
NAG Library Function Document

nag_quad_md_sgq_multi_vec (d01esc)

1 Purpose

nag_quad_md_sgq_multi_vec (d01esc) approximates a vector of definite integrals F over the unit
hypercube � ¼ 0; 1½ �d, given the vector of integrands f xð Þ.

F ¼
Z
�

f xð Þdx ¼
Z 1

0

Z 1

0
. . .

Z 1

0
f x1; x2; . . . ; xdð Þdx1dx2 . . . dxd :

The function uses a sparse grid discretisation, allowing for computationally feasible estimations of
integrals of high dimension (d � O 100ð Þ).

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_md_sgq_multi_vec (Integer ni, Integer ndim,

void (*f)(Integer ni, Integer ndim, Integer nx, double xtr,
Integer nntr, const Integer icolzp[], const Integer irowix[],
const double xs[], const Integer qs[], double fm[], Integer *iflag,
Nag_Comm *comm),

const Integer maxdlv[], double dinest[], double errest[],
Integer ivalid[], const Integer iopts[], const double opts[],
Nag_Comm *comm, NagError *fail)

3 Description

nag_quad_md_sgq_multi_vec (d01esc) uses a sparse grid to generate a vector of approximations F̂ to a
vector of integrals F over the unit hypercube � ¼ 0; 1½ �d, that is,

F̂ � F ¼
Z

0;1½ �d
f xð Þdx:

3.1 Comparing Quadrature Over Full and Sparse Grids

Before illustrating the sparse grid construction, it is worth comparing integration over a sparse grid to
integration over a full grid.

Given a one-dimensional quadrature rule with N abscissae, which accurately evaluates a polynomial of
order PN, a full tensor product over d dimensions, a full grid, may be constructed with Nd

multidimensional abscissae. Such a product will accurately integrate a polynomial where the maximum
power of any dimension is PN . For example if d ¼ 2 and PN ¼ 3, such a rule will accurately integrate
any polynomial whose highest order term is x31x

3
2. Such a polynomial may be said to have a maximum

combined order of Pd
N , provided no individual dimension contributes a power greater than PN .

However, the number of multidimensional abscissae, or points, required increases exponentially with
the dimension, rapidly making such a construction unusable.

The sparse grid technique was developed by Smolyak (Smolyak (1963)). In this, multiple one-
dimensional quadrature rules of increasing accuracy are combined in such a way as to provide a
multidimensional quadrature rule which will accurately evaluate the integral of a polynomial whose
maximum order appears as a monomial. Hence a sparse grid construction whose highest level
quadrature rule has polynomial order PN will accurately integrate a polynomial whose maximum
combined order is also PN . Again taking PN ¼ 3, one may, theoretically, accurately integrate a
polynomial such as x3 þ x2yþ y3, but not a polynomial such as x3y3 þ xy. Whilst this has a lower

d01 – Quadrature d01esc

Mark 26 d01esc.1

maximum combined order than the full tensor product, the number of abscissae required increases
significantly slower than the equivalent full grid, making some classes of integrals of dimension
d � O 100ð Þ tractable. Specifically, if a one-dimensional quadrature rule of level ‘ has N � O 2‘

� �
abscissae, the corresponding full grid will have O 2‘

� �d� �
multidimensional abscissae, whereas the

sparse grid will have O 2‘d‘�1
� �

. Figure 1 demonstrates this using a Gauss–Patterson rule with 15 points
in 3 dimensions. The full grid requires 3375 points, whereas the sparse grid only requires 111.

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 1
Three-dimensional full (left) and sparse (right) grids, constructed from the 15 point Gauss–Patterson

rule

3.2 Sparse Grid Quadrature

We now include a brief description of the sparse grid construction, sufficient for the understanding of
the use of this routine. For a more detailed analysis, see Gerstner and Griebel (1998).

Consider a one-dimensional n‘-point quadrature rule of level ‘, Q‘. The action of this rule on a
integrand f is to approximate its definite one-dimensional integral 1F as,

1F ¼
Z 1

0
f xð Þdx � Q‘ fð Þ ¼

Xn‘

i¼1

w‘;i � f x‘;i
� �

;

using weights w‘;i and abscissae x‘;i, for i ¼ 1; 2; . . . ; n‘.

Now construct a set of one-dimensional quadrature rules, Q‘ j ‘ ¼ 1; . . . ; Lf g, such that the accuracy of
the quadrature rule increases with the level number. In this routine we exclusively use quadrature rules
which are completely nested, implying that if an abscissae x‘;k is in level ‘, it is also in level ‘þ 1. The
quantity L denotes some maximum level appropriate to the rules that have been selected.

