NAG Library Function Document

nag_matop_real_gen_matrix_cond_std (f01jac)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

nag_matop_real_gen_matrix_cond_std (f01jac) computes an estimate of the absolute condition number of a matrix function f at a real n by n matrix A in the 1-norm, where f is either the exponential, logarithm, sine, cosine, hyperbolic sine (sinh) or hyperbolic cosine (cosh). The evaluation of the matrix function, fA, is also returned.

2
Specification

#include <nag.h>
#include <nagf01.h>
void  nag_matop_real_gen_matrix_cond_std (Nag_MatFunType fun, Integer n, double a[], Integer pda, double *conda, double *norma, double *normfa, NagError *fail)

3
Description

The absolute condition number of f at A, condabsf,A is given by the norm of the Fréchet derivative of f, LA, which is defined by
LX := maxE0 LX,E E ,  
where LX,E is the Fréchet derivative in the direction E. LX,E is linear in E and can therefore be written as
vec LX,E = KX vecE ,  
where the vec operator stacks the columns of a matrix into one vector, so that KX is n2×n2. nag_matop_real_gen_matrix_cond_std (f01jac) computes an estimate γ such that γ KX 1 , where KX 1 n-1 LX 1 , n LX 1 . The relative condition number can then be computed via
cond rel f,A = cond abs f,A A1 fA 1 .  
The algorithm used to find γ is detailed in Section 3.4 of Higham (2008).

4
References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5
Arguments

1:     fun Nag_MatFunTypeInput
On entry: indicates which matrix function will be used.
fun=Nag_Exp
The matrix exponential, eA, will be used.
fun=Nag_Sin
The matrix sine, sinA, will be used.
fun=Nag_Cos
The matrix cosine, cosA, will be used.
fun=Nag_Sinh
The hyperbolic matrix sine, sinhA, will be used.
fun=Nag_Cosh
The hyperbolic matrix cosine, coshA, will be used.
fun=Nag_Loga
The matrix logarithm, logA, will be used.
Constraint: fun=Nag_Exp, Nag_Sin, Nag_Cos, Nag_Sinh, Nag_Cosh or Nag_Loga.
2:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
3:     a[dim] doubleInput/Output
Note: the dimension, dim, of the array a must be at least pda×n.
The i,jth element of the matrix A is stored in a[j-1×pda+i-1].
On entry: the n by n matrix A.
On exit: the n by n matrix, fA.
4:     pda IntegerInput
On entry: the stride separating matrix row elements in the array a.
Constraint: pdan.
5:     conda double *Output
On exit: an estimate of the absolute condition number of f at A.
6:     norma double *Output
On exit: the 1-norm of A.
7:     normfa double *Output
On exit: the 1-norm of fA.
8:     fail NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

6
Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value and n=value.
Constraint: pdan.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
An internal error occurred when estimating the norm of the Fréchet derivative of f at A. Please contact NAG.
An internal error occurred when evaluating the matrix function fA. You can investigate further by calling nag_real_gen_matrix_exp (f01ecc), nag_matop_real_gen_matrix_log (f01ejc) or nag_matop_real_gen_matrix_fun_std (f01ekc) with the matrix A.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

7
Accuracy

nag_matop_real_gen_matrix_cond_std (f01jac) uses the norm estimation function nag_linsys_real_gen_norm_rcomm (f04ydc) to estimate a quantity γ, where γ KX 1  and KX 1 n-1 LX 1 , n LX 1 . For further details on the accuracy of norm estimation, see the documentation for nag_linsys_real_gen_norm_rcomm (f04ydc).

8
Parallelism and Performance

nag_matop_real_gen_matrix_cond_std (f01jac) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. In these implementations, this function may make calls to the user-supplied functions from within an OpenMP parallel region. Thus OpenMP pragmas within the user functions can only be used if you are compiling the user-supplied function and linking the executable in accordance with the instructions in the Users' Note for your implementation.
nag_matop_real_gen_matrix_cond_std (f01jac) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9
Further Comments

The matrix function is computed using one of three underlying matrix function routines:
Approximately 6n2 of real allocatable memory is required by the routine, in addition to the memory used by these underlying matrix function routines.
If only fA is required, without an estimate of the condition number, then it is far more efficient to use the appropriate matrix function routine listed above.
nag_matop_complex_gen_matrix_cond_std (f01kac) can be used to find the condition number of the exponential, logarithm, sine, cosine, sinh or cosh matrix functions at a complex matrix.

10
Example

This example estimates the absolute and relative condition numbers of the matrix sinh function where
A = 2 1 3 1 3 -1 0 2 1 0 3 1 1 2 0 3 .  

10.1
Program Text

Program Text (f01jace.c)

10.2
Program Data

Program Data (f01jace.d)

10.3
Program Results

Program Results (f01jace.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017