NAG Library Function Document

1Purpose

nag_dormtr (f08fgc) multiplies an arbitrary real matrix $C$ by the real orthogonal matrix $Q$ which was determined by nag_dsytrd (f08fec) when reducing a real symmetric matrix to tridiagonal form.

2Specification

 #include #include
 void nag_dormtr (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo, Nag_TransType trans, Integer m, Integer n, const double a[], Integer pda, const double tau[], double c[], Integer pdc, NagError *fail)

3Description

nag_dormtr (f08fgc) is intended to be used after a call to nag_dsytrd (f08fec), which reduces a real symmetric matrix $A$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation: $A=QT{Q}^{\mathrm{T}}$. nag_dsytrd (f08fec) represents the orthogonal matrix $Q$ as a product of elementary reflectors.
This function may be used to form one of the matrix products
 $QC , QTC , CQ ​ or ​ CQT ,$
overwriting the result on $C$ (which may be any real rectangular matrix).
A common application of this function is to transform a matrix $Z$ of eigenvectors of $T$ to the matrix $\mathit{QZ}$ of eigenvectors of $A$.

4References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{side}$Nag_SideTypeInput
On entry: indicates how $Q$ or ${Q}^{\mathrm{T}}$ is to be applied to $C$.
${\mathbf{side}}=\mathrm{Nag_LeftSide}$
$Q$ or ${Q}^{\mathrm{T}}$ is applied to $C$ from the left.
${\mathbf{side}}=\mathrm{Nag_RightSide}$
$Q$ or ${Q}^{\mathrm{T}}$ is applied to $C$ from the right.
Constraint: ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ or $\mathrm{Nag_RightSide}$.
3:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: this must be the same argument uplo as supplied to nag_dsytrd (f08fec).
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
4:    $\mathbf{trans}$Nag_TransTypeInput
On entry: indicates whether $Q$ or ${Q}^{\mathrm{T}}$ is to be applied to $C$.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$Q$ is applied to $C$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$
${Q}^{\mathrm{T}}$ is applied to $C$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ or $\mathrm{Nag_Trans}$.
5:    $\mathbf{m}$IntegerInput
On entry: $m$, the number of rows of the matrix $C$; $m$ is also the order of $Q$ if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$.
Constraint: ${\mathbf{m}}\ge 0$.
6:    $\mathbf{n}$IntegerInput
On entry: $n$, the number of columns of the matrix $C$; $n$ is also the order of $Q$ if ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
Constraint: ${\mathbf{n}}\ge 0$.
7:    $\mathbf{a}\left[\mathit{dim}\right]$const doubleInput
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{m}}\right)$ when ${\mathbf{side}}=\mathrm{Nag_LeftSide}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_dsytrd (f08fec).
8:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraints:
• if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{side}}=\mathrm{Nag_RightSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9:    $\mathbf{tau}\left[\mathit{dim}\right]$const doubleInput
Note: the dimension, dim, of the array tau must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}-1\right)$ when ${\mathbf{side}}=\mathrm{Nag_LeftSide}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$ when ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
On entry: further details of the elementary reflectors, as returned by nag_dsytrd (f08fec).
10:  $\mathbf{c}\left[\mathit{dim}\right]$doubleInput/Output
Note: the dimension, dim, of the array c must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdc}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pdc}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $C$ is stored in
• ${\mathbf{c}}\left[\left(j-1\right)×{\mathbf{pdc}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{c}}\left[\left(i-1\right)×{\mathbf{pdc}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m$ by $n$ matrix $C$.
On exit: c is overwritten by $QC$ or ${Q}^{\mathrm{T}}C$ or $CQ$ or $C{Q}^{\mathrm{T}}$ as specified by side and trans.
11:  $\mathbf{pdc}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array c.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
12:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_ENUM_INT_3
On entry, ${\mathbf{side}}=〈\mathit{\text{value}}〉$, ${\mathbf{m}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$ and ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
if ${\mathbf{side}}=\mathrm{Nag_RightSide}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdc}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdc}}>0$.
NE_INT_2
On entry, ${\mathbf{pdc}}=〈\mathit{\text{value}}〉$ and ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pdc}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7Accuracy

The computed result differs from the exact result by a matrix $E$ such that
 $E2 = Oε C2 ,$
where $\epsilon$ is the machine precision.

8Parallelism and Performance

nag_dormtr (f08fgc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dormtr (f08fgc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $2{m}^{2}n$ if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ and $2m{n}^{2}$ if ${\mathbf{side}}=\mathrm{Nag_RightSide}$.
The complex analogue of this function is nag_zunmtr (f08fuc).

10Example

This example computes the two smallest eigenvalues, and the associated eigenvectors, of the matrix $A$, where
 $A = 2.07 3.87 4.20 -1.15 3.87 -0.21 1.87 0.63 4.20 1.87 1.15 2.06 -1.15 0.63 2.06 -1.81 .$
Here $A$ is symmetric and must first be reduced to tridiagonal form $T$ by nag_dsytrd (f08fec). The program then calls nag_dstebz (f08jjc) to compute the requested eigenvalues and nag_dstein (f08jkc) to compute the associated eigenvectors of $T$. Finally nag_dormtr (f08fgc) is called to transform the eigenvectors to those of $A$.

10.1Program Text

Program Text (f08fgce.c)

10.2Program Data

Program Data (f08fgce.d)

10.3Program Results

Program Results (f08fgce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017