Now define the action of the tensor product of d rules as,

Q‘1 � � � � �Q‘dð Þ fð Þ ¼
Xn‘1

i1¼1

� � �
Xn‘d

id¼1

w‘1;i1 � � �w‘d;idf x‘1;i1 ; . . . ; x‘d;id
� �

;

where the individual level indices ‘j are not necessarily ordered or unique. Each tensor product of d
rules defines an action of the quadrature rules Ql, l ¼ ‘1; ‘2; . . . ; ‘dð Þ over a subspace, which is given a

level lj j ¼
Xd
j¼1

‘j. If all rule levels are equal, this is the full tensor product of that level.

The sparse grid construction of level ‘ can then be declared as the sum of all actions of the quadrature
differences �k ¼ Qk �Qk�1ð Þ, over all subspaces having a level at most ‘� dþ 1,

d01esc NAG Library Manual

d01esc.2 Mark 26

dF � Qd
‘ fð Þ ¼

X
level at most ‘�dþ1

�k1 � � � � ��kdð Þ fð Þ: ð1Þ

By definition, all subspaces used for level ‘� 1 must also be used for level ‘, and as such the difference
between the result of all actions over subsequent sparse grid constructions may be used as an error
estimate.

Let L be the maximum level allowable in a sparse grid construction. The classical sparse grid
construction of ‘ ¼ L allows each dimension to support a one-dimensional quadrature rule of level at
most L, with such a quadrature rule being used in every dimension at least once. Such a construction
lends equal weight to each dimension of the integration, and is termed here ‘isotropic’.

Define the set m ¼ mj; j ¼ 1; 2; . . . ; d
� �

, where mj is the maximum quadrature rule allowed in the jth
dimension, and mq to be the maximum quadrature rule used by any dimension. Let a subspace be
identified by its quadrature difference levels, k ¼ k1; k2; . . . ; kdð Þ.
The classical construction may be extended by allowing different dimensions to have different values
mj, and by allowing mq 	 L. This creates non-isotropic constructions. These are especially useful in
higher dimensions, where some dimensions contribute more than others to the result, as they can
drastically reduce the number of function evaluations required.

For example, consider the two-dimensional construction with L ¼ 4. The classical isotropic
construction would have the following subspaces.

Subspaces generated by a classical sparse grid with L ¼ 4.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 3; 1ð Þ, 2; 2ð Þ, 1; 3ð Þ
4 4; 1ð Þ, 3; 2ð Þ, 2; 3ð Þ, 1; 4ð Þ

If the variation in the second dimension is sufficiently accurately described by a quadrature rule of level
2, the contributions of the subspaces 1; 3ð Þ and 1; 4ð Þ are probably negligible. Similarly, if the variation
in the first dimension is sufficiently accurately described by a quadrature rule of level 3, the subspace
4; 1ð Þ is probably negligible. Furthermore the subspace 2; 3ð Þ would also probably have negligible
impact, whereas the subspaces 2; 2ð Þ and 3; 2ð Þ would not. Hence restricting the first dimension to a
maximum level of 3, and the second dimension to a maximum level of 2 would probably give a
sufficiently acceptable estimate, and would generate the following subspaces.

Subspaces generated by a non-isotropic sparse grid with L ¼ 4, mq ¼ 3 and m ¼ 3; 2ð Þ.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 3; 1ð Þ, 2; 2ð Þ
4 4; 1ð Þ, 3; 2ð Þ

Taking this to the extreme, if the variation in the first and second dimensions are sufficiently accurately
described by a level 2 quadrature rule, restricting the maximum level of both dimensions to 2 would
generate the following subspaces.

Subspaces generated by a sparse grid construction with L ¼ 4, mq ¼ 2 and m ¼ 2; 2ð Þ.

Level Subspaces
1 1; 1ð Þ
2 2; 1ð Þ, 1; 2ð Þ
3 2; 2ð Þ
4 None

d01 – Quadrature d01esc

Mark 26 d01esc.3

Hence one subspace is generated at level 3, and no subspaces are generated at level 4. The level 3
subspace 2; 2ð Þ actually indicates that this is the full grid of level 2.

3.3 Using nag_quad_md_sgq_multi_vec (d01esc)

nag_quad_md_sgq_multi_vec (d01esc) uses optional parameters, supplied in the option arrays iopts and
opts. Before calling nag_quad_md_sgq_multi_vec (d01esc), these option arrays must be initialized
using nag_quad_opt_set (d01zkc). Once initialized, the required options may be set and queried using
nag_quad_opt_set (d01zkc) and nag_quad_opt_get (d01zlc) respectively. A complete list of the options
available may be found in Section 11.

You may control the maximum level required, L, using the optional parameter Maximum Level.
Furthermore, you may control the first level at which the error comparison will take place using the
optional parameter Minimum Level, allowing for the forced evaluation of a predetermined number of
levels before the routine attempts to complete. Completion is flagged when the error estimate is
sufficiently small:

F̂ k
d � F̂ k�1

d

�� �� 	 max �a; �r � F̂ k
d

� �
;

where �a and �r are the absolute and relative error tolerances, respectively, and k 	 L is the highest
level at which computation was performed. The tolerances �a and �r can be controlled by setting the
optional parameters Absolute Tolerance and Relative Tolerance.

