
NAG Library Function Document

nag_multid_quad_monte_carlo_1 (d01xbc)

1 Purpose

nag_multid_quad_monte_carlo_1 (d01xbc) evaluates an approximation to the integral of a function over
a hyper-rectangular region, using a Monte–Carlo method. An approximate relative error estimate is also
returned. This function is suitable for low accuracy work.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_multid_quad_monte_carlo_1 (Integer ndim,

double (*f)(Integer ndim, const double x[], Nag_User *comm),

Nag_MCMethod method, Nag_Start cont, const double a[], const double b[],
Integer *mincls, Integer maxcls, double eps, double *finest,
double *acc, double **comm_arr, Nag_User *comm, NagError *fail)

3 Description

nag_multid_quad_monte_carlo_1 (d01xbc) uses an adaptive Monte–Carlo method based on the
algorithm described by Lautrup (1971). It is implemented for integrals of the form:

Z b1

a1

Z b2

a2

� � �
Z bn

an

f x1; x2; . . . ; xnð Þdxn � � � dx2dx1:

Upon entry, unless the argument method ¼ Nag OneIteration, the function subdivides the integration
region into a number of equal volume subregions. Inside each subregion the integral and the variance
are estimated by means of pseudorandom sampling. All contributions are added together to produce an
estimate for the whole integral and total variance. The variance along each coordinate axis is
determined and the function uses this information to increase the density and change the widths of the
sub-intervals along each axis, so as to reduce the total variance. The total number of subregions is then
increased by a factor of two and the program recycles for another iteration. The program stops when a
desired accuracy has been reached or too many integral evaluations are needed for the next cycle.

4 References

Lautrup B (1971) An adaptive multi-dimensional integration procedure Proc. 2nd Coll. Advanced
Methods in Theoretical Physics, Marseille

5 Arguments

1: ndim – Integer Input

On entry: the number of dimensions of the integral, n.

Constraint: ndim � 1.

2: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

d01 – Quadrature d01xbc

Mark 26 d01xbc.1

The specification of f is:

double f (Integer ndim, const double x[], Nag_User *comm)

1: ndim – Integer Input

On entry: the number of dimensions of the integral.

2: x½ndim� – const double Input

On entry: the coordinates of the point at which the integrand must be evaluated.

3: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type. (See the argument comm below.)

3: method – Nag_MCMethod Input

On entry: the method to be used.

method ¼ Nag OneIteration
The function uses only one iteration of a crude Monte–Carlo method with maxcls sample
points.

method ¼ Nag ManyIterations
The function subdivides the integration region into a number of equal volume subregions.

Constraint: method ¼ Nag OneIteration or Nag ManyIterations.

4: cont – Nag_Start Input

On entry: the continuation state of the evaluation of the integrand.

cont ¼ Nag Cold
Indicates that this is the first call to the function with the current integrand and arguments
ndim, a and b.

cont ¼ Nag Hot
Indicates that a previous call has been made with the same arguments ndim, a and b with
the same integrand. Please note that method must not be changed.

cont ¼ Nag Warm
Indicates that a previous call has been made with the same arguments ndim, a and b but
that the integrand is new. Please note that method must not be changed.

Constraint: cont ¼ Nag Cold, Nag Warm or Nag Hot.

5: a½ndim� – const double Input

On entry: the lower limits of integration, ai, for i ¼ 1; 2; . . . ; n.

6: b½ndim� – const double Input

On entry: the upper limits of integration, bi, for i ¼ 1; 2; . . . ; n.

7: mincls – Integer * Input/Output

On entry: mincls must be set to the minimum number of integrand evaluations to be allowed.

Constraint: 0 � mincls < maxcls.

d01xbc NAG Library Manual

d01xbc.2 Mark 26

On exit: mincls contains the total number of integrand evaluations actually used by
nag_multid_quad_monte_carlo_1 (d01xbc).

8: maxcls – Integer Input

On entry: the maximum number of integrand evaluations to be allowed. In the continuation case
this is the number of new integrand evaluations to be allowed. These counts do not include zero
integrand values.

Constraints:

maxcls > mincls;
maxcls � 4� ndimþ 1ð Þ.

9: eps – double Input

On entry: the relative accuracy required.

