
NAG Library Function Document

nag_pde_parab_1d_keller (d03pec)

1 Purpose

nag_pde_parab_1d_keller (d03pec) integrates a system of linear or nonlinear, first-order, time-dependent
partial differential equations (PDEs) in one space variable. The spatial discretization is performed using
the Keller box scheme and the method of lines is employed to reduce the PDEs to a system of ordinary
differential equations (ODEs). The resulting system is solved using a Backward Differentiation Formula
(BDF) method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_keller (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ut[], const double ux[], double res[], Integer *ires,
Nag_Comm *comm),

void (*bndary)(Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], double res[], Integer *ires,
Nag_Comm *comm),

double u[], Integer npts, const double x[], Integer nleft, double acc,
double rsave[], Integer lrsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_keller (d03pec) integrates the system of first-order PDEs

Gi x; t; U; Ux; Utð Þ ¼ 0; i ¼ 1; 2; . . . ; npde: ð1Þ
In particular the functions Gi must have the general form

Gi ¼
Xnpde

j¼1

Pi;j
@Uj

@t
þQi; i ¼ 1; 2; . . . ;npde; a � x � b; t � t0; ð2Þ

where Pi;j and Qi depend on x, t, U , Ux and the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; Unpde x; tð Þ� �T
; ð3Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j and Qi must not depend on
@U

@t
.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The mesh should be
chosen in accordance with the expected behaviour of the solution.

The PDE system which is defined by the functions Gi must be specified in pdedef.

The initial values of the functions U x; tð Þ must be given at t ¼ t0. For a first-order system of PDEs,
only one boundary condition is required for each PDE component Ui. The npde boundary conditions
are separated into na at the left-hand boundary x ¼ a, and nb at the right-hand boundary x ¼ b, such
that na þ nb ¼ npde. The position of the boundary condition for each component should be chosen with
care; the general rule is that if the characteristic direction of Ui at the left-hand boundary (say) points
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into the interior of the solution domain, then the boundary condition for Ui should be specified at the
left-hand boundary. Incorrect positioning of boundary conditions generally results in initialization or
integration difficulties in the underlying time integration functions.

The boundary conditions have the form:

GL
i x; t; U; Utð Þ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ; na ð4Þ

at the left-hand boundary, and

GR
i x; t; U; Utð Þ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ; nb ð5Þ

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme (see Keller (1970)). If the problem involves derivative (Neumann)
boundary conditions then it is generally possible to restate such boundary conditions in terms of
permissible variables. Also note that GL

i and GR
i must be linear with respect to time derivatives, so that

the boundary conditions have the general form

Xnpde

j¼1

EL
i;j

@Uj

@t
þ SL

i ¼ 0; i ¼ 1; 2; . . . ; na ð6Þ

at the left-hand boundary, and

Xnpde

j¼1

ER
i;j

@Uj

@t
þ SR

i ¼ 0; i ¼ 1; 2; . . . ; nb ð7Þ

at the right-hand boundary, where EL
i;j, E

R
i;j, S

L
i , and SR

i depend on x, t and U only.

The boundary conditions must be specified in bndary.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j and Qi must not depend on any time derivatives;

(iii) The evaluation of the function Gi is done at the mid-points of the mesh intervals by calling the
pdedef for each mid-point in turn. Any discontinuities in the function must therefore be at one or
more of the mesh points x1; x2; . . . ; xnpts;

(iv) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
problem.

In this method of lines approach the Keller box scheme (see Keller (1970)) is applied to each PDE in
the space variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point.
In total there are npde� npts ODEs in the time direction. This system is then integrated forwards in
time using a BDF method.
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5 Arguments

1: npde – Integer Input

On entry: the number of PDEs in the system to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

Constraint: ts < tout.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef – function, supplied by the user External Function

pdedef must compute the functions Gi which define the system of PDEs. pdedef is called
approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_keller
(d03pec).

The specification of pdedef is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ut[], const double ux[], double res[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ut½npde� – const double Input

On entry: ut½i � 1� contains the value of the component
@Ui x; tð Þ

@t
, for

i ¼ 1; 2; . . . ; npde.

6: ux½npde� – const double Input

On entry: ux½i � 1� contains the value of the component
@Ui x; tð Þ

@x
, for

i ¼ 1; 2; . . . ; npde.