Owing to the interlacing nature of the quadrature rules used herein, abscissae x required in lower level
subspaces will also appear in higher-level subspaces. This allows for calculations which will be
repeated later to be stored and re-used. However, this is naturally at the expense of memory. It may also
be at the expense of computational time, depending on the complexity of the integrands, as the lookup
time for a given value is (at worst) O dð Þ. Furthermore, as the sparse grid level increases, fewer
subsequent levels will require values from the current level. You may control the number of levels for
which values are stored by setting the optional parameter Index Level.

Two different sets of interlacing quadrature rules are selectable using the optional parameter
Quadrature Rule: Gauss–Patterson and Clenshaw–Curtis. Gauss–Patterson rules offer greater
polynomial accuracy, whereas Clenshaw–Curtis rules are often effective for oscillatory integrands.
Clenshaw–Curtis rules require function values to be evaluated on the boundary of the hypercube,
whereas Gauss–Patterson rules do not. Both of these rules use precomputed weights, and as such there
is an effective limit on mq; see the description of the optional parameter Quadrature Rule. The value
of mq is returned by the queriable optional parameter Maximum Quadrature Level.

nag_quad_md_sgq_multi_vec (d01esc) also allows for non-isotropic sparse grids to be constructed. This
is done by appropriately setting the array maxdlv. It should be emphasised that a non-isometric
construction should only be used if the integrands behave in a suitable way. For example, they may
decay toward zero as the lesser dimensions approach their bounds of �. It should also be noted that
setting maxdlv½k� 1� ¼ 1 will not reduce the dimension of the integrals, it will simply indicate that
only one point in dimension k should be used. It is also advisable to approximate the integrals several
times, once with an isometric construction of some level, and then with a non-isometric construction
with higher levels in various dimensions. If the difference between the solutions is significantly more
than the returned error estimates, the assumptions of dimensional importance are probably incorrect.

The abscissae in each subspace are generally expressible in a sparse manner, because many of the
elements of each abscissa will in fact be the centre point of the dimension, which is termed here the
‘trivial’ element. In this function the trivial element is always returned as 0:5 owing to the restriction to
the 0; 1½ � hypercube. As such, the function f returns the abscissae in Compressed Column Storage (CCS)
format (see the f11 Chapter Introduction). This has particular advantages when using accelerator
hardware to evaluate the required functions, as much less data must be forwarded. It also, potentially,
allows for calculations to be computed faster, as any sub-calculations dependent upon the trivial value
may be potentially re-used. See the example in Section 10.

d01esc NAG Library Manual

d01esc.4 Mark 26

4 References

Caflisch R E, Morokoff W and Owen A B (1997) Valuation of mortgage backed securities using
Brownian bridges to reduce effective dimension Journal of Computational Finance 1 27–46

Gerstner T and Griebel M (1998) Numerical integration using sparse grids Numerical Algorithms 18
209–232

Smolyak S A (1963) Quadrature and interpolation formulas for tensor products of certain classes of
functions Dokl. Akad. Nauk SSSR 4 240–243

5 Arguments

1: ni – Integer Input

On entry: ni, the number of integrands.

Constraint: ni
 1.

2: ndim – Integer Input

On entry: d, the number of dimensions.

Constraint: ndim
 1.

3: f – function, supplied by the user External Function

f must return the value of the integrands fj at a set of nx d-dimensional points xi, implicitly
supplied as columns of a matrix X d; nxð Þ. If X was supplied explicitly you would find that most
of the elements attain the same value, xtr; the larger the number of dimensions, the greater the
proportion of elements of X would be equal to xtr. So, X is effectively a sparse matrix, except
that the ‘zero’ elements are replaced by elements that are all equal to the value xtr. For this
reason X is supplied, as though it were a sparse matrix, in compressed column storage (CCS)
format (see the f11 Chapter Introduction).

Individual entries xk;i of X, for k ¼ 1; 2; . . . ; d, are either trivially valued, in which case
xk;i ¼ xtr, or are non-trivially valued. For point i, the non-trivial row indices and corresponding
abscissae values are supplied in elements c ið Þ ¼ icolzp½i � 1�; . . . ; icolzp½i� � 1, for
i ¼ 1; 2; . . . ; nx, of the arrays irowix and xs, respectively. Hence the ith column of the matrix
X is retrievable as

X irowix½c ið Þ � 1�; ið Þ ¼ xs½c ið Þ � 1�;

X k =2 irowix½c ið Þ � 1�; ið Þ ¼ xtr:

An equivalent integer valued matrix Q is also implicitly provided. This contains the unique
indices qk;i of the underlying one-dimensional quadrature rule corresponding to the individual
abscissae xk;i. For trivial abscissae, the implicit index qk;i ¼ 1. Q is supplied in the same CCS
format as X, with the non-trivial values supplied in qs.

