# NAG Library Function Document

## 1Purpose

nag_zger (f16smc) performs a rank-1 update on a complex general matrix.

## 2Specification

 #include #include
 void nag_zger (Nag_OrderType order, Nag_ConjType conj, Integer m, Integer n, Complex alpha, const Complex x[], Integer incx, const Complex y[], Integer incy, Complex beta, Complex a[], Integer pda, NagError *fail)

## 3Description

nag_zger (f16smc) performs the rank-1 update operation
 $A←αxyT+βA,$
or
 $A←αxyH+βA,$
where $A$ is an $m$ by $n$ complex matrix, $x$ is an $m$ element complex vector, $y$ is an $n$-element complex vector, and $\alpha$ and $\beta$ are complex scalars.

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{conj}$Nag_ConjTypeInput
On entry: the argument conj specifies whether the elements ${y}_{i}$ are used unconjugated or conjugated, as follows:
${\mathbf{conj}}=\mathrm{Nag_NoConj}$
The elements ${y}_{i}$ are not conjugated.
${\mathbf{conj}}=\mathrm{Nag_Conj}$
The complex conjugate of the elements ${y}_{i}$ are used.
Constraint: ${\mathbf{conj}}=\mathrm{Nag_NoConj}$ or $\mathrm{Nag_Conj}$.
3:    $\mathbf{m}$IntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
4:    $\mathbf{n}$IntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
5:    $\mathbf{alpha}$ComplexInput
On entry: the scalar $\alpha$.
6:    $\mathbf{x}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incx}}\right|\right)$.
On entry: the $n$-element vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left[\left(\mathit{i}-1\right)×{\mathbf{incx}}\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left[\left({\mathbf{m}}-\mathit{i}\right)×\left|{\mathbf{incx}}\right|\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
Intermediate elements of x are not referenced. If ${\mathbf{m}}=0$, x is not referenced and may be NULL.
7:    $\mathbf{incx}$IntegerInput
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
8:    $\mathbf{y}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array y must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incy}}\right|\right)$.
On entry: the $n$-element vector $y$.
If ${\mathbf{incy}}>0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left[\left(\mathit{i}-1\right)×{\mathbf{incy}}\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incy}}<0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left[\left({\mathbf{n}}-\mathit{i}\right)×\left|{\mathbf{incy}}\right|\right]$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of y are not referenced. If $\alpha =0.0$ or ${\mathbf{n}}=0$, y is not referenced and may be NULL.
9:    $\mathbf{incy}$IntegerInput
On entry: the increment in the subscripts of y between successive elements of $y$.
Constraint: ${\mathbf{incy}}\ne 0$.
10:  $\mathbf{beta}$ComplexInput
On entry: the scalar $\beta$.
11:  $\mathbf{a}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
On entry: the $m$ by $n$ matrix $A$.
On exit: the updated matrix $A$.
12:  $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge {\mathbf{n}}$.
13:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{incy}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{incy}}\ne 0$.
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge {\mathbf{n}}$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

nag_zger (f16smc) is not threaded in any implementation.

None.

## 10Example

Perform rank-1 update of complex matrix $A$ using vectors $x$ and $y$:
 $A ← A - x yH ,$
where $A$ is the $3$ by $2$ complex matrix given by
 $A = 4.0+4.0i 2.0+2.0i 4.0+7.0i 4.0+3.0i 11.0+3.0i 9.0+7.0i ,$
and the vectors $x$ and $y$ are
 $x = 2.0+1.0i 3.0+2.0i 5.0-1.0i$
and
 $y = 2.0+1.0i 1.0-2.0i .$
The vector $y$ is stored in every second element of array y (${\mathbf{incy}}=2$).

### 10.1Program Text

Program Text (f16smce.c)

### 10.2Program Data

Program Data (f16smce.d)

### 10.3Program Results

Program Results (f16smce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017