/* nag_zpoequ (f07ftc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx02.h>
int main(void)
{
/* Scalars */
double amax, big, scond, small;
Integer i, j, n, pda;
Integer exit_status = 0;
/* Arrays */
Complex *a = 0;
double *s = 0;
/* Nag Types */
NagError fail;
Nag_OrderType order;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zpoequ (f07ftc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%*[^\n]", &n);
pda = n;
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) || !(s = NAG_ALLOC(n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read the upper triangular part of the matrix A from data file */
for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
/* Print the matrix A using nag_gen_complx_mat_print_comp (x04dbc). */
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_UpperMatrix, Nag_NonUnitDiag, n, n,
a, pda, Nag_BracketForm, "%11.2e", "Matrix A",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0,
80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n");
/* Compute diagonal scaling factors using nag_zpoequ (f07ftc). */
nag_zpoequ(order, n, a, pda, s, &scond, &amax, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zpoequ (f07ftc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print scond, amax and the scale factors */
printf("scond = %10.1e, amax = %10.1e\n", scond, amax);
printf("\nDiagonal scaling factors\n");
for (i = 0; i < n; ++i)
printf("%11.1e%s", s[i], i % 7 == 6 ? "\n" : " ");
printf("\n\n");
/* Compute values close to underflow and overflow using
* nag_real_safe_small_number (x02amc), nag_machine_precision (x02ajc) and
* nag_real_base (x02bhc)
*/
small = nag_real_safe_small_number / (nag_machine_precision *
nag_real_base);
big = 1.0 / small;
if (scond < 0.1 || amax < small || amax > big) {
/* Scale A */
for (j = 1; j <= n; ++j)
for (i = 1; i <= j; ++i) {
A(i, j).re *= s[i - 1] * s[j - 1];
A(i, j).im *= s[i - 1] * s[j - 1];
}
/* Print the scaled matrix using
* nag_gen_complx_mat_print_comp (x04dbc).
*/
fflush(stdout);
nag_gen_complx_mat_print_comp(order, Nag_UpperMatrix, Nag_NonUnitDiag, n,
n, a, pda, Nag_BracketForm, 0,
"Scaled matrix", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}
END:
NAG_FREE(a);
NAG_FREE(s);
return exit_status;
}
#undef A