
NAG Library Function Document

nag_ode_ivp_rkts_range (d02pec)

1 Purpose

nag_ode_ivp_rkts_range (d02pec) solves an initial value problem for a first-order system of ordinary
differential equations using Runge–Kutta methods.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rkts_range (

void (*f)(double t, Integer n, const double y[], double yp[],
Nag_Comm *comm),

Integer n, double twant, double *tgot, double ygot[], double ypgot[],
double ymax[], Nag_Comm *comm, Integer iwsav[], double rwsav[],
NagError *fail)

3 Description

nag_ode_ivp_rkts_range (d02pec) and its associated functions (nag_ode_ivp_rkts_setup (d02pqc),
nag_ode_ivp_rkts_diag (d02ptc) and nag_ode_ivp_rkts_errass (d02puc)) solve an initial value problem
for a first-order system of ordinary differential equations. The functions, based on Runge–Kutta
methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

nag_ode_ivp_rkts_range (d02pec) is designed for the usual task, namely to compute an approximate
solution at a sequence of points. You must first call nag_ode_ivp_rkts_setup (d02pqc) to specify the
problem and how it is to be solved. Thereafter you call nag_ode_ivp_rkts_range (d02pec) repeatedly
with successive values of twant, the points at which you require the solution, in the range from tstart
to tend (as specified in nag_ode_ivp_rkts_setup (d02pqc)). In this manner nag_ode_ivp_rkts_range
(d02pec) returns the point at which it has computed a solution tgot (usually twant), the solution there
(ygot) and its derivative (ypgot). If nag_ode_ivp_rkts_range (d02pec) encounters some difficulty in
taking a step toward twant, then it returns the point of difficulty (tgot) and the solution and derivative
computed there (ygot and ypgot, respectively).

In the call to nag_ode_ivp_rkts_setup (d02pqc) you can specify either the first step size for
nag_ode_ivp_rkts_range (d02pec) to attempt or that it computes automatically an appropriate value.
Thereafter nag_ode_ivp_rkts_range (d02pec) estimates an appropriate step size for its next step. This
value and other details of the integration can be obtained after any call to nag_ode_ivp_rkts_range
(d02pec) by a call to nag_ode_ivp_rkts_diag (d02ptc). The local error is controlled at every step as
specified in nag_ode_ivp_rkts_setup (d02pqc). If you wish to assess the true error, you must set
errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup (d02pqc). This assessment can be
obtained after any call to nag_ode_ivp_rkts_range (d02pec) by a call to nag_ode_ivp_rkts_errass
(d02puc).

For more complicated tasks, you are referred to functions nag_ode_ivp_rkts_onestep (d02pfc),
nag_ode_ivp_rkts_reset_tend (d02prc) and nag_ode_ivp_rkts_interp (d02psc), all of which are used by
nag_ode_ivp_rkts_range (d02pec).

d02 – Ordinary Differential d02pec

Mark 26 d02pec.1

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Arguments

1: f – function, supplied by the user External Function

f must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

The specification of f is:

void f (double t, Integer n, const double y[], double yp[],
Nag_Comm *comm)

1: t – double Input

On entry: t, the current value of the independent variable.

2: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: y½n� – const double Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;n.

4: yp½n� – double Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to f.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_ode_ivp_rkts_range
(d02pec) you may allocate memory and initialize these pointers with various
quantities for use by f when called from nag_ode_ivp_rkts_range (d02pec) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

2: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: n � 1.

3: twant – double Input

On entry: t, the next value of the independent variable where a solution is desired.

Constraint: twant must be closer to tend than the previous value of tgot (or tstart on the first
call to nag_ode_ivp_rkts_range (d02pec)); see nag_ode_ivp_rkts_setup (d02pqc) for a description
of tstart and tend. twant must not lie beyond tend in the direction of integration.

4: tgot – double * Output

On exit: t, the value of the independent variable at which a solution has been computed. On
successful exit with fail:code ¼ NE_NOERROR, tgot will equal twant. On exit with fail:code ¼

d02pec NAG Library Manual

d02pec.2 Mark 26

NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T, NE_RK_POINTS,
NE_RK_STEP_TOO_SMALL, NE_STIFF_PROBLEM or NW_RK_TOO_MANY, a solution
has still been computed at the value of tgot but in general tgot will not equal twant.

5: ygot½n� – double Input/Output

On entry: on the first call to nag_ode_ivp_rkts_range (d02pec), ygot need not be set. On all
subsequent calls ygot must remain unchanged.

