d02 — Ordinary Differential d02nec

NAG Library Function Document

nag dae_ivp dassl gen (d02nec)

1 Purpose

nag dae ivp dassl gen (dO2nec) is a function for integrating stiff systems of implicit ordinary
differential equations coupled with algebraic equations.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_dae_ivp_dassl_gen (Integer neq, double *t, double tout, double yI[],
double ydot[], double rtol[], double atol[], Integer *itask,

void (*res) (Integer neq, double t, const double yI[],
const double ydot[], double r[], Integer *ires, Nag_Comm *comm),

void (*jac) (Integer neq, double t, const double yI[],
const double ydot[], double pd[], double cj, Nag_Comm *comm),

Integer icom[], double com[], Integer lcom, Nag_Comm *comm,
NagError *fail)

3 Description

nag_dae ivp_dassl gen (d02nec) is a general purpose function for integrating the initial value problem
for a stiff system of implicit ordinary differential equations with coupled algebraic equations written in
the form

F(t,y,y) = 0.

nag_dae ivp_dassl gen (d02nec) uses the DASSL implementation of the Backward Differentiation
Formulae (BDF) of orders one to five to solve a system of the above form for y (y) and 3/ (ydot).
Values for y and ydot at the initial time must be given as input. These values must be consistent, (i.e., if
t, y, ydot are the given initial values, they must satisfy F(t,y,ydot) = 0). The function solves the
system from ¢t =t to ¢ = tout.

An outline of a typical calling program for nag_dae ivp _dassl gen (d02nec) is given below. It calls the
DASSL implementation of the BDF integrator setup function nag_dae ivp_dassl setup (d02mwc) and
the banded matrix setup function nag dae ivp dassl linalg (d02npc) (if required), and, if the
integration needs to proceed, calls nag_dae ivp dassl cont (d02mcc) before continuing the integration.

/* declarations */
EXTERN res, jac

/* Initialize the integrator */
nag_dae_ivp_dassl_setup(...);

/* Is the Jacobian matrix banded? */
if (banded) {nag_dae_ivp_dassl_linalg(...);}

/* Set dt to the required temporal resolution */
/* Set tend to the final time */
/* Call the integrator for each temporal value */
itask = 0;
while (tout<tend && itask>-1) {
nag_dae_ivp_dassl_gen (...);
if (itask != 1)
tout = MIN(tout+dt,tend) ;
/* Print the solution */

Mark 26 d02nec. 1

d02nec NAG Library Manual

4

None.

References

Arguments

neq — Integer Input
On entry: the number of differential-algebraic equations to be solved.

Constraint: neq > 1.

t — double * Input/Output
On initial entry: the initial value of the independent variable, ¢.

On intermediate exit: t, the current value of the independent variable.

On final exit: the value of the independent variable at which the computed solution y is returned
(usually at tout).

tout — double Input
On entry: the next value of ¢ at which a computed solution is desired.

On initial entry: tout is used to determine the direction of integration. Integration is permitted in
either direction (see also itask).

Constraint: tout # t.

y[neq] — double Input/Output
On initial entry: the vector of initial values of the dependent variables y.
On intermediate exit: the computed solution vector, y, evaluated at t.

On final exit: the computed solution vector, evaluated at ¢ (usually ¢ = tout).

ydot[neq] — double Input/Output

On initial entry: ydot must contain approximations to the time derivatives 3 of the vector y
evaluated at the initial value of the independent variable.

On exit: the time derivatives ¢/ of the vector y at the last integration point.

rtol[dim| — double Input/Output

Note: the dimension, dim, of the array rtol depends on the value of vector_tol as set in
nag_dae ivp dassl setup (d02mwc); it must be at least

neq when vector_tol = Nag_ TRUE;
1 when vector_tol = Nag FALSE.

On entry: the relative local error tolerance.
Constraint: rtol[i — 1] > 0.0, for i =1,2,...,n
where n = neq when vector_tol = Nag_ TRUE and n =1 otherwise.

On exit: rtol remains unchanged unless nag dae ivp dassl gen (d02nec) exits with fail.code =
NE _ODE TOL in which case the values may have been increased to values estimated to be
appropriate for continuing the integration.

d02nec.2 Mark 26

d02 — Ordinary Differential d02nec

7: atol[dim] — double Input/Output

Note: the dimension, dim, of the array atol depends on the value of vector_tol as set in
nag_dae ivp dassl setup (d02mwc); it must be at least

neq when vector_tol = Nag_ TRUE;
1 when vector_tol = Nag FALSE.

On entry: the absolute local error tolerance.
Constraint: atol[i — 1] > 0.0, for i =1,2,...,n
where n = neq when vector_tol = Nag_TRUE and n = 1 otherwise.