7: res½npde� – double Output

On exit: res½i � 1� must contain the ith component of G, for i ¼ 1; 2; . . . ;npde, where
G is defined as
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Gi ¼
Xnpde

j¼1

Pi;j
@Uj

@t
; ð8Þ

i.e., only terms depending explicitly on time derivatives, or

Gi ¼
Xnpde

j¼1

Pi;j
@Uj

@t
þQi; ð9Þ

i.e., all terms in equation (2).

The definition of G is determined by the input value of ires.

8: ires – Integer * Input/Output

On entry: the form of Gi that must be returned in the array res.

ires ¼ �1
Equation (8) must be used.

ires ¼ 1
Equation (9) must be used.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_keller (d03pec) returns to the calling function
with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_keller
(d03pec) you may allocate memory and initialize these pointers with various
quantities for use by pdedef when called from nag_pde_parab_1d_keller
(d03pec) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

5: bndary – function, supplied by the user External Function

bndary must compute the functions GL
i and GR

i which define the boundary conditions as in
equations (4) and (5).

The specification of bndary is:

void bndary (Integer npde, double t, Integer ibnd, Integer nobc,
const double u[], const double ut[], double res[], Integer *ires,
Nag_Comm *comm)
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1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ibnd – Integer Input

On entry: determines the position of the boundary conditions.

ibnd ¼ 0
bndary must compute the left-hand boundary condition at x ¼ a.

ibnd 6¼ 0
Indicates that bndary must compute the right-hand boundary condition at x ¼ b.

4: nobc – Integer Input

On entry: specifies the number of boundary conditions at the boundary specified by
ibnd.

5: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

6: ut½npde� – const double Input

On entry: ut½i � 1� contains the value of the component
@Ui x; tð Þ

@t
at the boundary

specified by ibnd, for i ¼ 1; 2; . . . ; npde.

7: res½nobc� – double Output

On exit: res½i � 1� must contain the ith component of GL or GR, depending on the value
of ibnd, for i ¼ 1; 2; . . . ; nobc, where GL is defined as

GL
i ¼

Xnpde

j¼1

EL
i;j

@Uj

@t
; ð10Þ

i.e., only terms depending explicitly on time derivatives, or

GL
i ¼

Xnpde

j¼1

EL
i;j

@Uj

@t
þ SL

i ; ð11Þ

i.e., all terms in equation (6), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of ires.

8: ires – Integer * Input/Output

On entry: the form GL
i (or GR

i ) that must be returned in the array res.

ires ¼ �1
Equation (10) must be used.

ires ¼ 1
Equation (11) must be used.
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On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions, as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_keller (d03pec) returns to the calling function
with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_keller
(d03pec) you may allocate memory and initialize these pointers with various
quantities for use by bndary when called from nag_pde_parab_1d_keller
(d03pec) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

6: u½npde� npts� – double Input/Output

On entry: the initial values of U x; tð Þ at t ¼ ts and the mesh points x½j � 1�, for j ¼ 1; 2; . . . ;npts.

On exit: u½npde� j � 1ð Þ þ i � 1� will contain the computed solution at t ¼ ts.

7: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

8: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0� must specify the left-hand boundary, a,
and x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

9: nleft – Integer Input

On entry: the number na of boundary conditions at the left-hand mesh point x½0�.
Constraint: 0 � nleft � npde.

10: acc – double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is:

E i; jð Þj j ¼ acc� 1:0þ u½npde� j� 1ð Þ þ i� 1�j jð Þ:
Constraint: acc > 0:0.

11: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.
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If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

12: lrsave – Integer Input

On entry: the dimension of the array rsave.

Constraint: lrsave � 4� npdeþ nleftþ 14ð Þ � npde� nptsþ 3� npdeþ 21ð Þ � npdeþ
7� nptsþ 54.

13: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set on entry.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the last backward differentiation formula method used.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

14: lisave – Integer Input

On entry: the dimension of the array isave.

Constraint: lisave � npde� nptsþ 24.

15: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator.

itask ¼ 1
Normal computation of output values u at t ¼ tout.

itask ¼ 2
Take one step and return.

itask ¼ 3
Stop at the first internal integration point at or beyond t ¼ tout.

