NAG Library Function Document
nag_dspgv (f08tac)
1
Purpose
nag_dspgv (f08tac) computes all the eigenvalues and, optionally, all the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
where
and
are symmetric, stored in packed format, and
is also positive definite.
2
Specification
#include <nag.h> |
#include <nagf08.h> |
void |
nag_dspgv (Nag_OrderType order,
Integer itype,
Nag_JobType job,
Nag_UploType uplo,
Integer n,
double ap[],
double bp[],
double w[],
double z[],
Integer pdz,
NagError *fail) |
|
3
Description
nag_dspgv (f08tac) first performs a Cholesky factorization of the matrix
as
, when
or
, when
. The generalized problem is then reduced to a standard symmetric eigenvalue problem
which is solved for the eigenvalues and, optionally, the eigenvectors; the eigenvectors are then backtransformed to give the eigenvectors of the original problem.
For the problem
, the eigenvectors are normalized so that the matrix of eigenvectors,
, satisfies
where
is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem
we correspondingly have
and for
we have
4
References
Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999)
LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
5
Arguments
- 1:
– Nag_OrderTypeInput
-
On entry: the
order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by
. See
Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint:
or .
- 2:
– IntegerInput
-
On entry: specifies the problem type to be solved.
- .
- .
- .
Constraint:
, or .
- 3:
– Nag_JobTypeInput
-
On entry: indicates whether eigenvectors are computed.
- Only eigenvalues are computed.
- Eigenvalues and eigenvectors are computed.
Constraint:
or .
- 4:
– Nag_UploTypeInput
-
On entry: if
, the upper triangles of
and
are stored.
If , the lower triangles of and are stored.
Constraint:
or .
- 5:
– IntegerInput
-
On entry: , the order of the matrices and .
Constraint:
.
- 6:
– doubleInput/Output
-
Note: the dimension,
dim, of the array
ap
must be at least
.
On entry: the upper or lower triangle of the
by
symmetric matrix
, packed by rows or columns.
The storage of elements
depends on the
order and
uplo arguments as follows:
- if and ,
is stored in , for ; - if and ,
is stored in , for ; - if and ,
is stored in , for ; - if and ,
is stored in , for .
On exit: the contents of
ap are destroyed.
- 7:
– doubleInput/Output
-
Note: the dimension,
dim, of the array
bp
must be at least
.
On entry: the upper or lower triangle of the
by
symmetric matrix
, packed by rows or columns.
The storage of elements
depends on the
order and
uplo arguments as follows:
- if and ,
is stored in , for ; - if and ,
is stored in , for ; - if and ,
is stored in , for ; - if and ,
is stored in , for .
On exit: the triangular factor or from the Cholesky factorization or , in the same storage format as .
- 8:
– doubleOutput
-
On exit: the eigenvalues in ascending order.
- 9:
– doubleOutput
-
Note: the dimension,
dim, of the array
z
must be at least
- when
;
- otherwise.
The
th element of the matrix
is stored in
- when ;
- when .
On exit: if
,
z contains the matrix
of eigenvectors. The eigenvectors are normalized as follows:
- if or , ;
- if , .
If
,
z is not referenced.
- 10:
– IntegerInput
-
On entry: the stride separating row or column elements (depending on the value of
order) in the array
z.
Constraints:
- if , ;
- otherwise .
- 11:
– NagError *Input/Output
-
The NAG error argument (see
Section 3.7 in How to Use the NAG Library and its Documentation).
6
Error Indicators and Warnings
- NE_ALLOC_FAIL
-
Dynamic memory allocation failed.
See
Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
- NE_BAD_PARAM
-
On entry, argument had an illegal value.
- NE_CONVERGENCE
-
The algorithm failed to converge; off-diagonal elements of an intermediate tridiagonal form did not converge to zero.
- NE_ENUM_INT_2
-
On entry, , and .
Constraint: if , ;
otherwise .
- NE_INT
-
On entry, .
Constraint: , or .
On entry, .
Constraint: .
On entry, .
Constraint: .
- NE_INTERNAL_ERROR
-
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact
NAG for assistance.
See
Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
- NE_MAT_NOT_POS_DEF
-
If , for , then the leading minor of order of is not positive definite. The factorization of could not be completed and no eigenvalues or eigenvectors were computed.
- NE_NO_LICENCE
-
Your licence key may have expired or may not have been installed correctly.
See
Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
7
Accuracy
If
is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of
differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of
would suggest. See Section 4.10 of
Anderson et al. (1999) for details of the error bounds.
The example program below illustrates the computation of approximate error bounds.
8
Parallelism and Performance
nag_dspgv (f08tac) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dspgv (f08tac) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the
x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the
Users' Note for your implementation for any additional implementation-specific information.
The total number of floating-point operations is proportional to .
The complex analogue of this function is
nag_zhpgv (f08tnc).
10
Example
This example finds all the eigenvalues and eigenvectors of the generalized symmetric eigenproblem
, where
together with an estimate of the condition number of
, and approximate error bounds for the computed eigenvalues and eigenvectors.
The example program for
nag_dspgvd (f08tcc) illustrates solving a generalized symmetric eigenproblem of the form
.
10.1
Program Text
Program Text (f08tace.c)
10.2
Program Data
Program Data (f08tace.d)
10.3
Program Results
Program Results (f08tace.r)