Note: the values returned in icolzp and irowix are one-based.

The specification of f is:

void f (Integer ni, Integer ndim, Integer nx, double xtr,
Integer nntr, const Integer icolzp[], const Integer irowix[],
const double xs[], const Integer qs[], double fm[],
Integer *iflag, Nag_Comm *comm)

1: ni – Integer Input

On entry: ni, the number of integrands.

2: ndim – Integer Input

On entry: d, the number of dimensions.

d01 – Quadrature d01esc

Mark 26 d01esc.5

3: nx – Integer Input

On entry: nx, the number of points xi, corresponding to the number of columns of X, at
which the set of integrands must be evaluated.

4: xtr – double Input

On entry: xtr, the value of the trivial elements of X.

5: nntr – Integer Input

On entry: if iflag > 0, the number of non-trivial elements of X.

If iflag ¼ 0, the total number of abscissae from the underlying one-dimensional
quadrature.

6: icolzp½nxþ 1� – const Integer Input

On entry: the set icolzp½i � 1�; . . . ; icolzp½i� � 1f g contains the indices of irowix and xs
corresponding to the non-trivial elements of column i of X and hence of the point xi,
for i ¼ 1; 2; . . . ; nx.

7: irowix½nntr� – const Integer Input

On entry: the row indices corresponding to the non-trivial elements of X.

8: xs½nntr� – const double Input

On entry: xk;i 6¼ xtr, the non-trivial entries of X.

9: qs½nntr� – const Integer Input

On entry: qk;i 6¼ 1, the indices of the underlying quadrature rules corresponding to
xk;i 6¼ xtr.

10: fm½ni� nx� – double Output

On exit: fm½ i � 1ð Þ � niþ p� 1� ¼ fp xið Þ, for i ¼ 1; 2; . . . ; nx and p ¼ 1; 2; . . . ; ni.

11: iflag – Integer * Input/Output

On entry: if iflag ¼ 0, this is the first call to f. nx ¼ 1, and the entire point x1 will
satisfy xk;1 ¼ xtr, for k ¼ 1; 2; . . . ; d. In addition, nntr contains the total number of
abscissae from the underlying one-dimensional quadrature; xs contains the complete set
of abscissae and qs contains the corresponding quadrature indices, with xs½0� ¼ xtr and
qs½0� ¼ 1. This will always be called in serial.

In subsequent calls to f, iflag ¼ 1. Subsequent calls may be made from within an
OpenMP parallel region. See Section 8 for details.

On exit: set iflag < 0 if you wish to force an immediate exit from nag_quad_md_sgq_
multi_vec (d01esc) with fail:code ¼ NE_USER_STOP.

12: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to f.

d01esc NAG Library Manual

d01esc.6 Mark 26

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_sgq_multi_vec
(d01esc) you may allocate memory and initialize these pointers with various
quantities for use by f when called from nag_quad_md_sgq_multi_vec (d01esc)
(see Section 2.3.1.1 in How to Use the NAG Library and its Documentation).

4: maxdlv½ndim� – const Integer Input

On entry: m, the array of maximum levels for each dimension. maxdlv½j � 1�, for j ¼ 1; 2; . . . ; d,
contains mj , the maximum level of quadrature rule dimension j will support.

The de f au l t v a l u e , min mq;L
� �

wi l l b e u s ed i f e i t h e r maxdlv½j� 1� 	 0 o r
maxdlv½j� 1�
 min mq;L

� �
(for details on the default values for mq and L and on how to

change these values see the options Maximum Level, Maximum Quadrature Level and
Quadrature Rule).

If maxdlv½j� 1� ¼ 1 for all j, only one evaluation will be performed, and as such no error
estimation will be possible.

Suggested value: maxdlv½j� 1� ¼ 0 for all j ¼ 1; 2; . . . ; d.

Note: setting non-default values for some dimensions makes the assumption that the contribution
from the omitted subspaces is 0. The integral and error estimates will only be based on included
subspaces, which if the 0 contribution assumption is not valid will be erroneous.

5: dinest½ni� – double Output

On exit: dinest½p� 1� contains the final estimate F̂p of the definite integral Fp, for
p ¼ 1; 2; . . . ; ni.

6: errest½ni� – double Output

On exit: errest½p� 1� contains the final error estimate Ep of the definite integral Fp, for
p ¼ 1; 2; . . . ; ni.

7: ivalid½ni� – Integer Output

On exit: ivalid½p� 1� indicates the final state of integral p, for p ¼ 1; 2; . . . ; ni.

ivalid½p� 1� ¼ 0
The error estimate for integral p was below the requested tolerance.

ivalid½p� 1� ¼ 1
The error estimate for integral p was below the requested tolerance. The final level used
was non-isotropic.

ivalid½p� 1� ¼ 2
The error estimate for integral p was above the requested tolerance.

ivalid½p� 1� ¼ 3
The error estimate for integral p was above max 0:1 F̂p

�� ��; 0:01� �
.

ivalid½p� 1� < 0
You aborted the evaluation before an error estimate could be made.