Constraint: itask ¼ 1, 2 or 3.

16: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_keller (d03pec) and the
underlying ODE solver as follows:

itrace � �1
No output is generated.

itrace ¼ 0
Only warning messages from the PDE solver are printed .
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itrace ¼ 1
Output from the underlying ODE solver is printed . This output contains details of
Jacobian entries, the nonlinear iteration and the time integration during the computation of
the ODE system.

itrace ¼ 2
Output from the underlying ODE solver is similar to that produced when itrace ¼ 1,
except that the advisory messages are given in greater detail.

itrace � 3
Output from the underlying ODE solver is similar to that produced when itrace ¼ 2,
except that the advisory messages are given in greater detail.

You are advised to set itrace ¼ 0.

17: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

18: ind – Integer * Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind ¼ 0
Starts or restarts the integration in time.

ind ¼ 1
Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_keller
(d03pec).

Constraint: ind ¼ 0 or 1.

On exit: ind ¼ 1.

19: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

20: saved – Nag_D03_Save * Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to
any subsequent call to a Chapter d03 function.

21: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc ¼ valueh i.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.
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NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

acc was too small to start integration: acc ¼ valueh i.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far
as ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts ¼ valueh i, acc ¼ valueh i.

NE_INT

ires set to an invalid value in call to pdedef or bndary.

On entry, ind ¼ valueh i.
Constraint: ind ¼ 0 or 1.

On entry, itask ¼ valueh i.
Constraint: itask ¼ 1, 2 or 3.

On entry, nleft ¼ valueh i.
Constraint: nleft � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

NE_INT_2

On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, nleft ¼ valueh i, npde ¼ valueh i.
Constraint: nleft � npde.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.
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NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: I ¼ valueh i, x½I � 1� ¼ valueh i, J ¼ valueh i
and x½J � 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, acc ¼ valueh i.
Constraint: acc > 0:0.

NE_REAL_2

On entry, tout ¼ valueh i and ts ¼ valueh i.
Constraint: tout > ts.

On entry, tout� ts is too small: tout ¼ valueh i and ts ¼ valueh i.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts ¼ valueh i.

7 Accuracy

nag_pde_parab_1d_keller (d03pec) controls the accuracy of the integration in the time direction but not
the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test
the effect of varying the accuracy argument, acc.

8 Parallelism and Performance

nag_pde_parab_1d_keller (d03pec) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_pde_parab_1d_keller (d03pec) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-
order by the introduction of new variables (see the example problem in nag_pde_parab_1d_keller_ode
(d03pkc)). In general, a second-order problem can be solved with slightly greater accuracy using the
Keller box scheme instead of a finite difference scheme (nag_pde_parab_1d_fd (d03pcc) or
nag_pde_parab_1d_fd_ode (d03phc) for example), but at the expense of increased CPU time due to
the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut þ aUx ¼ 0, where a is a constant, resulting in spurious oscillations due to the lack of
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dissipation. This type of problem requires a discretization scheme with upwind weighting
(nag_pde_parab_1d_cd (d03pfc) for example), or the addition of a second-order artificial dissipation
term.

The time taken depends on the complexity of the system and on the accuracy requested.

10 Example

This example is the simple first-order system

@U1

@t
þ @U1

@x
þ @U2

@x
¼ 0;

@U2

@t
þ 4

@U1

@x
þ @U2

@x
¼ 0;

for t 2 0; 1½ � and x 2 0; 1½ �.
The initial conditions are

U1 x; 0ð Þ ¼ exp xð Þ; U2 x; 0ð Þ ¼ sin xð Þ;
and the Dirichlet boundary conditions for U1 at x ¼ 0 and U2 at x ¼ 1 are given by the exact solution:

U1 x; tð Þ ¼ 1
2 exp xþ tð Þ þ exp x� 3tð Þf g þ 1

4 sin x� 3tð Þ � sin xþ tð Þf g;

U2 x; tð Þ ¼ exp x� 3tð Þ � exp xþ tð Þ þ 1
2 sin xþ tð Þ þ sin x� 3tð Þf g:

