NAG Library Function Document

nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) computes the action of the matrix exponential etA, on the matrix B, where A is a complex n by n matrix, B is a complex n by m matrix and t is a complex scalar. It uses reverse communication for evaluating matrix products, so that the matrix A is not accessed explicitly.

2
Specification

#include <nag.h>
#include <nagf01.h>
void  nag_matop_complex_gen_matrix_actexp_rcomm (Integer *irevcm, Integer n, Integer m, Complex b[], Integer pdb, Complex t, Complex tr, Complex b2[], Integer pdb2, Complex x[], Integer pdx, Complex y[], Integer pdy, Complex p[], Complex r[], Complex z[], Complex ccomm[], double comm[], Integer icomm[], NagError *fail)

3
Description

etAB is computed using the algorithm described in Al–Mohy and Higham (2011) which uses a truncated Taylor series to compute the etAB without explicitly forming etA.
The algorithm does not explicity need to access the elements of A; it only requires the result of matrix multiplications of the form AX or AHY. A reverse communication interface is used, in which control is returned to the calling program whenever a matrix product is required.

4
References

Al–Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5
Arguments

Note:  this function uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-entries, all arguments other than b2, x, y, p and r must remain unchanged.
1:     irevcm Integer *Input/Output
On initial entry: must be set to 0.
On intermediate exit: irevcm=1, 2, 3, 4 or 5. The calling program must:
(a) if irevcm=1: evaluate B2=AB, where B2 is an n by m matrix, and store the result in b2;
if irevcm=2: evaluate Y=AX, where X and Y are n by 2 matrices, and store the result in y;
if irevcm=3: evaluate X=AHY and store the result in x;
if irevcm=4: evaluate p=Az and store the result in p;
if irevcm=5: evaluate r=AHz and store the result in r.
(b) call nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) again with all other parameters unchanged.
On final exit: irevcm=0.
Note: any values you return to nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) as part of the reverse communication procedure should not include floating-point NaN (Not a Number) or infinity values, since these are not handled by nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc). If your code inadvertently does return any NaNs or infinities, nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) is likely to produce unexpected results.
2:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
3:     m IntegerInput
On entry: the number of columns of the matrix B.
Constraint: m0.
4:     b[dim] ComplexInput/Output
Note: the dimension, dim, of the array b must be at least pdb×m.
The i,jth element of the matrix B is stored in b[j-1×pdb+i-1].
On initial entry: the n by m matrix B.
On intermediate exit: if irevcm=1, contains the n by m matrix B.
On intermediate re-entry: must not be changed.
On final exit: the n by m matrix etAB.
5:     pdb IntegerInput
On entry: the stride separating matrix row elements in the array b.
Constraint: pdbn.
6:     t ComplexInput
On entry: the scalar t.
7:     tr ComplexInput
On entry: the trace of A. If this is not available then any number can be supplied (0 is a reasonable default); however, in the trivial case, n=1, the result etrtB is immediately returned in the first row of B. See Section 9.
8:     b2[dim] ComplexInput/Output
Note: the dimension, dim, of the array b2 must be at least pdb2×m.
The i,jth element of the matrix is stored in b2[j-1×pdb2+i-1].
On initial entry: need not be set.
On intermediate re-entry: if irevcm=1, must contain AB.
On final exit: the array is undefined.
9:     pdb2 IntegerInput
On entry: the stride separating matrix row elements in the array b2.
Constraint: pdb2n.
10:   x[dim] ComplexInput/Output
Note: the dimension, dim, of the array x must be at least pdx×2.
The i,jth element of the matrix X is stored in x[j-1×pdx+i-1].
On initial entry: need not be set.
On intermediate exit: if irevcm=2, contains the current n by 2 matrix X.
On intermediate re-entry: if irevcm=3, must contain AHY.
On final exit: the array is undefined.
11:   pdx IntegerInput
On entry: the stride separating matrix row elements in the array x.
Constraint: pdxn.
12:   y[dim] ComplexInput/Output
Note: the dimension, dim, of the array y must be at least pdy×2.
The i,jth element of the matrix Y is stored in y[j-1×pdy+i-1].
On initial entry: need not be set.
On intermediate exit: if irevcm=3, contains the current n by 2 matrix Y.
On intermediate re-entry: if irevcm=2, must contain AX.
On final exit: the array is undefined.
13:   pdy IntegerInput
On entry: the stride separating matrix row elements in the array y.
Constraint: pdyn.
14:   p[n] ComplexInput/Output
On initial entry: need not be set.
On intermediate re-entry: if irevcm=4, must contain Az.
On final exit: the array is undefined.
15:   r[n] ComplexInput/Output
On initial entry: need not be set.
On intermediate re-entry: if irevcm=5, must contain AHz.
On final exit: the array is undefined.
16:   z[n] ComplexInput/Output
On initial entry: need not be set.
On intermediate exit: if irevcm=4 or 5, contains the vector z.
On intermediate re-entry: must not be changed.
On final exit: the array is undefined.
17:   ccomm[n×m+2] ComplexCommunication Array
18:   comm[3×n+14] doubleCommunication Array
19:   icomm[2×n+40] IntegerCommunication Array
20:   fail NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

