# NAG Library Function Document

## 1Purpose

nag_zgeqrt (f08apc) recursively computes, with explicit blocking, the $QR$ factorization of a complex $m$ by $n$ matrix.

## 2Specification

 #include #include
 void nag_zgeqrt (Nag_OrderType order, Integer m, Integer n, Integer nb, Complex a[], Integer pda, Complex t[], Integer pdt, NagError *fail)

## 3Description

nag_zgeqrt (f08apc) forms the $QR$ factorization of an arbitrary rectangular complex $m$ by $n$ matrix. No pivoting is performed.
It differs from nag_zgeqrf (f08asc) in that it: requires an explicit block size; stores reflector factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the $QR$ factorization based on the algorithm of Elmroth and Gustavson (2000).
If $m\ge n$, the factorization is given by:
 $A = Q R 0 ,$
where $R$ is an $n$ by $n$ upper triangular matrix (with real diagonal elements) and $Q$ is an $m$ by $m$ unitary matrix. It is sometimes more convenient to write the factorization as
 $A = Q1 Q2 R 0 ,$
which reduces to
 $A = Q1 R ,$
where ${Q}_{1}$ consists of the first $n$ columns of $Q$, and ${Q}_{2}$ the remaining $m-n$ columns.
If $m, $R$ is upper trapezoidal, and the factorization can be written
 $A = Q R1 R2 ,$
where ${R}_{1}$ is upper triangular and ${R}_{2}$ is rectangular.
The matrix $Q$ is not formed explicitly but is represented as a product of $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with $Q$ in this representation (see Section 9).
Note also that for any $k, the information returned represents a $QR$ factorization of the first $k$ columns of the original matrix $A$.

## 4References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel $QR$ Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{m}$IntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
3:    $\mathbf{n}$IntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:    $\mathbf{nb}$IntegerInput
On entry: the explicitly chosen block size to be used in computing the $QR$ factorization. See Section 9 for details.
Constraint: if $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)>0$, $1\le {\mathbf{nb}}\le \mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)$.
5:    $\mathbf{a}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m\ge n$, the elements below the diagonal are overwritten by details of the unitary matrix $Q$ and the upper triangle is overwritten by the corresponding elements of the $n$ by $n$ upper triangular matrix $R$.
If $m, the strictly lower triangular part is overwritten by details of the unitary matrix $Q$ and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
The diagonal elements of $R$ are real.
6:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7:    $\mathbf{t}\left[\mathit{dim}\right]$ComplexOutput
Note: the dimension, dim, of the array t must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdt}}×\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nb}}×{\mathbf{pdt}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $T$ is stored in
• ${\mathbf{t}}\left[\left(j-1\right)×{\mathbf{pdt}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{t}}\left[\left(i-1\right)×{\mathbf{pdt}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: further details of the unitary matrix $Q$. The number of blocks is $b=⌈\frac{k}{{\mathbf{nb}}}⌉$, where $k=\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ and each block is of order nb except for the last block, which is of order $k-\left(b-1\right)×{\mathbf{nb}}$. For each of the blocks, an upper triangular block reflector factor is computed: ${\mathbit{T}}_{1},{\mathbit{T}}_{2},\dots ,{\mathbit{T}}_{b}$. These are stored in the ${\mathbf{nb}}$ by $n$ matrix $T$ as $\mathbit{T}=\left[{\mathbit{T}}_{1}|{\mathbit{T}}_{2}|\dots |{\mathbit{T}}_{b}\right]$.
8:    $\mathbf{pdt}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array t.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdt}}\ge {\mathbf{nb}}$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdt}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)\right)$.
9:    $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdt}}=〈\mathit{\text{value}}〉$ and ${\mathbf{nb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdt}}\ge {\mathbf{nb}}$.
NE_INT_3
On entry, ${\mathbf{nb}}=〈\mathit{\text{value}}〉$, ${\mathbf{m}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)>0$, $1\le {\mathbf{nb}}\le \mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdt}}=〈\mathit{\text{value}}〉$, ${\mathbf{m}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdt}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7Accuracy

The computed factorization is the exact factorization of a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision.

## 8Parallelism and Performance

nag_zgeqrt (f08apc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of real floating-point operations is approximately $\frac{8}{3}{n}^{2}\left(3m-n\right)$ if $m\ge n$ or $\frac{8}{3}{m}^{2}\left(3n-m\right)$ if $m.
To apply $Q$ to an arbitrary complex rectangular matrix $C$, nag_zgeqrt (f08apc) may be followed by a call to nag_zgemqrt (f08aqc). For example,
```nag_zgemqrt(order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),nb,a,pda,
t,pdt,c,pdc,&fail)```
forms $C={Q}^{\mathrm{H}}C$, where $C$ is $m$ by $p$.
To form the unitary matrix $Q$ explicitly, simply initialize the $m$ by $m$ matrix $C$ to the identity matrix and form $C=QC$ using nag_zgemqrt (f08aqc) as above.
The block size, nb, used by nag_zgeqrt (f08apc) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of ${\mathbf{nb}}=64\ll \mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ is likely to achieve good efficiency and it is unlikely that an optimal value would exceed $340$.
To compute a $QR$ factorization with column pivoting, use nag_ztpqrt (f08bpc) or nag_zgeqpf (f08bsc).
The real analogue of this function is nag_dgeqrt (f08abc).

## 10Example

This example solves the linear least squares problems
 $minimize⁡ Axi - bi 2 , i=1,2$
where ${b}_{1}$ and ${b}_{2}$ are the columns of the matrix $B$,
 $A = 0.96-0.81i -0.03+0.96i -0.91+2.06i -0.05+0.41i -0.98+1.98i -1.20+0.19i -0.66+0.42i -0.81+0.56i 0.62-0.46i 1.01+0.02i 0.63-0.17i -1.11+0.60i -0.37+0.38i 0.19-0.54i -0.98-0.36i 0.22-0.20i 0.83+0.51i 0.20+0.01i -0.17-0.46i 1.47+1.59i 1.08-0.28i 0.20-0.12i -0.07+1.23i 0.26+0.26i$
and
 $B = -2.09+1.93i 3.26-2.70i 3.34-3.53i -6.22+1.16i -4.94-2.04i 7.94-3.13i 0.17+4.23i 1.04-4.26i -5.19+3.63i -2.31-2.12i 0.98+2.53i -1.39-4.05i .$

### 10.1Program Text

Program Text (f08apce.c)

### 10.2Program Data

Program Data (f08apce.d)

### 10.3Program Results

Program Results (f08apce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017