On exit. atol remains unchanged unless nag_dae ivp_dassl gen (d02nec) exits with fail.code =
NE _ODE TOL in which case the values may have been increased to values estimated to be
appropriate for continuing the integration.

8: itask — Integer * Input/Output

On initial entry: need not be set.

On exit: the task performed by the integrator on successful completion or an indicator that a
problem occurred during integration.

itask =2
The integration to tout was successfully completed (t = tout) by stepping exactly to tout.
itask =3

The integration to tout was successfully completed (t = tout) by stepping past tout. y and
ydot are obtained by interpolation.

itask < 0
Different negative values of itask returned correspond to different failure exits. fail should
always be checked in such cases and the corrective action taken where appropriate.

itask must remain unchanged between calls to nag dae ivp dassl gen (d02nec).

9: res — function, supplied by the user External Function
res must evaluate the residual

R =F(t,y,9).

The specification of res is:

void res (Integer neq, double t, const double yI[],
const double ydot[], double r[], Integer *ires, Nag_Comm *comm)

l: neq — Integer Input

On entry: the number of differential-algebraic equations being solved.

2: t — double Input

On entry: t, the current value of the independent variable.

3: y[neq] — const double Input
On entry: y,;, for i=1,2,... neq, the current solution component.
4: ydot[neq] — const double Input

On entry: the derivative of the solution at the current point ¢.

Mark 26 d02nec.3

d02nec NAG Library Manual

5: r[neq] — double Output

On exit: r[i — 1] must contain the ith component of R, for i =1,2,...,neq where

R = F(t,y, ydot).

6: ires — Integer * Input/Output
On entry: is always equal to zero.

On exit: ires should normally be left unchanged. However, if an illegal value of y is
encountered, ires should be set to —1; nag dae ivp dassl gen (dO2nec) will then
attempt to resolve the problem so that illegal values of y are not encountered. ires
should be set to —2 if you wish to return control to the calling function; this will cause
nag_dae ivp dassl gen (d02nec) to exit with fail.code = NE _RES FLAG.

7: comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to res.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_dae ivp dassl gen (d02nec)
you may allocate memory and initialize these pointers with various quantities for
use by res when called from nag dae ivp dassl gen (d02nec) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

jac — function, supplied by the user External Function
Evaluates the matrix of partial derivatives, J, where

OF, + ¢j X 8E,
dy; 9y ;
If this option is not required, the actual argument for jac may be specified as NULLFN. You

must indicate to the integrator whether this option is to be used by setting the argument jceval
appropriately in a call to the setup function nag dae ivp dassl setup (d02mwc).

Jij = i,7=1,2,...,neq.

The specification of jac is:

void jac (Integer neq, double t, const double yI[],
const double ydot[], double pd[], double cj, Nag_Comm *comm)

l: neq — Integer Input

On entry: the number of differential-algebraic equations being solved.

2: t — double Input

On entry: t, the current value of the independent variable.

3: y[neq] — const double Input
On entry: y,;, for i =1,2,... neq, the current solution component.
4: ydot[neq] — const double Input

On entry: the derivative of the solution at the current point ¢.

d02nec.4 Mark 26

d02 — Ordinary Differential d02nec

5: pd[dim] — double Input/Output

Note: the dimension of the array pd will be neq x neq when the Jacobian is full and
will be (2 x ml+ mu + 1) x neq when the Jacobian is banded (that is, a prior call to
nag dae ivp dassl linalg (d02npc) has been made).

On entry: pd is preset to zero before the call to jac.

On exit: if the Jacobian is full then pd[(j — 1) x neq+ i — 1] = J;;, for i = 1,2,...,neq
and j=1,2,...,neq; if the Jacobian is banded then
pd[(j— 1) x Cml+mu+ 1) +ml+mu+i — j] = J;;, for
max(1,7 — mu) < i < min(n, j + ml); (see also in nag_dgbtrf (f07bdc)).

6: cj — double Input
On entry: cj is a scalar constant which will be defined in nag dae ivp dassl gen
(d02nec).

7: comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to jac.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_dae_ivp_dassl gen (d02nec)
you may allocate memory and initialize these pointers with various quantities for
use by jac when called from nag dae ivp dassl gen (dO2nec) (see
Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

11: icom[50 + neq] — Integer Communication Array

icom contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

icom[21]
The order of the method to be attempted on the next step.

icom[22]
The order of the method used on the last step.

icom[25]
The number of steps taken so far.

icom[26]
The number of calls to res so far.

icom[27]
The number of evaluations of the matrix of partial derivatives needed so far.

icom[28]
The total number of error test failures so far.

icom[29]
The total number of convergence test failures so far.
12: com|lcom]| — double Communication Array

com contains information which is usually of no interest, but is necessary for subsequent calls.
However you may find the following useful:

com[2]
The step size to be attempted on the next step.

