Analysis: Fitting: Nonlinear Implicit Curve Fit...
Start a nonlinear implicit curve fitting session
Minimum Origin Version Required: 9.0 SR0 (Pro Only)
X-Function not designed for Auto GetN Dialog.
Please refer to the page for additional option switches when accessing the x-function from script
Display Name |
Variable Name |
I/O and Type |
Default Value |
Description |
---|---|---|---|---|
Input | iy |
Input XYRange |
|
The data to be fitted |
Fitting Function Name | func |
Input string |
|
The fitting function used to fit data |
NLFit Tree | nltree |
Input/Output TreeNode |
|
Tree containing the information of fitting such as parameter values, standard error, etc. |
Fitting Mode | mode |
Input int |
|
The method to treat the input data for fitting.
Option list:
|
Dialog Theme | theme |
Input string |
|
The theme is used to store the special settings that user often use. |
Notation of Parameters | pnotation |
Input int |
|
Notation of parameters in the output tree.
Option list:
|
Parameter Initialization | init |
Input int |
|
Specify the status of Parameter Initialization.
Option list:
|
Global Weight Method | weight |
Input int |
|
Option list:
|
How to Initialize the NLFit Object | option |
Input int |
|
Option list:
|
Start a nonlinear implicit fitting session, including option settings and parameter initialization.
The nltree is a TreeNode variable, which can control many fitting settings and allows you to read fitting results such as the parameter values, standard error, etc.
For details please refer to this.
Note that only the fitting functions under the Implicit category in Fitting Function Organizer are available with this x-function.
The nonlinear implicit fitting uses the orthogonal distance regression (ODR) iteration algorithm.
"J. W. Zwolak, P.T. Boggs, and L.T. Watson, ``Algorithm 869: ODRPACK95: A weighted orthogonal distance regression code with bound constraints, ACM Transactions on Mathematical Software Vol. 33, Issue 4, August 2007."
This example shows to fit an implicit ellipse function with X Y error.
string fn$=system.path.program$ + "Samples\Curve Fitting\ellipse.dat";//prepare data newbook; impasc fname:=fn$;//import data into new workbook nlbegino iy:=(1,2,4,3) func:=Ellipse weight:=1;//Start the implicit fit with x y instrumental error, column 4 is the y error and column 3 is the x error. nlfit; nlend 1 1;
The parameter control in nlbegino is similar to nlbegin, you could refer to more examples.
Keywords:regression, NLFit