8: iopts½100� – const Integer Communication Array
9: opts½100� – const double Communication Array

The arrays iopts and opts MUST NOT be altered between calls to any of the functions
nag_quad_md_sgq_multi_vec (d01esc), nag_quad_opt_set (d01zkc) and nag_quad_opt_get
(d01zlc).

d01 – Quadrature d01esc

Mark 26 d01esc.7

10: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ACCURACY

The requested accuracy was not achieved for at least one integral.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ndim ¼ valueh i.
Constraint: ndim
 1.

On entry, ni ¼ valueh i.
Constraint: ni
 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_INVALID_OPTION

Either the option arrays iopts and opts have not been initialized for nag_quad_md_sgq_multi_vec
(d01esc), or they have become corrupted.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_TOTAL_PRECISION_LOSS

No accuracy was achieved for at least one integral.

NE_USER_STOP

Exit requested from f with iflag ¼ valueh i.

d01esc NAG Library Manual

d01esc.8 Mark 26

7 Accuracy

For each integral p, an error estimate Ep is returned, where,

Ep ¼ F̂ k
p � F̂ k�1

p

���
��� � F̂p � Fp

�� ��;
where k 	 L is the highest level at which computation was performed.

8 Parallelism and Performance

8.1 Direct Threading

nag_quad_md_sgq_multi_vec (d01esc) is directly threaded for parallel execution. For each level, at
most nt threads will evaluate the integrands over independent subspaces of the construction, and will
construct a partial sum of the level's contribution. Once all subspaces from a given level have been
processed, the partial sums are combined to give the total contribution of the level, which is in turn
added to the total solution. For a given number of threads, the division of subspaces between the
threads, and the order in which a single thread operates over its assigned subspaces, is fixed. However,
the order in which all subspaces are combined will necessarily be different to the single threaded case,
which may result in some discrepency in the results between parallel and serial execution.

To mitigate this discrepency, it is recommended that nag_quad_md_sgq_multi_vec (d01esc) be
instructed to use higher-than-double precision to accumulate the actions over the subspaces. This is
done by setting the option Summation Precision ¼ HIGHER, which is the default behaviour. This has
some computational cost, although this is typically negligible in comparison to the overall runtime,
particularly for non-trivial integrands.

If Summation Precision ¼ WORKING, then the accumulation will be performed using double
precision, which may provide some increase in performance. Again, this is probably negligible in
comparison to the overall runtime.

For some problems, typically of lower dimension, there may be insufficient work to warrant direct
threading at lower levels. For example, a three-dimensional problem will require at most 3 subspaces to
be evaluated at level 2, and at most 6 subspaces at level 3. Furthermore, level 2 subspaces typically
contain only 2 new multidimensional abscissae, while level 3 subspaces typically contain 2 or 4 new
multidimensional abscissae depending on the Quadrature Rule. If there are more threads than the
number of available subspaces at a given level, or the amount of work in each subspace is outweighed
by the amount of work required to generate the parallel region, parallel efficiency will be decreased.
This may be mitigated to some extent by evaluating the first sl levels in serial. The value of sl may be
altered using the optional parameter Serial Levels. If sl
 L, then all levels will be evaluated in serial
and no direct threading will be utilized.

If you use direct threading in the manner just described, you must ensure any access to the
communication structure comm is done in a thread-safe manner. This is classed as OpenMP SHARED,
and is passed directly to the function f for every thread.

8.2 Parallelization of f

The vectorized interface also allows for parallelization inside the function f by evaluating the required
integrands in parallel. Provided the values returned by f match those that would be returned without
parallelizing f, the final result should match the serial result, barring any discrepencies in accumulation.
If you wish to parallelize f, it is advisable to set a large value for Maximum Nx, although be aware that
increasing Maximum Nx will increase the memory requirement of the function. In general,
parallelization of f should not be necessary, as the higher-level parallelism over different subspaces
scales well for many problems.

9 Further Comments

Not applicable.

d01 – Quadrature d01esc

Mark 26 d01esc.9

10 Example

The example program evaluates an estimate to the set of integrals

F ¼
Z

�

sin 1þ xj jð Þ
..
.

sin ni þ xj jð Þ

0
B@

1
CAlog xj jdx

where xj j ¼
Xd
j¼1

jxj. It also demonstrates a simple method to safely use comm as workspace for sub-

calculations when running in parallel.