Mark 26 d02nec.5

d02nec NAG Library Manual

13:

14:

15:

6

com|3]
The current value of the independent variable, i.e., the farthest point integration has
reached. This will be different from t only when interpolation has been performed
(itask = 3).

Icom — Integer Input

On entry: the dimension of the array com.

Constraint: lcom > 40 + (mazorder + 4) x neq + neq x p + g where mazorder is the maximum
order that can be used by the integration method (see maxord in nag dae ivp dassl setup
(d02mwc)); p = neq when the Jacobian is full and p = (2 x ml + mu + 1) when the Jacobian is
banded; and, ¢ = (neq/(ml + mu + 1)) 4+ 1 when the Jacobian is to be evaluated numerically and
q = 0 otherwise.

comm — Nag Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_ARRAY_INPUT

All elements of rtol and atol are zero.
Some element of atol is less than zero.

Some element of rtol is less than zero.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_CONV_CONT

The corrector could not converge and the error test failed repeatedly. t = (value). Stepsize
h = (value).

The corrector repeatedly failed to converge with |h| = hmin. t = (value). Stepsize h = (value).

NE_CONV_JACOBG

The iteration matrix is singular. t = (value). Stepsize h = (value).

NE_CONV_ROUNDOFF

The error test failed repeatedly with |h| = hmin. t = (value). Stepsize h = (value).

NE_INITIALIZATION

Either the initialization function has not been called prior to the first call of this function or a
communication array has become corrupted.

d02nec.6 Mark 26

d02 — Ordinary Differential d02nec

NE _INT
A previous call to this function returned with itask = (value) and no appropriate action was
taken.

NE_INT 2

com array is of insufficient length; length required = (value); actual length lcom = (value).

NE_INT ARG LT
On entry, neq = (value).
Constraint: neq > 1.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.

See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_MAX_STEP

Maximum number of steps taken on this call before reaching tout: t = (value), maximum number

of steps = (value).
NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.

See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
NE_ODE_TOL

A solution component has become zero when a purely relative tolerance (zero absolute tolerance)
was selected for that component. t = (value), y[I — 1] = (value) for component I = (value).

Too much accuracy requested for precision of machine. rtol and atol were increased by scale

factor R. Try running again with these scaled tolerances. t = (value), R = (value).
NE_REAL 2

tout is behind t in the direction of h: tout — t = (value), h = (value).

tout is too close to t to start integration: tout — t = (value): hmin = (value).

NE_REAL_ARG_EQ
On entry, t = (value).
Constraint: tout # t.
NE_RES_FLAG

ires was set to —1 during a call to res and could not be resolved. t= (value). Stepsize
h = (value).

ires was set to —2 during a call to res. t = (value). Stepsize = (value).

Repeated occurrences of input constraint violations have been detected. This could result in a
potential infinite loop: itask = (value). Current violation corresponds to exit with
fail.code = (value).

NE_SINGULAR_POINT
The initial ydot could not be computed. t = (value). Stepsize h = (value).

Mark 26 d02nec.7

d02nec NAG Library Manual

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the arguments rtol and
atol. You are advised to use scalar error control unless the components of the solution are expected to
be poorly scaled. For the type of decaying solution typical of many stiff problems, relative error control
with a small absolute error threshold will be most appropriate (that is, you are advised to choose
vector_tol = Nag FALSE with atol[0] small but positive).

8 Parallelism and Performance

nag dae ivp dassl gen (dO2nec) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag dae ivp dassl gen (d02nec) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The cost of computing a solution depends critically on the size of the differential system and to a lesser
extent on the degree of stiffness of the problem. For banded systems the cost is proportional to
neq X (ml + mu + 1)2, while for full systems the cost is proportional to neq®. Note however that for
moderately sized problems which are only mildly nonlinear the cost may be dominated by factors
proportional to neq x (ml+ mu + 1) and neq? respectively.

10 Example

This example solves the well-known stiff Robertson problem written in implicit form
rr = —0.04a + 1.0E4bc — d
r, = 004a — 1.0E4bc — 3.0E70> — ¥
ry = 3.0E70* — (¢

with initial conditions @ = 1.0 and b = ¢ = 0.0 over the range [0,0.1] the BDF method (setup function
nag_dae ivp_dassl setup (d02mwc) and nag dae ivp dassl linalg (d02npc)).