10.1 Program Text

/* nag_pde_parab_1d_keller (d03pec) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL pdedef(Integer, double, double, const double[],
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void NAG_CALL bndary(Integer, double, Integer, Integer,
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void NAG_CALL exact(double, Integer, Integer, double *, double *);
static void NAG_CALL uinit(Integer, Integer, double *, double *);

#ifdef __cplusplus
}
#endif

#define U(I, J) u[npde*((J) -1)+(I) -1]
#define EU(I, J) eu[npde*((J) -1)+(I) -1]

int main(void)
{
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const Integer npde = 2, npts = 41, nleft = 1, neqn = npde * npts;
const Integer lisave = neqn + 24, nwkres =

npde * (npts + 21 + 3 * npde) + 7 * npts + 4;
const Integer lrsave =

11 * neqn + (4 * npde + nleft + 2) * neqn + 50 + nwkres;
static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0, i, ind, it, itask, itrace;
double acc, tout, ts;
double *eu = 0, *rsave = 0, *u = 0, *x = 0;
Integer *isave = 0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);

printf("nag_pde_parab_1d_keller (d03pec) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Allocate memory */

if (!(eu = NAG_ALLOC(npde * npts, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde * npts, double)) ||
!(x = NAG_ALLOC(npts, double)) || !(isave = NAG_ALLOC(lisave, Integer)))

{
printf("Allocation failure\n");
exit_status = 1;
goto END;

}

itrace = 0;
acc = 1e-6;

printf(" Accuracy requirement =%12.3e", acc);
printf(" Number of points = %3" NAG_IFMT "\n\n", npts);

/* Set spatial-mesh points */

for (i = 0; i < npts; ++i)
x[i] = i / (npts - 1.0);

printf(" x ");
printf("%10.4f%10.4f%10.4f%10.4f%10.4f\n\n",

x[4], x[12], x[20], x[28], x[36]);

ind = 0;
itask = 1;

uinit(npde, npts, x, u);

/* Loop over output value of t */

ts = 0.0;
for (it = 0; it < 5; ++it) {

tout = 0.2 * (it + 1);
/* nag_pde_parab_1d_keller (d03pec).
* General system of first-order PDEs, method of lines,
* Keller box discretization, one space variable
*/

nag_pde_parab_1d_keller(npde, &ts, tout, pdedef, bndary, u, npts, x,
nleft, acc, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_parab_1d_keller (d03pec).\n%s\n",

fail.message);
exit_status = 1;
goto END;
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}

/* Check against the exact solution */

exact(tout, npde, npts, x, eu);

printf(" t = %5.2f\n", ts);
printf(" Approx u1");
printf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

U(1, 5), U(1, 13), U(1, 21), U(1, 29), U(1, 37));

printf(" Exact u1");
printf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

EU(1, 5), EU(1, 13), EU(1, 21), EU(1, 29), EU(1, 37));

printf(" Approx u2");
printf("%10.4f%10.4f%10.4f%10.4f%10.4f\n",

U(2, 5), U(2, 13), U(2, 21), U(2, 29), U(2, 37));

printf(" Exact u2");
printf("%10.4f%10.4f%10.4f%10.4f%10.4f\n\n",

EU(2, 5), EU(2, 13), EU(2, 21), EU(2, 29), EU(2, 37));
}
printf(" Number of integration steps in time = %6" NAG_IFMT "\n", isave[0]);
printf(" Number of function evaluations = %6" NAG_IFMT "\n", isave[1]);
printf(" Number of Jacobian evaluations =%6" NAG_IFMT "\n", isave[2]);
printf(" Number of iterations = %6" NAG_IFMT "\n\n", isave[4]);

END:
NAG_FREE(eu);
NAG_FREE(rsave);
NAG_FREE(u);
NAG_FREE(x);
NAG_FREE(isave);

return exit_status;
}

static void NAG_CALL pdedef(Integer npde, double t, double x,
const double u[], const double udot[],
const double dudx[], double res[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[0] == -1.0) {

printf("(User-supplied callback pdedef, first invocation.)\n");
comm->user[0] = 0.0;

}
if (*ires == -1) {

res[0] = udot[0];
res[1] = udot[1];

}
else {

res[0] = udot[0] + dudx[0] + dudx[1];
res[1] = udot[1] + 4.0 * dudx[0] + dudx[1];