10.1 Program Text

/* nag_quad_md_sgq_multi_vec (d01esc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx06.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL f(Integer ni, Integer ndim, Integer nx, double xtr,
Integer nntr, const Integer *icolzp,
const Integer *irowix, const double *xs,
const Integer *qs, double *fm,
Integer *iflag, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

/* We define some structures to serve as a demonstration of safely operating
* with the NAG communication structure comm when running in parallel.
*/

/* par_sh: any information to be shared between threads in the function f. */
typedef struct
{

double s_tr;
} par_sh;

/* par_pr: any private workspace that a single thread will require in the
* execution of the function f.
*/

typedef struct
{

double *s;
double *logs;

} par_pr;

/* parallel_comm: a container for par_sh and par_pr. */
typedef struct
{

par_sh shared;
par_pr *tprivate;

d01esc NAG Library Manual

d01esc.10 Mark 26

} parallel_comm;

int main(void)
{

Integer exit_status = 0;
Integer ndim, ni;
Integer maxnx, smpthd, lcvalue;
double rvalue;
char cvalue[16];
Integer *ivalid, *iopts, *maxdlv;
double *dinest, *errest, *opts;
parallel_comm parcom;
int i, thdnum;
/* Nag Types */
Nag_VariableType optype;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_quad_md_sgq_multi_vec (d01esc) Example Program Results\n");

ni = 10;
ndim = 4;
lcvalue = 16;
if (!(iopts = NAG_ALLOC(100, Integer)) ||

!(opts = NAG_ALLOC(100, double)) ||
!(maxdlv = NAG_ALLOC(ndim, Integer)) ||
!(dinest = NAG_ALLOC(ni, double)) ||
!(errest = NAG_ALLOC(ni, double)) || !(ivalid = NAG_ALLOC(ni, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Initialize option arrays. */
nag_quad_opt_set("Initialize = d01esc", iopts, 100, opts, 100, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Set any required options. */
nag_quad_opt_set("Absolute Tolerance = 0.0", iopts, 100, opts, 100, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
nag_quad_opt_set("Relative Tolerance = 1.0e-3", iopts, 100, opts, 100,

&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
nag_quad_opt_set("Maximum Level = 6", iopts, 100, opts, 100, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
nag_quad_opt_set("Index Level = 5", iopts, 100, opts, 100, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

d01 – Quadrature d01esc

Mark 26 d01esc.11

/* Set any required maximum dimension levels. */
for (i = 0; i < ndim; ++i)

maxdlv[i] = 0;

/* As a demonstration of safely operating with the communication structure
* comm when running in parallel, we will create an instance of our
* parallel_comm structure with fields indexed by the current thread number.
* The size of the array subfields in this structure are a function of
* Maximum Nx.
*/

nag_quad_opt_get("Maximum Nx", &maxnx, &rvalue, cvalue, lcvalue, &optype,
iopts, opts, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_quad_opt_get (d01zlc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

smpthd = nag_omp_get_max_threads();

/* Allocate an array of smpthd pointers to private structures. */
if (!(parcom.tprivate = NAG_ALLOC(smpthd, par_pr))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* For each thread, allocate a double array of size maxnx in the
* private component of the parallel structure.
*/

for (thdnum = 0; thdnum < smpthd; thdnum++) {
if (!(parcom.tprivate[thdnum].s = NAG_ALLOC(maxnx, double)) ||

!(parcom.tprivate[thdnum].logs = NAG_ALLOC(maxnx, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

/* Finally, store the parallel structure in comm for communication to f. */
comm.p = &parcom;

/* Approximate the integrals. */
nag_quad_md_sgq_multi_vec(ni, ndim, f, maxdlv, dinest, errest, ivalid,

iopts, opts, &comm, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_ACCURACY

&& fail.code != NE_TOTAL_PRECISION_LOSS && fail.code != NE_USER_STOP) {
/* If internal memory allocation failed consider reducing the options
* ’Maximum Nx’ and ’Index Level’, or run with fewer threads.
*/

printf("Error from nag_quad_md_sgq_multi_vec (d01esc).\n%s\n",
fail.message);

exit_status = 2;
}
else {

/* NE_NOERROR:
* The result returned satisfies the requested accuracy requirements.
* NE_ACCURACY, NE_TOTAL_PRECISION_LOSS:
* The result returned is inaccurate for at least one integral.
* NE_USER_STOP:
* Exit was requested by setting iflag negative in f.
* A result will be returned if at least one call to f was successful.
*/

printf("Integral # | Estimated value | Error estimate |"
" Final state of integral\n");

for (i = 0; i < ni; ++i)
printf("%11d|%17.5e|%16.5e|%8" NAG_IFMT "\n",

i, dinest[i], errest[i], ivalid[i]);
}
for (thdnum = 0; thdnum < smpthd; ++thdnum) {

d01esc NAG Library Manual

d01esc.12 Mark 26

NAG_FREE(parcom.tprivate[thdnum].s);
NAG_FREE(parcom.tprivate[thdnum].logs);

}

END:
NAG_FREE(maxdlv);
NAG_FREE(dinest);
NAG_FREE(errest);
NAG_FREE(ivalid);
NAG_FREE(iopts);
NAG_FREE(opts);
NAG_FREE(parcom.tprivate);
return exit_status;

