/* nag_robust_trimmed_1var (g07ddc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*
*/
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg07.h>
#define NMAX 1000
int main(void)
{
/* Local variables */
Integer exit_status = 0, i, k, n;
NagError fail;
double alpha, propn, *sx = 0, tmean, tvar, wmean, wvar, *x = 0;
INIT_FAIL(fail);
printf("nag_robust_trimmed_1var (g07ddc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT " ", &n);
if (n >= 2) {
if (!(x = NAG_ALLOC(NMAX, double)) || !(sx = NAG_ALLOC(NMAX, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else {
printf("Invalid n.\n");
exit_status = 1;
return exit_status;
}
for (i = 1; i <= n; ++i)
scanf("%lf ", &x[i - 1]);
scanf("%lf ", &alpha);
/* nag_robust_trimmed_1var (g07ddc).
* Trimmed and winsorized mean of a sample with estimates of
* the variances of the two means
*/
nag_robust_trimmed_1var(n, x, alpha, &tmean, &wmean, &tvar, &wvar, &k, sx,
&fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_robust_trimmed_1var (g07ddc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
propn = (double) k / n;
propn = 100.0 - propn * 200.0;
printf("Statistics from middle %6.2f%% of data\n\n", propn);
printf(" Trimmed-mean = %11.4f\n", tmean);
printf(" Variance of Trimmed-mean = %11.4f\n\n", tvar);
printf(" Winsorized-mean = %11.4f\n", wmean);
printf("Variance of Winsorized-mean = %11.4f\n", wvar);
END:
NAG_FREE(x);
NAG_FREE(sx);
return exit_status;
}