}
return;

}

static void NAG_CALL bndary(Integer npde, double t, Integer ibnd,
Integer nobc, const double u[],
const double udot[], double res[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[1] == -1.0) {

printf("(User-supplied callback bndary, first invocation.)\n");
comm->user[1] = 0.0;

}
if (ibnd == 0) {

if (*ires == -1) {
res[0] = 0.0;

}
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else {
res[0] = u[0] - 0.5 * (exp(t) + exp(-3.0 * t))

- 0.25 * (sin(-3.0 * t) - sin(t));
}

}
else {

if (*ires == -1) {
res[0] = 0.0;

}
else {

res[0] = u[1] - exp(1.0 - 3.0 * t) + exp(t + 1.0)
- 0.5 * (sin(1.0 - 3.0 * t) + sin(t + 1.0));

}
}
return;

}

static void NAG_CALL uinit(Integer npde, Integer npts, double *x, double *u)
{

/* Routine for PDE initial values */

Integer i;

for (i = 1; i <= npts; ++i) {
U(1, i) = exp(x[i - 1]);
U(2, i) = sin(x[i - 1]);

}
return;

}

static void NAG_CALL exact(double t, Integer npde, Integer npts, double *x,
double *u)

{
/* Exact solution (for comparison purposes) */

Integer i;

for (i = 1; i <= npts; ++i) {
U(1, i) = 0.5 * (exp(x[i - 1] + t) + exp(x[i - 1] - 3.0 * t)) +

0.25 * (sin(x[i - 1] - 3.0 * t) - sin(x[i - 1] + t));
U(2, i) = exp(x[i - 1] - 3.0 * t) - exp(x[i - 1] + t) +

0.5 * (sin(x[i - 1] - 3.0 * t) + sin(x[i - 1] + t));
}
return;

}

10.2 Program Data

None.

10.3 Program Results

nag_pde_parab_1d_keller (d03pec) Example Program Results

Accuracy requirement = 1.000e-06 Number of points = 41

x 0.1000 0.3000 0.5000 0.7000 0.9000

(User-supplied callback bndary, first invocation.)
(User-supplied callback pdedef, first invocation.)
t = 0.20
Approx u1 0.7845 1.0010 1.2733 1.6115 2.0281
Exact u1 0.7845 1.0010 1.2733 1.6115 2.0281
Approx u2 -0.8352 -0.8159 -0.8367 -0.9128 -1.0609
Exact u2 -0.8353 -0.8160 -0.8367 -0.9129 -1.0609

t = 0.40
Approx u1 0.6481 0.8533 1.1212 1.4627 1.8903
Exact u1 0.6481 0.8533 1.1212 1.4627 1.8903
Approx u2 -1.5216 -1.6767 -1.8934 -2.1917 -2.5944
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Exact u2 -1.5217 -1.6767 -1.8935 -2.1917 -2.5945

t = 0.60
Approx u1 0.6892 0.8961 1.1747 1.5374 1.9989
Exact u1 0.6892 0.8962 1.1747 1.5374 1.9989
Approx u2 -2.0047 -2.3434 -2.7677 -3.3002 -3.9680
Exact u2 -2.0048 -2.3436 -2.7678 -3.3003 -3.9680

t = 0.80
Approx u1 0.8977 1.1247 1.4320 1.8349 2.3514
Exact u1 0.8977 1.1247 1.4320 1.8349 2.3512
Approx u2 -2.3403 -2.8675 -3.5110 -4.2960 -5.2536
Exact u2 -2.3405 -2.8677 -3.5111 -4.2961 -5.2537

t = 1.00
Approx u1 1.2470 1.5206 1.8828 2.3528 2.9519
Exact u1 1.2470 1.5205 1.8829 2.3528 2.9518
Approx u2 -2.6229 -3.3338 -4.1998 -5.2505 -6.5218
Exact u2 -2.6232 -3.3340 -4.2001 -5.2507 -6.5219

Number of integration steps in time = 149
Number of function evaluations = 399
Number of Jacobian evaluations = 13
Number of iterations = 323

Example Program
Solution, U(1,x,t), of First-order System using Keller, Box and BDF
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Solution, U(2,x,t), of First-order System using Keller, Box and BDF

U
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