Minimum Origin Version Required: 8.6 SR0
This function performs one dimension integration, and returns the integral value of:
And the function is called as the below form:
integral(integrandName, LowerLimit, UpperLimit [, arg1, arg2, ...])
Where integrandName here is the function name of the integrand , LowerLimit and UpperLimit can be used "-inf" and "+inf" as negative infinity and positive infinity respectively.
Notes: If there are discontinuous points or a sharp peak in the integral interval for the integral function, that may introduce dis-converge problem, in such situation we suggest user divide the integral interval into several parts to add refined sub-intervals around these points. |
double Integral(integrandName, LowerLimit, UpperLimit [, arg1, arg2, ...])
integrandName
LowerLimit
UpperLimit
arg1, arg2, ...
Return the integral value of specified integrand.
// define quadratic equation as integrand function double QuadraticEq(double x, double a, double b, double c) { return a+b*x+c*x^2; } // integrate quadratic equation Integral(QuadraticEq, 1, 4, 1, 2, 3) = ; // should return 81 Integral(QuadraticEq, -inf, +inf, 1, 2, 3) = ; // should return --, missing value
If LowerLimit is "-inf" or UpperLimit is "+inf", see: nag_1d_quad_inf_1 (d01smc)
Otherwise, see: nag_1d_quad_gen_1 (d01sjc).
Exp_integral, Elliptic_integral_rc, Elliptic_integral_rd, Elliptic_integral_rf, Elliptic_integral_rj, Cos_integral, Integrate