10.1 Program Text

/* nag_dae_ivp_dassl_gen (d0O2nec) Example Program.
NAGPRODCODE Version.
Copyright 2016 Numerical Algorithms Group.

Mark 26, 201l16.

* % X Xk Ok F

*/

/* Pre-processor includes */
#include <stdio.h>

#include <math.h>

#include <string.h>

#include <nag.h>

#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef _ _cplusplus

extern "C"

{

d02nec.8 Mark 26

d02 — Ordinary Differential

#endif
static void NAG_CALL res(Integer neq, double t, const double yI[],
const double ydot[], double r[], Integer *ires,
Nag_Comm *comm) ;
static void NAG_CALL jac(Integer neq, double t, const double yI[],
const double ydot[], double *pd, double cj,
Nag_Comm *comm) ;

d02nec

static void NAG_CALL myjac(Integer neq, Integer ml, Integer mu, double t,

const double y[], const double ydotl[],
double *pd, double cj);
#ifdef _ cplusplus
}
#endif
int main(void)
{
/*Integer scalar and array declarations */
Integer exit_status = 0, maxord = 5;
Nag_Comm comm;
Integer neq, licom, mu, ml, lcom;
Integer i, itask, 3j;
Nag_Boolean vector_tol;
Integer *icom = O;
NagError fail;
/*Double scalar and array declarations */
double dt, hO, hmax, t, tout;
double *atol = 0, *com = 0, *rtol = 0, *y = 0, *ydot = 0;
static double ruser([2] = { -1.0, -1.0 };

INIT_FAIL(fail);
printf("nag_dae_ivp_dassl_gen (dO2nec) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Set problem parameters required to allocate arrays */

neq = 3;
ml = 1;
mu = 2

licom = 50 + neq;

lcom = 40 + (maxord + 4) * neq + (2 * ml + mu + 1) * neq +
2 * (neq / (ml + mu + 1) + 1);
if (!(atol = NAG_ALLOC(neq, double)) || !(com = NAG_ALLOC(lcom, double))
|| !'(rtol = NAG_ALLOC(neq, double)) || !(y = NAG_ALLOC(neq, double))
|| !(ydot = NAG_ALLOC(neq, double))
|| !(comm.iuser = NAG_ALLOC(2, Integer))
|| !(icom = NAG_ALLOC(licom, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* Initialize the problem, specifying that the Jacobian is to be */
/* evaluated analytically using the provided routine jac. */
hO = 0.0;
hmax = 0.0;
vector_tol = Nag_TRUE;
/*

* nag_dae_ivp_dassl_setup (dO02mwc)

* Implicit DAE/ODEs, stiff ivp, setup for nag_dae_ivp_dassl_gen (dO2nec)

*
/
nag_dae_ivp_dassl_setup(neq, maxord, Nag_AnalyticalJacobian, hmax, hO,
vector_tol, icom, licom, com, lcom, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_dae_ivp_dassl_setup (d02mwc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3
/* Specify that the Jacobian is banded.
*

Mark 26

d02nec.9

d02nec NAG Library Manual

* nag_dae_ivp_dassl_linalg (d02npc)
* ODE/DAEs, ivp, linear algebra setup routine for
* nag_dae_ivp_dassl_gen (dO2nec)

*/
nag_dae_ivp_dassl_linalg(neq, ml, mu, icom, licom, &fail);
if (fail.code != NE_NOERROR) {

printf ("Error from nag_dae_ivp_dassl_linalg (d02npc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Set initial values */

t = 0.00e0;

tout = 0.00e0;

dt = 0.020e0;

for (i = 0; i < neq; i++) {
rtol[i] = 1.00e-3;
atol[i] = 1.00e-6;
y[i] = 0.00e0;
ydot[i] = 0.00e0;

¥

y[0] = 1.00e0;

/* Use the comm.iuser array to pass the band dimensions through to jac. */
/* An alternative would be to hard code values for ml and mu in jac. */
comm. iuser[0] = ml;

comm.iuser[1l] = mu;

printf (" t y (1) y(2) y(3)\n")

printf("%8.4f", t);
for (i = 0; i < neq; i++)

printf("s1l2.6f%s", yl[i]l, (1 + 1) & 3 2 " " : "\n")
itask = 0;
/* Obtain the solution at 5 equally spaced values of t. */

for (3 = 0; 3 < 5; j++) {
tout = tout + dt;
/*
* nag_dae_ivp_dassl_gen (dO2nec)
* dassl integrator
*/
nag_dae_ivp_dassl_gen(neq, &t, tout, y, ydot, rtol, atol, &itask, res,
jac, icom, com, lcom, &comm, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_dae_ivp_dassl_gen (dO2nec).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
printf("%8.4f", t);
for (i = 0; i < neq; it++)
printf("s12.6f%s", yl[i], (i + 1)
/*
* nag_dae_ivp_dassl_cont (d02mcc)
* dassl method continuation resetting function
*
/

nag_dae_ivp_dassl_cont(icom) ;

o°

32 "o Il\nll)