On exit: an approximation to the true solution at the value of tgot. At each step of the integration
to tgot, the local error has been controlled as specified in nag_ode_ivp_rkts_setup (d02pqc). The
local error has still been controlled even when tgot 6¼ twant, that is after a return with
fail:code ¼ NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T, NE_RK_POINTS,
NE_RK_STEP_TOO_SMALL, NE_STIFF_PROBLEM or NW_RK_TOO_MANY.

6: ypgot½n� – double Output

On exit: an approximation to the first derivative of the true solution at tgot.

7: ymax½n� – double Input/Output

On entry: on the first call to nag_ode_ivp_rkts_range (d02pec), ymax need not be set. On all
subsequent calls ymax must remain unchanged.

On exit: ymax½i� 1� contains the largest value of yij j computed at any step in the integration so
far.

8: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

9: iwsav½130� – Integer Communication Array
10: rwsav½32� nþ 350� – double Communication Array

On entry: these must be the same arrays supplied in a previous call to nag_ode_ivp_rkts_setup
(d02pqc). They must remain unchanged between calls.

On exit: information about the integration for use on subsequent calls to nag_ode_ivp_rkts_range
(d02pec) or other associated functions.

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT_CHANGED

On entry, n ¼ valueh i, but the value passed to the setup function was n ¼ valueh i.

d02 – Ordinary Differential d02pec

Mark 26 d02pec.3

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_MISSING_CALL

On entry, a previous call to the setup function has not been made or the communication arrays
have become corrupted.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_PREV_CALL

On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

NE_PREV_CALL_INI

You cannot call this function after it has returned an error.
You must call the setup function to start another problem.

NE_RK_GLOBAL_ERROR_S

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

NE_RK_GLOBAL_ERROR_T

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

NE_RK_INVALID_CALL

You cannot call this function when you have specified, in the setup function, that the step
integrator will be used.

NE_RK_POINTS

This function is being used inefficiently because the step size has been reduced drastically many
times to obtain answers at many points. Using the order 4 and 5 pair method at setup is more
appropriate here. You can continue integrating this problem.

NE_RK_STEP_TOO_SMALL

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

NE_RK_TGOT_EQ_TEND

tend (setup) had already been reached in a previous call.
To start a new problem, you will need to call the setup function.

NE_RK_TGOT_RANGE_TEND

twant does not lie in the direction of integration. twant ¼ valueh i.
twant lies beyond tend (setup) in the direction of integration.
twant ¼ valueh i and tend ¼ valueh i.

d02pec NAG Library Manual

d02pec.4 Mark 26

NE_RK_TGOT_RANGE_TEND_CLOSE

twant lies beyond tend (setup) in the direction of integration, but is very close to tend.
You may have intended twant ¼ tend.
twant� tendj j ¼ valueh i.

NE_RK_TWANT_CLOSE_TGOT

twant is too close to the last value of tgot (tstart on setup).
When using the method of order 8 at setup, these must differ by at least valueh i. Their absolute
difference is valueh i.

NE_STIFF_PROBLEM

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach tend (setup) as it
has cost to reach the current time. You should probably call functions intended for stiff problems.
However, you can continue integrating the problem.

NW_RK_TOO_MANY

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. However, you can continue integrating
the problem.

7 Accuracy

The accuracy of integration is determined by the arguments tol and thresh in a prior call to
nag_ode_ivp_rkts_setup (d02pqc) (see the function document for nag_ode_ivp_rkts_setup (d02pqc) for
further details and advice). Note that only the local error at each step is controlled by these arguments.
The error estimates obtained are not strict bounds but are usually reliable over one step. Over a number
of steps the overall error may accumulate in various ways, depending on the properties of the
differential system.

8 Parallelism and Performance

nag_ode_ivp_rkts_range (d02pec) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If nag_ode_ivp_rkts_range (d02pec) returns with fail:code ¼ NE_RK_STEP_TOO_SMALL and the
accuracy specified by tol and thresh is really required then you should consider whether there is a more
fundamental difficulty. For example, the solution may contain a singularity. In such a region the
solution components will usually be large in magnitude. Successive output values of ygot and ymax
should be monitored (or nag_ode_ivp_rkts_onestep (d02pfc) should be used since this takes one
integration step at a time) with the aim of trapping the solution before the singularity. In any case
numerical integration cannot be continued through a singularity, and analytical treatment may be
necessary.

