
NAG Library Function Document

nag_pde_parab_1d_fd (d03pcc)

1 Purpose

nag_pde_parab_1d_fd (d03pcc) integrates a system of linear or nonlinear parabolic partial differential
equations (PDEs) in one space variable. The spatial discretization is performed using finite differences,
and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations
(ODEs). The resulting system is solved using a backward differentiation formula method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_fd (Integer npde, Integer m, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm),

void (*bndary)(Integer npde, double t, const double u[],
const double ux[], Integer ibnd, double beta[], double gamma[],
Integer *ires, Nag_Comm *comm),

double u[], Integer npts, const double x[], double acc, double rsave[],
Integer lrsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_fd (d03pcc) integrates the system of parabolic equations:

Xnpde
j¼1

Pi;j
@Uj

@t
þQi ¼ x�m @

@x
xmRið Þ; i ¼ 1; 2; . . . ; npde; a � x � b; t � t0; ð1Þ

where Pi;j, Qi and Ri depend on x, t, U , Ux and the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; Unpde x; tð Þ� �T
; ð2Þ

and the vector Ux is its partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend

on
@U

@t
.

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The coordinate system in
space is defined by the value of m; m ¼ 0 for Cartesian coordinates, m ¼ 1 for cylindrical polar
coordinates and m ¼ 2 for spherical polar coordinates. The mesh should be chosen in accordance with
the expected behaviour of the solution.

The system is defined by the functions Pi;j, Qi and Ri which must be specified in pdedef.

The initial values of the functions U x; tð Þ must be given at t ¼ t0. The functions Ri, for
i ¼ 1; 2; . . . ;npde, which may be thought of as fluxes, are also used in the definition of the boundary
conditions for each equation. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Uxð Þ ¼ �i x; t; U; Uxð Þ; i ¼ 1; 2; . . . ; npde; ð3Þ
where x ¼ a or x ¼ b.

The boundary conditions must be specified in bndary.
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The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;

(ii) Pi;j, Qi and the flux Ri must not depend on any time derivatives;

(iii) the evaluation of the functions Pi;j, Qi and Ri is done at the mid-points of the mesh intervals by
calling the pdedef for each mid-point in turn. Any discontinuities in these functions must therefore
be at one or more of the mesh points x1; x2; . . . ; xnpts;

(iv) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
problem; and

(v) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 9.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian coordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified
three-point formula which maintains second-order accuracy. In total there are npde� npts ODEs in the
time direction. This system is then integrated forwards in time using a backward differentiation formula
method.

4 References
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Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Dew P M and Walsh J (1981) A set of library routines for solving parabolic equations in one space
variable ACM Trans. Math. Software 7 295–314

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11(1) 1–32

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs in the system to be solved.

Constraint: npde � 1.

2: m – Integer Input

On entry: the coordinate system used:

m ¼ 0
Indicates Cartesian coordinates.

m ¼ 1
Indicates cylindrical polar coordinates.

m ¼ 2
Indicates spherical polar coordinates.

Constraint: m ¼ 0, 1 or 2.

3: ts – double * Input/Output

On entry: the initial value of the independent variable t.
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On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

4: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

5: pdedef – function, supplied by the user External Function

pdedef must compute the functions Pi;j, Qi and Ri which define the system of PDEs. pdedef is
called approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_fd
(d03pcc).

The specification of pdedef is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], double p[], double q[], double r[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ux½npde� – const double Input

On entry: ux½i � 1� contains the value of the component
@Ui x; tð Þ

@x
, for

i ¼ 1; 2; . . . ; npde.

6: p½npde� npde� – double Output

On exit: p½npde� j � 1ð Þ þ i � 1� must be set to the value of Pi;j x; t; U; Uxð Þ, for
i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ;npde.

7: q½npde� – double Output

On exit: q½i � 1� must be set to the value of Qi x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ; npde.

8: r½npde� – double Output

On exit: r½i � 1� must be set to the value of Ri x; t; U; Uxð Þ, for i ¼ 1; 2; . . . ; npde.

9: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.
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ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_fd (d03pcc) returns to the calling function with
the error indicator set to fail:code ¼ NE_FAILED_DERIV.

10: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd (d03pcc)
you may allocate memory and initialize these pointers with various quantities for
use by pdedef when called from nag_pde_parab_1d_fd (d03pcc) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

6: bndary – function, supplied by the user External Function

bndary must compute the functions �i and �i which define the boundary conditions as in
equation (3).

The specification of bndary is:

void bndary (Integer npde, double t, const double u[],
const double ux[], Integer ibnd, double beta[], double gamma[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

4: ux½npde� – const double Input

On entry: ux½i � 1� contains the value of the component
@Ui x; tð Þ

@x
at the boundary

specified by ibnd, for i ¼ 1; 2; . . . ; npde.