}

static void NAG_CALL f(Integer ni, Integer ndim, Integer nx, double xtr,
Integer nntr, const Integer *icolzp,
const Integer *irowix, const double *xs,
const Integer *qs, double *fm,
Integer *iflag, Nag_Comm *comm)

{
Integer i, j, k, tid;
double s_tr, s_ntr;
double *s, *logs;
parallel_comm *parcom;

/* For each evaluation point x_i, i = 1, ..., nx, return in fm the computed
* values of the ni integrals f_j, j = 1, ..., ni defined by
*
* fm(j,i) = f_j(x_i)
* ndim
* = sin(j + S(i))*log(S(i)), where S(i) = Sum k*x_i(k).
* k=1
*
* Split the S expression into two components, one involving only the
* ’trivial’ value xtr:
*
* ndim ndim
* S(i) = Sum (k*xtr) + Sum (k*(x_i(k)-xtr))
* k=1 k=1
*
* ndim*(ndim+1) ndim
* = xtr * ------------- + Sum (k*(x_i(k)-xtr))
* 2 k=1
*
* := s_tr + s_ntr(i)
*
* By definition the summands in the s_ntr(i) term on the right-hand side
* are zero for those k outside the range of indices defined in irowix.
*/

/* As a demonstration of safely operating with the communication structure
* comm when running in parallel, the p field of comm is itself (a pointer
* to) an instance of our parallel_comm structure ’partitioned’ by the current
* thread number. Store some of the s_tr and s_ntr computations in these.
*/

/* The thread number. */
tid = nag_omp_get_thread_num();

/* The S and log(S) terms from above, extracted from comm. */
parcom = (parallel_comm *) comm->p;
s = (*parcom).tprivate[tid].s;
logs = (*parcom).tprivate[tid].logs;

if (*iflag == 0) {
/* First call: nx=1, no non-trivial dimensions.
* The constant s_tr can be reused by all subsequent calculations.
*/

s_tr = 0.5 * xtr * ((double) (ndim * (ndim + 1)));
parcom->shared.s_tr = s_tr;

d01 – Quadrature d01esc

Mark 26 d01esc.13

s[0] = s_tr;
logs[0] = log(s_tr);

}
else {

/* Calculate S(i) = s_tr + s_ntr(i). */
s_tr = parcom->shared.s_tr;
for (i = 0; i < nx; ++i) {

s_ntr = 0.0;
for (k = icolzp[i]; k < icolzp[i + 1]; ++k)

s_ntr = s_ntr + ((double) irowix[k - 1]) * (xs[k - 1] - xtr);
s[i] = s_tr + s_ntr;
logs[i] = log(s[i]);

}
}
/* Finally we obtain fm(j,:) = sin(j+S(:))*log(S(:)). */
for (j = 0; j < ni; ++j)

for (i = 0; i < nx; ++i)
fm[i * ni + j] = sin(((double) j + 1) + s[i]) * logs[i];

}

10.2 Program Data

None.

10.3 Program Results

nag_quad_md_sgq_multi_vec (d01esc) Example Program Results
Integral # | Estimated value | Error estimate | Final state of integral

0| 3.83522e-02| 2.39770e-05| 0
1| 4.01177e-01| 1.69503e-05| 0
2| 3.95161e-01| 5.66045e-06| 0
3| 2.58363e-02| 2.30670e-05| 0
4| -3.67242e-01| 1.92659e-05| 0
5| -4.22680e-01| 2.24822e-06| 0
6| -8.95077e-02| 2.16953e-05| 0
7| 3.25958e-01| 2.11959e-05| 0
8| 4.41739e-01| 1.20901e-06| 0
9| 1.51388e-01| 1.98894e-05| 0

11 Optional Parameters

Several optional parameters in nag_quad_md_sgq_multi_vec (d01esc) control aspects of the algorithm,
methodology used, logic or output. Their values are contained in the arrays iopts and opts; these must
be initialized before calling nag_quad_md_sgq_multi_vec (d01esc) by first calling nag_quad_opt_set
(d01zkc) with optstr set to "IInniittiiaalliizzee = d01esc".

Each optional parameter has an associated default value; to set any of them to a non-default value, or to
reset any of them to the default value, use nag_quad_opt_set (d01zkc). The current value of an optional
parameter can be queried using nag_quad_opt_get (d01zlc).

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Absolute Tolerance

Index Level

Maximum Level

Maximum Nx

Maximum Quadrature Level

Minimum Level

Quadrature Rule

Relative Tolerance

d01esc NAG Library Manual

d01esc.14 Mark 26

Serial Levels

Summation Precision

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively.

the default value.

The following symbol represent various machine constants:

� represents the machine precision (see nag_machine_precision (X02AJC)).