Performance statistics are available after any return from nag_ode_ivp_rkts_range (d02pec) by a call to
nag_ode_ivp_rkts_diag (d02ptc). If errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rkts_setup
(d02pqc), global error assessment is available after a return from nag_ode_ivp_rkts_range (d02pec) with
fail:code ¼ NE_NOERROR, NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T,

d02 – Ordinary Differential d02pec

Mark 26 d02pec.5

NE_RK_POINTS, NE_RK_STEP_TOO_SMALL, NE_STIFF_PROBLEM or NW_RK_TOO_MANY
by a call to nag_ode_ivp_rkts_errass (d02puc).

After a failure with fail:code ¼ NE_RK_GLOBAL_ERROR_S, NE_RK_GLOBAL_ERROR_T or
NE_RK_STEP_TOO_SMALL each of the diagnostic functions nag_ode_ivp_rkts_diag (d02ptc) and
nag_ode_ivp_rkts_errass (d02puc) may be called only once.

If nag_ode_ivp_rkts_range (d02pec) returns with fail:code ¼ NE_STIFF_PROBLEM then it is
advisable to change to another code more suited to the solution of stiff problems. nag_ode_ivp_rkts_
range (d02pec) will not return with fail:code ¼ NE_STIFF_PROBLEM if the problem is actually stiff
but it is estimated that integration can be completed using less function evaluations than already
computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. Relative error control is used with
threshold values of 1:0e�8 for each solution component and compute the solution at intervals of length
�=4 across the range. A low-order Runge–Kutta method (see nag_ode_ivp_rkts_setup (d02pqc)) is also
used with tolerances tol ¼ 1:0e�3 and tol ¼ 1:0e�4 in turn so that the solutions can be compared.

See also Section 10 in nag_ode_ivp_rkts_errass (d02puc).

10.1 Program Text

/* nag_ode_ivp_rkts_range (d02pec) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL f(double t, Integer n, const double *y,
double *yp, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define N 2

int main(void)
{

/* Scalars */
double tol0 = 1.0e-3;
Integer npts = 8, exit_status = 0;
Integer liwsav, lrwsav, n;
double hnext, hstart, tend, tgot, tinc, tol, tstart, twant, waste;
Integer fevals, i, j, k, stepcost, stepsok;
/* Arrays */

d02pec NAG Library Manual

d02pec.6 Mark 26

static double ruser[1] = { -1.0 };
double *rwsav = 0, *thresh = 0, *ygot = 0, *yinit = 0, *ymax = 0;
double *ypgot = 0;
Integer *iwsav = 0;
char nag_enum_arg[40];
/* NAG types */
NagError fail;
Nag_RK_method method;
Nag_ErrorAssess errass;
Nag_Comm comm;

INIT_FAIL(fail);

n = N;
liwsav = 130;
lrwsav = 350 + 32 * n;

printf("nag_ode_ivp_rkts_range (d02pec) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

if (!(thresh = NAG_ALLOC(n, double)) ||
!(ygot = NAG_ALLOC(n, double)) ||
!(yinit = NAG_ALLOC(n, double)) ||
!(ypgot = NAG_ALLOC(n, double)) ||
!(ymax = NAG_ALLOC(n, double)) ||
!(iwsav = NAG_ALLOC(liwsav, Integer)) ||
!(rwsav = NAG_ALLOC(lrwsav, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Set initial conditions for ODE and parameters for the integrator. */

#ifdef _WIN32
scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf(" %39s%*[^\n] ", nag_enum_arg);

#endif
/* nag_enum_name_to_value (x04nac) Converts NAG enum member name to value. */
method = (Nag_RK_method) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s(" %39s%*[^\n] ", nag_enum_arg, (unsigned)_countof(nag_enum_arg));

#else
scanf(" %39s%*[^\n] ", nag_enum_arg);

#endif
errass = (Nag_ErrorAssess) nag_enum_name_to_value(nag_enum_arg);

#ifdef _WIN32
scanf_s("%lf%lf%*[^\n] ", &tstart, &tend);

#else
scanf("%lf%lf%*[^\n] ", &tstart, &tend);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &yinit[j]);

#else
scanf("%lf", &yinit[j]);

#endif
#ifdef _WIN32

d02 – Ordinary Differential d02pec

Mark 26 d02pec.7

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%lf%*[^\n] ", &hstart);

#else
scanf("%lf%*[^\n] ", &hstart);

#endif
for (j = 0; j < n; j++)

#ifdef _WIN32
scanf_s("%lf", &thresh[j]);