5: ibnd – Integer Input

On entry: determines the position of the boundary conditions.

ibnd ¼ 0
bndary must set up the coefficients of the left-hand boundary, x ¼ a.

ibnd 6¼ 0
Indicates that bndary must set up the coefficients of the right-hand boundary,
x ¼ b.
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6: beta½npde� – double Output

On exit: beta½i � 1� must be set to the value of �i x; tð Þ at the boundary specified by
ibnd, for i ¼ 1; 2; . . . ;npde.

7: gamma½npde� – double Output

On exit: gamma½i � 1� must be set to the value of �i x; t; U; Uxð Þ at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

8: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_fd (d03pcc) returns to the calling function with
the error indicator set to fail:code ¼ NE_FAILED_DERIV.

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_fd (d03pcc)
you may allocate memory and initialize these pointers with various quantities for
use by bndary when called from nag_pde_parab_1d_fd (d03pcc) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

7: u½npde� npts� – double Input/Output

On entry: the initial values of U x; tð Þ at t ¼ ts and the mesh points x½j � 1�, for j ¼ 1; 2; . . . ;npts.

On exit: u½npde� j � 1ð Þ þ i � 1� will contain the computed solution at t ¼ ts.

8: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

9: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0� must specify the left-hand boundary, a,
and x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

10: acc – double Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is:
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E i; jð Þj j ¼ acc� 1:0þ u½npde� j� 1ð Þ þ i� 1�j jð Þ:
Constraint: acc > 0:0.

11: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

12: lrsave – Integer Input

On entry: the dimension of the array rsave.

C o n s t r a i n t :
lrsave � 6� npdeþ 10ð Þ � npde� nptsþ 3� npdeþ 21ð Þ � npdeþ 7� nptsþ 54.

13: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set on entry.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the last backward differentiation formula method used.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

14: lisave – Integer Input

On entry: the dimension of the array isave.

Constraint: lisave � npde� nptsþ 24.

15: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator.

itask ¼ 1
Normal computation of output values u at t ¼ tout.

itask ¼ 2
One step and return.

itask ¼ 3
Stop at first internal integration point at or beyond t ¼ tout.

Constraint: itask ¼ 1, 2 or 3.
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16: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_fd (d03pcc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2 or 3.

itrace ¼ �1
No output is generated.

itrace ¼ 0
Only warning messages from the PDE solver are printed.

itrace > 0
Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

17: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

18: ind – Integer * Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind ¼ 0
Starts or restarts the integration in time.

ind ¼ 1
Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_fd (d03pcc).

Constraint: ind ¼ 0 or 1.

On exit: ind ¼ 1.

19: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

20: saved – Nag_D03_Save * Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to
any subsequent call to a Chapter d03 function.

21: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but a small change in acc is unlikely to result in a changed solution.
acc ¼ valueh i.
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NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

acc was too small to start integration: acc ¼ valueh i.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far
as ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied value of
acc. ts ¼ valueh i, acc ¼ valueh i.

NE_INCOMPAT_PARAM

On entry, m ¼ valueh i and x½0� ¼ valueh i.
Constraint: m � 0 or x½0� � 0:0

NE_INT

ires set to an invalid value in call to pdedef or bndary.

On entry, ind ¼ valueh i.
Constraint: ind ¼ 0 or 1.

On entry, itask ¼ valueh i.
Constraint: itask ¼ 1, 2 or 3.

On entry, m ¼ valueh i.
Constraint: m ¼ 0, 1 or 2.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

NE_INT_2

On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

Serious error in internal call to an auxiliary. Increase itrace for further details.
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NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: I ¼ valueh i, x½I � 1� ¼ valueh i, J ¼ valueh i
and x½J � 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, acc ¼ valueh i.
Constraint: acc > 0:0.

NE_REAL_2

On entry, tout ¼ valueh i and ts ¼ valueh i.
Constraint: tout > ts.

On entry, tout� ts is too small: tout ¼ valueh i and ts ¼ valueh i.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef or bndary. Integration is
successful as far as ts: ts ¼ valueh i.

7 Accuracy

nag_pde_parab_1d_fd (d03pcc) controls the accuracy of the integration in the time direction but not the
accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test
the effect of varying the accuracy argument, acc.

8 Parallelism and Performance

nag_pde_parab_1d_fd (d03pcc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_pde_parab_1d_fd (d03pcc) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.
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9 Further Comments

nag_pde_parab_1d_fd (d03pcc) is designed to solve parabolic systems (possibly including some elliptic
equations) with second-order derivatives in space. The argument specification allows you to include
equations with only first-order derivatives in the space direction but there is no guarantee that the
method of integration will be satisfactory for such systems. The position and nature of the boundary
conditions in particular are critical in defining a stable problem. It may be advisable in such cases to
reduce the whole system to first-order and to use the Keller box scheme function nag_pde_par
ab_1d_keller (d03pec).

