nag_opt_handle_set_get_real (e04rxc) Example Program Results
----------------------------------------------
E04MT, Interior point method for LP problems
----------------------------------------------
Original Problem Statistics
Number of variables 7
Number of constraints 7
Free variables 0
Number of nonzeros 41
Presolved Problem Statistics
Number of variables 13
Number of constraints 7
Free variables 0
Number of nonzeros 47
------------------------------------------------------------------------------
it| pobj | dobj | optim | feas | compl | mu | mcc | I
------------------------------------------------------------------------------
0 -7.86591E-02 1.71637E-02 1.27E+00 1.06E+00 8.89E-02 1.5E-01
1 5.74135E-03 -2.24369E-02 6.11E-16 1.75E-01 2.25E-02 2.8E-02 0
2 1.96803E-02 1.37067E-02 5.06E-16 2.28E-02 2.91E-03 3.4E-03 0
3 2.15232E-02 1.96162E-02 7.00E-15 9.24E-03 1.44E-03 1.7E-03 0
4 2.30321E-02 2.28676E-02 1.15E-15 2.21E-03 2.97E-04 3.4E-04 0
monit() reports good approximate solution (tol =, 1.00e-03):
X1: -9.99e-03
X2: -1.00e-01
X3: 3.00e-02
X4: 2.00e-02
X5: -6.73e-02
X6: -2.35e-03
X7: -2.27e-04
end of monit()
5 2.35658E-02 2.35803E-02 1.32E-15 1.02E-04 8.41E-06 9.6E-06 0
monit() reports good approximate solution (tol =, 1.00e-03):
X1: -1.00e-02
X2: -1.00e-01
X3: 3.00e-02
X4: 2.00e-02
X5: -6.75e-02
X6: -2.28e-03
X7: -2.35e-04
end of monit()
6 2.35965E-02 2.35965E-02 1.64E-15 7.02E-08 6.35E-09 7.2E-09 0
monit() reports good approximate solution (tol =, 1.00e-03):
X1: -1.00e-02
X2: -1.00e-01
X3: 3.00e-02
X4: 2.00e-02
X5: -6.75e-02
X6: -2.28e-03
X7: -2.35e-04
end of monit()
7 2.35965E-02 2.35965E-02 1.35E-15 3.52E-11 3.18E-12 3.6E-12 0
------------------------------------------------------------------------------
Status: converged, an optimal solution found
------------------------------------------------------------------------------
Final primal objective value 2.359648E-02
Final dual objective value 2.359648E-02
Absolute primal infeasibility 4.168797E-15
Relative primal infeasibility 1.350467E-15
Absolute dual infeasibility 5.084353E-11
Relative dual infeasibility 3.518607E-11
Absolute complementarity gap 2.685778E-11
Relative complementarity gap 3.175366E-12
Iterations 7
Primal variables:
idx Lower bound Value Upper bound
1 -1.00000E-02 -1.00000E-02 1.00000E-02
2 -1.00000E-01 -1.00000E-01 1.50000E-01
3 -1.00000E-02 3.00000E-02 3.00000E-02
4 -4.00000E-02 2.00000E-02 2.00000E-02
5 -1.00000E-01 -6.74853E-02 5.00000E-02
6 -1.00000E-02 -2.28013E-03 inf
7 -1.00000E-02 -2.34528E-04 inf