Constraint: eps � 0:0.

10: finest – double * Output

On exit: the best estimate obtained for the integral.

11: acc – double * Output

On exit: the estimated relative accuracy of finest.

12: comm arr – double ** Input/Output

On entry: if cont ¼ Nag Warm or Nag Hot, the memory pointed to and allocated by a previous
call of nag_multid_quad_monte_carlo_1 (d01xbc) must be unchanged.

If cont ¼ Nag Cold then appropriate memory is allocated internally by nag_multid_quad_mon
te_carlo_1 (d01xbc).

On exit: comm_arr contains information about the current sub-interval structure which could be
used in later calls of nag_multid_quad_monte_carlo_1 (d01xbc). In particular, comm arr½j� 1�
gives the number of sub-intervals used along the jth coordinate axis.

When this information is no longer useful, or before a subsequent call to nag_multid_quad_
monte_carlo_1 (d01xbc) with cont ¼ Nag Cold is made, you should free the storage contained in
this pointer using the NAG macro NAG_FREE. Note this memory will have been allocated and
needs to be freed only if the error exit NE_NOERROR or NE_QUAD_MAX_INTEGRAND_E-
VAL occurs. Otherwise, no memory needs to be freed.

13: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f(). An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type Pointer is void *.

14: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

d01 – Quadrature d01xbc

Mark 26 d01xbc.3

6 Error Indicators and Warnings

NE_2_INT_ARG_GE

On entry, mincls ¼ valueh i while maxcls ¼ valueh i. These arguments must satisfy
mincls < maxcls.

NE_2_INT_ARG_LT

On entry, maxcls ¼ valueh i while ndim ¼ valueh i. These arguments must satisfy
maxcls � 4� ndimþ 1ð Þ.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument cont had an illegal value.

On entry, argument method had an illegal value.

NE_INT_ARG_LE

On entry, mincls ¼ valueh i.
Constraint: mincls > 0.

NE_INT_ARG_LT

On entry, ndim ¼ valueh i.
Constraint: ndim � 1.

NE_QUAD_MAX_INTEGRAND_EVAL

maxcls was too small to obtain the required accuracy.
In this case nag_multid_quad_monte_carlo_1 (d01xbc) returns a value of finest with estimated
relative error acc, but acc will be greater than eps. This error exit may be taken before maxcls
nonzero integrand evaluations have actually occurred, if the function calculates that the current
estimates could not be improved before maxcls was exceeded.

NE_REAL_ARG_LT

On entry, eps must not be less than 0.0: eps ¼ valueh i.

7 Accuracy

A relative error estimate is output through the argument acc. The confidence factor is set so that the
actual error should be less than acc 90% of the time. If you desire a higher confidence level then a
smaller value of eps should be used.

8 Parallelism and Performance

nag_multid_quad_monte_carlo_1 (d01xbc) is not threaded in any implementation.

9 Further Comments

The running time for nag_multid_quad_monte_carlo_1 (d01xbc) will usually be dominated by the time
used to evaluate the integrand f, so the maximum time that could be used is approximately proportional
to maxcls.

For some integrands, particularly those that are poorly behaved in a small part of the integration region,
this function may terminate with a value of acc which is significantly smaller than the actual relative
error. This should be suspected if the returned value of mincls is small relative to the expected

d01xbc NAG Library Manual

d01xbc.4 Mark 26

difficulty of the integral. Where this occurs, nag_multid_quad_monte_carlo_1 (d01xbc) should be called
again, but with a higher entry value of mincls (e.g., twice the returned value) and the results compared
with those from the previous call.

9.1 Additional Information

The exact values of finest and acc on return will depend (within statistical limits) on the sequence of
random numbers generated within this function.

If desired, you may ensure the identity or difference between runs of the results returned by this
function by calling nag_random_init_repeatable (g05cbc) or nag_random_init_nonrepeatable (g05ccc)
immediately prior to calling this function.

nag_random_init_repeatable (g05cbc) has the prototype

void g05cbc(Integer seed)

where seed is a scalar value used to initialize the underlying random number generator. Using the same
value for seed will ensure that the same sequence of random values are generated and hence that the
same result from this function will be obtained.

nag_random_init_nonrepeatable (g05ccc) has the prototype

void g05ccc()

Each time nag_random_init_nonrepeatable (g05ccc) is called the underlying random number generator
will be reinitialized using a random seed, ensuring a different sequence of values being used.
Consequently this function may return different numerical results.