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

We use the example given in Dew and Walsh (1981) which consists of an elliptic-parabolic pair of
PDEs. The problem was originally derived from a single third-order in space PDE. The elliptic equation
is

1

r

@

@r
r2
@U1

@r

� �
¼ 4� U2 þ r

@U2

@r

� �

and the parabolic equation is

1� r2
� �@U2

@t
¼ 1

r

@

@r
r

@U2

@r
� U2U1

� �� �

where r; tð Þ 2 0; 1½ � � 0; 1½ �. The boundary conditions are given by

U1 ¼ @U2

@r
¼ 0 at r ¼ 0;

and

@

@r
rU1ð Þ ¼ 0 and U2 ¼ 0 at r ¼ 1:

The first of these boundary conditions implies that the flux term in the second PDE,
@U2

@r
� U2U1

� �
, is

zero at r ¼ 0.

The initial conditions at t ¼ 0 are given by

U1 ¼ 2�r and U2 ¼ 1:0; r 2 0; 1½ �:
The value � ¼ 1 was used in the problem definition. A mesh of 20 points was used with a circular mesh
spacing to cluster the points towards the right-hand side of the spatial interval, r ¼ 1.

10.1 Program Text

/* nag_pde_parab_1d_fd (d03pcc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
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#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL pdedef(Integer, double, double, const double[],
const double[], double[], double[], double[],
Integer *, Nag_Comm *);

static void NAG_CALL bndary(Integer, double, const double[], const double[],
Integer, double[], double[], Integer *,
Nag_Comm *);

static int NAG_CALL uinit(double *, double *, Integer, Integer, double);
#ifdef __cplusplus
}
#endif

int main(void)
{

const Integer npts = 20, npde = 2, neqn = npts * npde, intpts = 6, itype =
1;

const Integer nwk = (10 + 6 * npde) * neqn, lisave = neqn + 24;
const Integer lrsave = nwk + (21 + 3 * npde) * npde + 7 * npts + 54;
static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0, i, ind, it, itask, itrace, m;
double acc, alpha, hx, piby2, tout, ts;
double xout[6] = { 0., .4, .6, .8, .9, 1. };
double *rsave = 0, *u = 0, *uout = 0, *x = 0;
Integer *isave = 0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);

printf("nag_pde_parab_1d_fd (d03pcc) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Allocate memory */
if (!(rsave = NAG_ALLOC(lrsave, double)) ||

!(u = NAG_ALLOC(npde * npts, double)) ||
!(uout = NAG_ALLOC(npde * intpts * itype, double)) ||
!(x = NAG_ALLOC(npts, double)) || !(isave = NAG_ALLOC(lisave, Integer)))

{
printf("Allocation failure\n");
exit_status = 1;
goto END;

}

acc = 0.001;
m = 1;
itrace = 0;
alpha = 1.0;
comm.p = (Pointer) &alpha;
ind = 0;
itask = 1;

/* Set spatial mesh points */

piby2 = 0.5 * nag_pi;
hx = piby2 / ((double) (npts - 1));
x[0] = 0.0;
x[npts - 1] = 1.0;
for (i = 1; i < npts - 1; ++i)

x[i] = sin(hx * i);

/* Set initial conditions */

ts = 0.0;
tout = 1e-5;
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printf("Accuracy requirement = %12.5f\n", acc);
printf("Parameter alpha = %10.3f\n\n", alpha);
printf(" t / x ");

for (i = 0; i < intpts; ++i)
printf("%8.4f", xout[i]);

printf("\n");

/* Set the initial values */

uinit(u, x, npde, npts, alpha);
for (it = 0; it < 5; ++it) {

tout *= 10.0;

/* Solve for next iteration step using
* nag_pde_parab_1d_fd (d03pcc).
* General system of parabolic PDEs, method of lines, finite
* differences, one space variable
*/

nag_pde_parab_1d_fd(npde, m, &ts, tout, pdedef, bndary, u, npts, x, acc,
rsave, lrsave, isave, lisave, itask, itrace, 0, &ind,
&comm, &saved, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_parab_1d_fd (d03pcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Interpolate at required spatial points using
* nag_pde_interp_1d_fd (d03pzc).
* PDEs, spatial interpolation fo use with the suite of routines
* nag_pde_parab_1d (d03p).
*/

nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, 1, uout, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("\n %6.4f u(1)", tout);
for (i = 0; i < intpts; ++i)

printf("%8.4f", uout[npde * i]);

printf("\n %6s u(2)", "");
for (i = 0; i < intpts; ++i)

printf("%8.4f", uout[npde * i + 1]);
printf("\n");