6
Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
On initial entry, irevcm=value.
Constraint: irevcm=0.
On intermediate re-entry, irevcm=value.
Constraint: irevcm=1, 2, 3, 4 or 5.
NE_INT_2
On entry, pdb=value and n=value.
Constraint: pdbn.
On entry, pdb2=value and n=value.
Constraint: pdb2n.
On entry, pdx=value and n=value.
Constraint: pdxn.
On entry, pdy=value and n=value.
Constraint: pdyn.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
NW_SOME_PRECISION_LOSS
etAB has been computed using an IEEE double precision Taylor series, although the arithmetic precision is higher than IEEE double precision.

7
Accuracy

For an Hermitian matrix A (for which AH=A) the computed matrix etAB is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-Hermitian matrices. See Section 4 of Al–Mohy and Higham (2011) for details and further discussion.

8
Parallelism and Performance

nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9
Further Comments

9.1
Use of TrA

The elements of A are not explicitly required by nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc). However, the trace of A is used in the preprocessing phase of the algorithm. If TrA is not available to the calling function then any number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it may reduce its efficiency.

9.2
When to use nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc)

nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) is designed to be used when A is large and sparse. Whenever a matrix multiplication is required, the function will return control to the calling program so that the multiplication can be done in the most efficient way possible. Note that etAB will not, in general, be sparse even if A is sparse.
If A is small and dense then nag_matop_complex_gen_matrix_actexp (f01hac) can be used to compute etAB without the use of a reverse communication interface.
The real analog of nag_matop_complex_gen_matrix_actexp_rcomm (f01hbc) is nag_matop_real_gen_matrix_actexp_rcomm (f01gbc).

9.3
Use in Conjunction with NAG C Library Functions

To compute etAB, the following skeleton code can normally be used:
do {
f01hbc(&irevcm,n,m,b,tdb,t,tr,b2,tdb2,x,tdx,y,tdy,p,r,z,ccomm,comm,  &
       icomm,&fail);
  if (irevcm == 1) {
    .. Code to compute B2=AB ..
  }
  else if (irevcm == 2){
    .. Code to compute Y=AX ..
  }
  else if (irevcm == 3){
    .. Code to compute X=A^H Y ..
  }
  else if (irevcm == 4){
    .. Code to compute P=AZ ..
  }
  else if (irevcm == 5){
    .. Code to compute R=A^H Z ..
  }
} (while irevcm !=0)
The code used to compute the matrix products will vary depending on the way A is stored. If all the elements of A are stored explicitly, then nag_zgemm (f16zac) can be used. If A is triangular then nag_ztrmm (f16zfc) should be used. If A is Hermitian, then nag_zhemm (f16zcc) should be used. If A is symmetric, then nag_zsymm (f16ztc) should be used. For sparse A stored in coordinate storage format nag_sparse_nherm_matvec (f11xnc) and nag_sparse_herm_matvec (f11xsc) can be used. For sparse A stored in compressed column storage format (CCS) the program text of Section 10 contains the function matmul to perform matrix products.

10
Example

This example computes etAB where
A = 0.7+0.8i -0.2+0.0i 1.0+0.0i 0.6+0.5i 0.3+0.7i 0.7+0.0i 0.9+3.0i 1.0+0.8i 0.3+3.0i -0.7+0.0i 0.2+0.6i 0.7+0.5i 0.0+0.9i 4.0+0.0i 0.0+0.0i 0.2+0.0i ,  
B = 0.1+0.0i 1.2+0.1i 1.3+0.9i -0.2+2.0i 4.0+0.6i -1.0+0.8i 0.4+0.0i -0.9+0.0i  
and
t=1.1+0.0i .  
A is stored in compressed column storage format (CCS) and matrix multiplications are performed using the function matmul.

10.1
Program Text

Program Text (f01hbce.c)

10.2
Program Data

Program Data (f01hbce.d)

10.3
Program Results

Program Results (f01hbce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017