10 Example

This example calculates the integral
Z 1

0

Z 1

0

Z 1

0

Z 1

0

4x1x32 exp 2x1x3ð Þ
1þ x2 þ x4ð Þ2 dx1dx2dx3dx4 ¼ 0:575364:

10.1 Program Text

/* nag_multid_quad_monte_carlo_1 (d01xbc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C"
{
#endif

static double NAG_CALL f(Integer ndim, const double x[], Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define MAXCLS 20000

int main(void)
{

d01 – Quadrature d01xbc

Mark 26 d01xbc.5

static Integer use_comm[1] = { 1 };
Integer exit_status = 0, k, maxcls = MAXCLS, mincls, ndim = 4;
NagError fail;
Nag_MCMethod method;
Nag_Start cont;
Nag_User comm;
double *a = 0, acc, *b = 0, *comm_arr = 0, eps, finest;

INIT_FAIL(fail);

printf("nag_multid_quad_monte_carlo_1 (d01xbc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer) &use_comm;

if (ndim >= 1) {
if (!(a = NAG_ALLOC(ndim, double)) || !(b = NAG_ALLOC(ndim, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid ndim.\n");
exit_status = 1;
return exit_status;

}
for (k = 0; k < ndim; ++k) {

a[k] = 0.0;
b[k] = 1.0;

}
eps = 0.01;
mincls = 1000;
method = Nag_ManyIterations;
cont = Nag_Cold;

/* nag_multid_quad_monte_carlo_1 (d01xbc).
* Multi-dimensional quadrature, using Monte Carlo method,
* thread-safe
*/

nag_multid_quad_monte_carlo_1(ndim, f, method, cont, a, b, &mincls, maxcls,
eps, &finest, &acc, &comm_arr, &comm, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_QUAD_MAX_INTEGRAND_EVAL) {
if (fail.code == NE_QUAD_MAX_INTEGRAND_EVAL) {

printf("Error from nag_multid_quad_monte_carlo_1 (d01xbc).\n%s\n",
fail.message);

exit_status = 2;
}
printf("Requested accuracy = %11.2e\n", eps);
printf("Estimated value = %10.5f\n", finest);
printf("Estimated accuracy = %11.2e\n", acc);
printf("Number of evaluations = %5" NAG_IFMT "\n", mincls);

}
else {

printf("Error from nag_multid_quad_monte_carlo_1 (d01xbc).\n%s\n",
fail.message);

printf("%s\n", fail.message);
exit_status = 1;

}
END:

NAG_FREE(a);
NAG_FREE(b);
/* Free memory allocated internally */
NAG_FREE(comm_arr);
return exit_status;

}

static double NAG_CALL f(Integer ndim, const double x[], Nag_User *comm)
{

Integer *use_comm = (Integer *) comm->p;

d01xbc NAG Library Manual

d01xbc.6 Mark 26

if (use_comm[0]) {
printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;

}

return x[0] * 4.0 * (x[2] * x[2]) * exp(x[0] * 2.0 * x[2]) /
((x[1] + 1.0 + x[ndim - 1]) * (x[1] + 1.0 + x[ndim - 1]));

}

10.2 Program Data

None.

10.3 Program Results

nag_multid_quad_monte_carlo_1 (d01xbc) Example Program Results
(User-supplied callback f, first invocation.)
Requested accuracy = 1.00e-02
Estimated value = 0.57554
Estimated accuracy = 8.20e-03
Number of evaluations = 1728

d01 – Quadrature d01xbc

Mark 26 d01xbc.7 (last)

	d01xbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Lautrup (1971)

	5 Arguments
	ndim
	f
	ndim
	x
	comm
	p

	method
	cont
	a
	b
	mincls
	maxcls
	eps
	finest
	acc
	comm_arr
	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_GE
	NE_2_INT_ARG_LT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LE
	NE_INT_ARG_LT
	NE_QUAD_MAX_INTEGRAND_EVAL
	NE_REAL_ARG_LT

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Additional Information

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