}
printf ("\n")
printf (" The integrator completed task, ITASK = %4" NAG_IFMT "\n", itask);

END:
NAG_FREE (atol) ;
NAG_FREE (com) ;
NAG_FREE (rtol) ;
NAG_FREE (y) ;
NAG_FREE (ydot) ;
NAG_FREE (comm. iuser) ;
NAG_FREE (icom) ;

return exit_status;

d02nec.10 Mark 26

d02 — Ordinary Differential d02nec

static void NAG_CALL res(Integer neq, double t, const double yI[],
const double ydot[], double r[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[0] == -1.0) {
printf (" (User-supplied callback res, first invocation.)\n");
comm->user [0] = 0.0;
¥
r[0] = (-(0.040e0 * y[0])) + 1.00ed4 * y[1] * y[2] - ydot[O];
r[1] = 0.040e0 * y[0] - 1.00e4 * y[1] * y[2] - 3.00e7 * y[1] * y[1] -
ydot[1];
r[2] = 3.00e7 * y[1] * y[1l] - ydot[2];
return;
¥

static void NAG_CALL jac(Integer neq, double t, const double yI[],
const double ydot[], double *pd, double cj,
Nag_Comm *comm)

Integer ml, mu;
if (comm->user[1l] == -1.0) {
printf (" (User-supplied callback jac, first invocation.)\n");
comm->user[1l] = 0.0;
}
ml

comm->iuser [0];

mu = comm->iuser[1l];

myjac(neq, ml, mu, t, y, ydot, pd, cj);
return;

3

static void NAG_CALL myjac(Integer neq, Integer ml, Integer mu, double t,
const double y[], const double ydot[], double *pd,
double cj)

{

Integer md, ms;
Integer pdpd;
pdpd = 2 * ml + mu + 1;
#define PD(I, J) pd[(J-1)*pdpd + I - 1]

/* Main diagonal PDFULL(i,i), i=1,neq */

md = mu + ml + 1;

PD(md, 1) = -0.040e0 - cj;

PD(md, 2) = -1.00e4 * y[2] - 6.00e7 * y[1l] - cj;
PD(md, 3) = -cj;

/* 1 Subdiagonal PDFULL(i+1:i), i=1,neqg-1 */

ms = md + ml;
PD(ms, 1) = 0.040e0;
PD(ms, 2) = 6.00e7 * y[1l];

/* First superdiagonal PDFULL(i-1,i), i=2, neq */
ms = md - 1;

PD(ms, 2) = 1.00e4 * y[2];

PD(ms, 3) = -1.00e4 * y[1];

/* Second superdiagonal PDFULL(i-2,1i), i=3, neq */
ms = md - 2;

PD(ms, 3) = 1.00e4d * y[1];

return;

10.2 Program Data

None.

10.3 Program Results

nag_dae_ivp_dassl_gen (dO2nec) Example Program Results

t y(1) y(2) y(3)
0.0000 1.000000 0.000000 0.000000
(User-supplied callback res, first invocation.)
(User-supplied callback jac, first invocation.)
0.0200 0.999204 0.000036 0.000760

Mark 26 d02nec.11

d02nec NAG Library Manual

0.0400 0.998415 0.000036 0.001549
0.0600 0.997631 0.000036 0.002333
0.0800 0.996852 0.000036 0.003112
0.1000 0.996080 0.000036 0.003884
The integrator completed task, ITASK = 3

d02nec.12 (last) Mark 26

	d02nec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	neq
	t
	tout
	y
	ydot
	rtol
	atol
	itask
	res
	neq
	t
	y
	ydot
	r
	ires
	comm
	user
	iuser
	p

	jac
	neq
	t
	y
	ydot
	pd
	cj
	comm
	user
	iuser
	p

	icom
	com
	lcom
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ARRAY_INPUT
	NE_BAD_PARAM
	NE_CONV_CONT
	NE_CONV_JACOBG
	NE_CONV_ROUNDOFF
	NE_INITIALIZATION
	NE_INT
	NE_INT_2
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_MAX_STEP
	NE_NO_LICENCE
	NE_ODE_TOL
	NE_REAL_2
	NE_REAL_ARG_EQ
	NE_RES_FLAG
	NE_SINGULAR_POINT

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