#else
scanf("%lf", &thresh[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Set control for output */
tinc = (tend - tstart) / (double) (npts);
tol = 10.0 * tol0;
for (i = 1; i <= 2; i++) {

tol = tol * 0.1;
/* Initialize Runge-Kutta method for integrating ODE using
* nag_ode_ivp_rkts_setup (d02pqc).
*/

nag_ode_ivp_rkts_setup(n, tstart, tend, yinit, tol, thresh, method,
errass, hstart, iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_setup (d02pqc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf(" Calculation with tol = %8.1e\n", tol);
printf(" t y1 y2\n");
printf("%6.3f", tstart);
for (k = 0; k < n; k++)

printf(" %7.3f", yinit[k]);
printf("\n");

twant = tstart;
for (j = 0; j < npts; j++) {

twant = twant + tinc;
/* Solve ODE by Runge-Kutta method up to next time increment using
* nag_ode_ivp_rkts_range (d02pec).
*/

nag_ode_ivp_rkts_range(f, n, twant, &tgot, ygot, ypgot, ymax, &comm,
iwsav, rwsav, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_range (d02pec).\n%s\n",

fail.message);
exit_status = 2;
goto END;

}

printf("%6.3f", tgot);
for (k = 0; k < n; k++)

printf(" %7.3f", ygot[k]);
printf("\n");

}
/* Get diagnostics on whole integration using
* nag_ode_ivp_rkts_diag (d02ptc).
*/

nag_ode_ivp_rkts_diag(&fevals, &stepcost, &waste, &stepsok, &hnext,
iwsav, rwsav, &fail);

d02pec NAG Library Manual

d02pec.8 Mark 26

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_rkts_diag (d02ptc).\n%s\n",

fail.message);
exit_status = 3;
goto END;

}
printf("Cost of the integration in evaluations of f is%6" NAG_IFMT "\n\n",

fevals);
}

END:
NAG_FREE(thresh);
NAG_FREE(yinit);
NAG_FREE(ygot);
NAG_FREE(ypgot);
NAG_FREE(ymax);
NAG_FREE(rwsav);
NAG_FREE(iwsav);
return exit_status;

}

static void NAG_CALL f(double t, Integer n, const double *y, double *yp,
Nag_Comm *comm)

{
if (comm->user[0] == -1.0) {

printf("(User-supplied callback f, first invocation.)\n");
comm->user[0] = 0.0;

}
yp[0] = y[1];
yp[1] = -y[0];

}

10.2 Program Data

nag_ode_ivp_rkts_range (d02pec) Example Program Data
Nag_RK_2_3 : method
Nag_ErrorAssess_off : errass
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : yinit(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thresh(1:n)

10.3 Program Results

nag_ode_ivp_rkts_range (d02pec) Example Program Results

Calculation with tol = 1.0e-03
t y1 y2

0.000 0.000 1.000
(User-supplied callback f, first invocation.)
0.785 0.707 0.707
1.571 0.999 -0.000
2.356 0.706 -0.706
3.142 -0.000 -0.999
3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of f is 124

Calculation with tol = 1.0e-04
t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 -0.000
2.356 0.707 -0.707
3.142 -0.000 -1.000
3.927 -0.707 -0.707

d02 – Ordinary Differential d02pec

Mark 26 d02pec.9

4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000

Cost of the integration in evaluations of f is 235

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10
 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

So
lu

ti
on

 (
y,

y’
)

ab
s(

E
rr

or
)

t

Example Program
First-order ODEs using Runge-Kutta

Low-order Method using Two Tolerances

y’

y-error (tol = 0.001)

y-error (tol = 0.0001)

y

d02pec NAG Library Manual

d02pec.10 (last) Mark 26

	d02pec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Arguments
	f
	t
	n
	y
	yp
	comm
	user
	iuser
	p

	n
	twant
	tgot
	ygot
	ypgot
	ymax
	comm
	iwsav
	rwsav
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_CHANGED
	NE_INTERNAL_ERROR
	NE_MISSING_CALL
	NE_NO_LICENCE
	NE_PREV_CALL
	NE_PREV_CALL_INI
	NE_RK_GLOBAL_ERROR_S
	NE_RK_GLOBAL_ERROR_T
	NE_RK_INVALID_CALL
	NE_RK_POINTS
	NE_RK_STEP_TOO_SMALL
	NE_RK_TGOT_EQ_TEND
	NE_RK_TGOT_RANGE_TEND
	NE_RK_TGOT_RANGE_TEND_CLOSE
	NE_RK_TWANT_CLOSE_TGOT
	NE_STIFF_PROBLEM
	NW_RK_TOO_MANY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