}

/* Print integration statistics */

printf("\n %-55s%4" NAG_IFMT "\n", "Number of integration steps in time",
isave[0]);

printf(" %-55s%4" NAG_IFMT "\n", "Number of residual evaluations of"
" resulting ODE system", isave[1]);

printf(" %-55s%4" NAG_IFMT "\n", "Number of Jacobian evaluations",
isave[2]);

printf(" %-55s%4" NAG_IFMT "\n", "Number of iterations of nonlinear solver",
isave[4]);

END:
NAG_FREE(rsave);
NAG_FREE(u);
NAG_FREE(uout);
NAG_FREE(x);
NAG_FREE(isave);

return exit_status;
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}

static int NAG_CALL uinit(double *u, double *x, Integer npde, Integer npts,
double alpha)

{
Integer i;

/* Intial conditions for u1 */
for (i = 0; i < npts; ++i)

u[i * npde] = alpha * 2.0 * x[i];
/* Intial conditions for u2 */
for (i = 0; i < npts; ++i)

u[i * npde + 1] = 1.0;

return 0;
}

static void NAG_CALL pdedef(Integer npde, double t, double x,
const double u[], const double ux[], double p[],
double q[], double r[], Integer *ires,
Nag_Comm *comm)

{
/* PDE coefficients */

double *alpha = (double *) comm->p;

if (comm->user[0] == -1.0) {
printf("(User-supplied callback pdedef, first invocation.)\n");
comm->user[0] = 0.0;

}
/* Coefficients on first PDE */
q[0] = *alpha * 4.0 * (u[1] + x * ux[1]);
r[0] = x * ux[0];
p[0] = 0.0;
p[npde] = 0.0;
/* Coefficients on first PDE */
q[1] = 0.0;
r[1] = ux[1] - u[0] * u[1];
p[1] = 0.0;
p[1 + npde] = 1.0 - x * x;
return;

}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
const double ux[], Integer ibnd, double beta[],
double gamma[], Integer *ires, Nag_Comm *comm)

{
/* Boundary conditions */

if (comm->user[1] == -1.0) {
printf("(User-supplied callback bndary, first invocation.)\n");
comm->user[1] = 0.0;

}
if (ibnd == 0) {

/* u[0] = 0 */
beta[0] = 0.0;
gamma[0] = u[0];
/* ux[1] = 0 ==> 1.0*r[1] = ux[1] - u[0]*u[1] = -u[0]*u[1] */
beta[1] = 1.0;
gamma[1] = -u[0] * u[1];

}
else {

/* d(x*u[0])/dx = x*ux[0] + u[0] = 0 */
beta[0] = 1.0;
gamma[0] = -u[0];
/* u[1] = 0 */
beta[1] = 0.0;
gamma[1] = u[1];

}
return;

}
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10.2 Program Data

None.

10.3 Program Results

nag_pde_parab_1d_fd (d03pcc) Example Program Results

Accuracy requirement = 0.00100
Parameter alpha = 1.000

t / x 0.0000 0.4000 0.6000 0.8000 0.9000 1.0000
(User-supplied callback bndary, first invocation.)
(User-supplied callback pdedef, first invocation.)

0.0001 u(1) 0.0000 0.8008 1.1988 1.5990 1.7958 1.8485
u(2) 0.9997 0.9995 0.9994 0.9988 0.9663 -0.0000

0.0010 u(1) 0.0000 0.7982 1.1940 1.5841 1.7179 1.6734
u(2) 0.9969 0.9952 0.9937 0.9484 0.6385 -0.0000

0.0100 u(1) 0.0000 0.7676 1.1239 1.3547 1.3635 1.2830
u(2) 0.9627 0.9495 0.8754 0.5537 0.2908 -0.0000

0.1000 u(1) 0.0000 0.3908 0.5007 0.5297 0.5120 0.4744
u(2) 0.5468 0.4299 0.2995 0.1479 0.0724 -0.0000

1.0000 u(1) 0.0000 0.0007 0.0008 0.0008 0.0008 0.0007
u(2) 0.0010 0.0007 0.0005 0.0002 0.0001 -0.0000

Number of integration steps in time 78
Number of residual evaluations of resulting ODE system 378
Number of Jacobian evaluations 25
Number of iterations of nonlinear solver 190

Example Program
Solution, U(1,x,t), of Elliptic-parabolic Pair using Method of Lines and BDF Method
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Solution, U(2,x,t), of Elliptic-parabolic Pair using Finite-differences and BDF

U
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