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

Queriable options will return the appropriate value when queried by calling nag_quad_opt_get (d01zlc).
They will have no effect if passed to nag_quad_opt_set (d01zkc).

For nag_quad_md_sgq_multi_vec (d01esc) the maximum length of the argument cvalue used by
nag_quad_opt_get (d01zlc) is 15.

Absolute Tolerance r Default ¼ ffiffi
�

p

r ¼ �a, the absolute tolerance required.

Index Level i Default ¼ 4

The maximum level at which function values are stored for later use. Larger values use increasingly
more memory, and require more time to access specific elements. Lower levels result in more repeated
computation. The Maximum Quadrature Level, mq is the effective upper limit on Index Level. If
i
 mq, nag_quad_md_sgq_multi_vec (d01esc) will use mq as the value of Index Level.

Constraint: i
 1.

Maximum Level i Default ¼ 5

i ¼ L, the maximum number of levels to evaluate.

Constraint: 1 < i 	 20.

Note: the maximum allowable level in any single dimension, mq, is governed by the Quadrature Rule
selected. If a value greater than mq is set, only a subset of subspaces from higher levels will be used.
Should this subset be empty for a given level, computation will consider the preceding level to be the
maximum level and will terminate.

Maximum Nx i Default ¼ 128

i ¼ max nx, the maximum number of points to evaluate in a single call to f.

Constraint: 1 	 i 	 16384.

Maximum Quadrature Level i Queriable only

i ¼ mq, the maximum level of the underlying one-dimensional quadrature rule (see Quadrature Rule).

d01 – Quadrature d01esc

Mark 26 d01esc.15

Minimum Level i Default ¼ 2

The minimum number of levels which must be evaluated before an error estimate is used to determine
convergence.

Constraint: i > 1.

Note: if the minimum level is greater than the maximum computable level, the maximum level will be
used.

Quadrature Rule a Default ¼ Gauss�Patterson

The underlying one-dimensional quadrature rule to be used in the construction. Open rules do not
require evaluations at boundaries.

Quadrature Rule ¼ Gauss�Patterson or GP
The interlacing Gauss–Patterson rules. Level ‘ uses 2‘ � 1 abscissae. All levels are open. These
rules provide high order accuracy. mq ¼ 9.

Quadrature Rule ¼ Clenshaw�Curtis or CC
The interlacing Clenshaw–Curtis rules. Level ‘ uses 2‘�1 þ 1 abscissae. All levels above level 1
are closed. mq ¼ 12.

Relative Tolerance r Default ¼ ffiffi
�

p

r ¼ �a, the relative tolerance required.

Summation Precision a Default ¼ HIGHER

Determines whether nag_quad_md_sgq_multi_vec (d01esc) uses double precision or higher-than-double
precision to accumulate the actions over subspaces.

Summation Precision ¼ HIGHER or H
Higher-than-double precision is used to accumulate the action over a subspace, and for the
accumulation of all such actions. This is more expensive computationally, although this is
probably negligible in comparison to the cost of evaluating the integrands and the overall
runtime. This significantly reduces variation in the result when changing the number of threads.

Summation Precision ¼ WORKING or W
Double precision is used to accumulate the actions over subspaces. This may provide some
speedup, particularly if ni or nt is large. The results of parallel simulations will however be more
prone to variation.

Note: the following option is relevant only to multithreaded implementations of the NAG Library.

Serial Levels i Default ¼ 1

i ¼ sl, the number of levels to be evaluated in serial before initializing parallelization. For relatively
trivial integrands, this may need to be set greater than the default to reduce parallel overhead.

d01esc NAG Library Manual

d01esc.16 (last) Mark 26

	d01esc
	1 Purpose
	2 Specification
	3 Description
	3.1 Comparing Quadrature Over Full and Sparse Grids
	3.2 Sparse Grid Quadrature
	3.3 Using nag_quad_md_sgq_multi_vec?(d01esc)

	4 References
	Caflisch et al. (1997)
	Gerstner and Griebel (1998)
	Smolyak (1963)

	5 Arguments
	ni
	ndim
	f
	ni
	ndim
	nx
	xtr
	nntr
	icolzp
	irowix
	xs
	qs
	fm
	iflag
	comm
	user
	iuser
	p

	maxdlv
	dinest
	errest
	ivalid
	iopts
	opts
	comm
	fail

	6 Error Indicators and Warnings
	NE_ACCURACY
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_OPTION
	NE_NO_LICENCE
	NE_TOTAL_PRECISION_LOSS
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	8.1 Direct Threading
	8.2 Parallelization of f

	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	[Abs]olute [Tol]erance
	[I]ndex [Lev]el
	[Max]imum [Lev]el
	[Max]imum [Nx]
	[Max]imum [Q]uadrature [Lev]el
	[Min]imum [Lev]el
	[Q]uadrature [Rule]
	[Rel]ative [Tol]erance
	[Sum]mation [Prec]ision
	[Ser]ial [Lev]els

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

