll_ode(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
                                xbkpts, npoly, npts, x, ncode, odedef, nxi, xi,
                               neqn, uvinit, rtol, atol, itol, Nag_TwoNorm,
                               Nag_LinAlgFull, algopt, rsave, lrsave, isave,
                               lisave, itask, itrace, 0, &ind, &comm, &saved,
                                &fail);
    if (fail.code != NE_NOERROR) {
      printf("Error from nag_pde_parab_1d_coll_ode (d03pjc).\n%s\n",
              fail.message);
      exit_status = 1;
      goto END;
    printf("%7.1f%15s%6.2f\n", ts, "", u[0]);
  if (print_stat) {
    printf(" Number of integration steps in time = %6" NAG_IFMT "\n", isave[0]);
    printf(" Number of function evaluations = %6" NAG_IFMT "\n", isave[1]);
printf(" Number of Jacobian evaluations = %6" NAG_IFMT "\n", isave[2]);
   printf(" Number of iterations = %6" NAG_IFMT "\n\n", isave[4]);
  }
END:
  NAG_FREE(algopt);
  NAG_FREE(atol);
  NAG_FREE(rsave);
  NAG_FREE(rtol);
  NAG_FREE(u);
  NAG_FREE(x);
  NAG_FREE (xbkpts);
  NAG_FREE(xi);
  NAG_FREE(isave);
  return exit_status;
}
static void NAG_CALL uvinit(Integer npde, Integer npts, const double x[],
                              double u[], Integer ncode, double v[],
                             Nag_Comm *comm)
  /* Routine for PDE initial values (start time is 0.1e-6) */
  double *ts = (double *) comm->p;
  Integer i;
  if (comm->user[0] == -1.0) {
    /* printf("(User-supplied callback uvinit, first invocation.)\n"); */
    comm->user[0] = 0.0;
  v[0] = *ts;
  for (i = 1; i <= npts; ++i)
    U(1, i) = \exp(*ts * (1.0 - x[i - 1])) - 1.0;
  return;
static void NAG_CALL odedef(Integer npde, double t, Integer ncode,
                              const double v[], const double vdot[],
                              Integer nxi, const double xi[],
                              const double ucp[], const double ucpx[],
                              const double rcp[], const double ucpt[],
                             const double ucptx[], double f[], Integer *ires,
                             Nag_Comm *comm)
  if (comm->user[1] == -1.0) {
```

d03pjc.22 Mark 26

```
/* printf("(User-supplied callback odedef, first invocation.)\n"); */
    comm->user[1] = 0.0;
  if (*ires == 1) {
    f[0] = vdot[0] - v[0] * UCP(1, 1) - UCPX(1, 1) - 1.0 - t;
  else if (*ires == -1) {
   f[0] = vdot[0];
  return:
}
Integer ncode, const double v[],
                            const double vdot[], double p[], double q[],
double r[], Integer *ires, Nag_Comm *comm)
  Integer i;
  if (comm->user[2] == -1.0) {
    /* printf("(User-supplied callback pdedef, first invocation.)\n"); */
   comm->user[2] = 0.0;
  for (i = 1; i \le nptl; ++i) {
   P(1, 1, i) = v[0] * v[0];
   R(1, i) = UX(1, i);

Q(1, i) = -x[i - 1] * UX(1, i) * v[0] * vdot[0];
  return;
}
static void NAG_CALL bndary(Integer npde, double t, const double u[],
                            const double ux[], Integer ncode,
                            const double v[], const double vdot[],
                            Integer ibnd, double beta[], double gamma[],
                            Integer *ires, Nag_Comm *comm)
  if (comm->user[3] == -1.0) {
    /* printf("(User-supplied callback bndary, first invocation.)\n"); */
    comm->user[3] = 0.0;
  beta[0] = 1.0;
  if (ibnd == 0) {
    gamma[0] = -v[0] * exp(t);
  else {
    gamma[0] = -v[0] * vdot[0];
  return;
}
```

10.2 Program Data

None.

10.3 Program Results

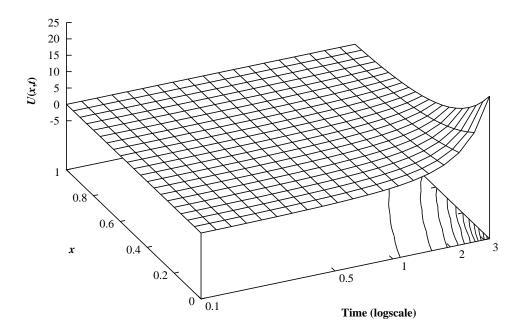
```
nag_pde_parab_1d_coll_ode (d03pjc) Example Program Results
Simple coupled PDE using BDF

Degree of Polynomial = 3
Number of elements = 29
Accuracy requirement = 1.000e-05
Number of points = 88

time solution at x=0
```

0.2	0.22
0.4	0.49
0.8	1.23
1.6	3.95
3.2	23.53

Example ProgramParabolic PDE Coupled with ODE using Collocation and BDF



d03pjc.24 (last) Mark 26