Multiple linear regression
Minimum Origin Version Required for all features: Origin 9.0
X-Function not designed for Auto GetN Dialog.
1. fitmr dep:=col(D) indep:=col(A):col(C) mrtree:=tr odep:=col(E);
Please refer to the page for additional option switches when accessing the x-function from script
Display Name |
Variable Name |
I/O and Type |
Default Value |
Description |
---|---|---|---|---|
Dependent Data | dep |
Input vector |
|
Specify dependent variable data range. |
Independent Data | indep |
Input Range |
|
Specify independent variables data range, multiple independent data ranges can be specified. For contiguous ranges, use ':' notation like (1:3) for columns 1 to 3. For non-contiguous ranges, use ',' separated list like (1,3,5). |
Fix Intercept | fixint |
Input int |
Set to 1 to fix the intercept in multiple linear regression. | |
Fix Intercept At | intercept |
Input double |
Specify the value of fixed intercept. This is ignored if fixint is set to 0. | |
MR Tree | mrtree |
Output TreeNode |
|
Tree variable for holding the result of multiple linear regression. |
Fitted Values | odep |
Output vector |
|
Specify the range to output the fitted values of dependent variable. |
This X-Function performs multiple linear regression for LabTalk usage.
After executing, the tree variables include
v# = The fit variable values, enumerated as in mrt.v1, mrt.v2, mrt.v3, etc.
e# = The Standard Error values, enumerated
p# = The Prob > |t| values, enumerated
t# = The t-value values, enumerated
numX = The number of Independent variables
npts = The number of points fit
dof = The Degress of Freedom
ReducedChiSqr = Reduced Chi Square
SSE = Sum of Squares due to Error
Rvalue = R Value
cod = R-Square (COD)
adrsq = Adjusted R-Square
rmse = Root-MSE (SD)
NormRes = Norm of Residuals
pvalue = Prob>F
fvalue = F Value
MSE = Mean Square Error
MSR = Model Mean Square
SSR = Model Sum of Squares
SST = Sum of Squares Total
/* How to perform multiple linear regression on data with three independents and on dependent in the active sheet and dump the results */ // first import some data filename$ = system.path.program$ + "Samples\Curve Fitting\Multiple Linear Regression.dat"; newbook; impASC filename$; // fitting fitmr dep:=col(D) indep:=col(A):col(C) mrtree:=tr odep:=col(E); // add some results to a new sheet newsheet name:=MRResult; wks.ncols = 5; // arrange the results to the sheet col(1)[1]$ = Beta0; col(1)[2]$ = Beta1; col(1)[3]$ = Beta2; col(1)[4]$ = Beta3; col(2)[L]$ = Value; col(2)[1] = tr.v1; col(2)[2] = tr.v2; col(2)[3] = tr.v3; col(2)[4] = tr.v4; col(3)[L]$ = "Standard Error"; col(3)[1] = tr.e1; col(3)[2] = tr.e2; col(3)[3] = tr.e3; col(3)[4] = tr.e4; col(4)[L]$ = t-Value; col(4)[1] = tr.t1; col(4)[2] = tr.t2; col(4)[3] = tr.t3; col(4)[4] = tr.t4; col(5)[L]$ = Prob>|t|; col(5)[1] = tr.p1; col(5)[2] = tr.p2; col(5)[3] = tr.p3; col(5)[4] = tr.p4; // dump the result tree tr.=;
Please refer to our User Guide: Multiple Regression Results.
Keywords:curve fitting